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Abstract
We consider decision situations in which a set of
points of view (voters, criteria) are to sort a set of
candidates to ordered classes (GOOD / BAD). Can-
didates are judged GOOD when approved by a suf-
ficient set of points of view; this corresponds to
noncompensatory sorting. To be accountable, such
approval sorting should provide guarantees about
the decision process and decisions concerning spe-
cific candidates. We formalize accountability using
a feasibility problem expressed as a boolean satisfi-
ability formulation. We illustrate different forms of
accountability when a committee decides with ap-
proval sorting and study the information that should
be disclosed by the committee.

1 Introduction
A committee meets to decide upon the sorting of a num-
ber of candidates into two categories (e.g. candidates to ac-
cept or not, projects to fund or not). The committee ap-
plies a decision process which is public, the outcomes are
public as well, however the details of the votes are sensi-
tive and should not be made available. Recently, the issue
of the accountability of algorithmic decisions has become
a primary concern of our society [Doshi-Velez et al., 2017;
Wachter et al., 2017]. To what extent can we make the com-
mittee accountable of its decisions? In particular, in our set-
ting, a distinctive feature is that the decision may concern
several individuals: being accountable for the classification
of an individual may not be the same as being accountable
for all the classifications. To make things more precise, it is
thus useful to distinguish the following situations:
S1: an independent audit agency is commissioned to check

that the decisions of the committee indeed comply with
the publicly announced decision rule.

S2: a candidate, (supposedly) unsatisfied with the outcome
of the process regarding his own classification, chal-
lenges the committee and asks for a justification.

Situation S1 is sometimes called procedural regularity, see
for instance [Kroll et al., 2017], which calls for systems able
to prove to oversight authorities that “decisions are made un-
der an announced set of rules consistently applied in each
case”. A typical way to address situation S1 is to require
transparency and let the audit agency access all the available
information. This suffers from two drawbacks: (i) there are
often exceptions making full disclosure of the decision proce-
dure impossible, (ii) the burden of proof lies on the shoulders
of the audit agency, which (depending on the model) may
be too demanding. Alternatively, we can leave the burden of
proof on the committee’s side and ask for evidence that the set
of classifications is compliant with the decision process. This
may be done by exhibiting only part of the information, illus-
trating that the obtained classification is a possible outcome
of the sorting process. Since, typically, many other outcomes
would also be possible, this could preserve to some extent the
privacy of the committee’s votes. On the other hand, failing
this test would be evidence that the process was biased.

Regarding situation S2, the objective is to justify the clas-
sification of the complaining individual, again with minimal
disclosure of the committee’s votes. In this case, the commit-
tee will aim for evidence that the classification of the candi-
date cannot be otherwise, as long as a number of other clas-
sification outcomes are accepted. We can think of such deci-
sions as reference cases. Technically, this requires to show the
impossibility to rank the candidate in a different category, i.e.
the decision is necessary with respect to the jurisprudence.

More precisely, we shall primarily be concerned with a
general sorting model where voters express binary judgments
[Laslier and Sanver, 2010], and candidates are sorted as either
good or bad depending on the fact that the coalition of voters
supporting this classification is winning or not. An important
hypothesis is that the set of winning coalitions has to remain
constant for the set of classifications under scrutiny. This can
be seen as a requirement for the process to be unbiased. In
this setting, the “details of the votes” cover two aspects: (i)
the approval of voters at the individual level, (ii) the winning
coalitions at the committee level. In this paper we address the
following research question:



Can we make the decisions of a committee using
approval sorting accountable while preserving as
much as possible the details of the votes?

The details of the sorting model are given in Section 2.
At the core of our proposal lies a characterization result of
the sorting model which avoids explicit reference to winning
coalitions, and leads to a SAT encoding (Section 3). In Sec-
tion 4, we consider the different scenarios discussed in the
introduction and show how this formal machinery allows us
to provide argument schemes which answer, at least partially,
the accountability requirements. Section 5 discusses related
work and concludes.

2 Noncompensatory Sorting
We are interested in situations where there is a need to aggre-
gate diverse, potentially conflicting, points of view forming a
set N – each i ∈ N can be seen as an agent, a voter, or a
criterion – into a single sorting of some alternatives taken in
a set X between two categories, GOOD and BAD, expressed
by an assignment α : X → {GOOD,BAD}. Each point of
view i ∈ N has an opinion on the entire set of alternatives
in the form of a complete preorder %i (i.e. %i is a complete,
reflexive and transitive binary relation on X) . This prefer-
ence may stem from numeric or symbolic performance, as
it is often the case in multi-criteria decision aiding, or be
intrinsically ordinal, as it is often assumed in social choice
contexts. Nevertheless, the aggregation procedure requires
that each point of view i ∈ N expresses only a binary judg-
ment on each alternative x ∈ X which is either approved or
not according to i. We shall also consider a subset X? ⊆ X
of alternatives with a reference status, with their assignment
α? : X? → {GOOD,BAD} serving as a basis for elaborating
justifications.

This abstract description covers several well-documented
decision processes, e.g. :

• a multiple criteria sorting problem [Bouyssou et al.,
2006] with ordinal preferences (each point of view i ∈
N is a criterion);

• a committee decision context (each point of view i ∈ N
is a voter and the GOOD category is the set of winners).

Example 1. We consider a situation with six alternatives
X := {a, b, c, d, e, f}, assessed from five points of view
N := {1, 2, 3, 4, 5} in the following manner:

a �1 b �1 f �1 e �1 c �1 d

e �2 b �2 c �2 d �2 a �2 f

f �3 a �3 b �3 d �3 e �3 c

d �4 a �4 c �4 e �4 f �4 b

c �5 e �5 b �5 f �5 d �5 a

We recall the definitions of an upset and the upper closure
of a subset w.r.t. a binary relation:

Definition 1 (Upset and upper closure). LetA be a set andR
a binary relation onA. An upset of (A,R) is a subsetB ⊆ A
such that ∀a ∈ A,∀b ∈ B, aRb ⇒ a ∈ B. The upper
closure of a subset of (A,R) is the smallest upset of (A,R)
containing it: ∀B ⊆ A, clRA (B) := {a ∈ A : ∃b ∈ B aRb}.

We postulate that the process is bounded by two assump-
tions of rationality, individual and collective.

• At the individual level, for all points of view i ∈ N , the
approved subset of alternatives Ai ⊆ X should be an
upset for the preference relation %i. Hence, there is no
pair of alternatives x, x′ ∈ X where x is preferred to x′
w.r.t. %i, x′ is approved by i but not x.

• At the collective level, an alternative x ∈ X is collec-
tively approved and sorted into the upper category if,
and only if, it is approved by a sufficient coalition of
points of view. We assume the set of sufficient coalitions
S ⊆ P(N ) is fixed, and is an upset for inclusion. Hence,
if a coalition is sufficient, any superset of this coalition
is also sufficient (and if a coalition is insufficient, any
subset of it is also insufficient). We do not assume the
set of sufficient coalitions has an additive structure, as
opposed to weighted voting games or approval balloting
[Laslier and Sanver, 2010].

These two stages form the noncompensatory sorting model:

Definition 2 (NCS - noncompensatory sorting model,
[Bouyssou and Marchant, 2007]). Given a set of alternatives
X, a set of points of viewN , and a tuple of complete preorders
%i, i ∈ N , if S is an upset of (P(N ),⊆) and a tuple 〈Ai〉 of
upsets of 〈(P(X),%i)〉, 1 the noncompensatory sorting model
with parameters (S, 〈Ai〉) is the function NCSS,〈Ai〉 map-
ping alternatives from X to categories in {GOOD,BAD} such
that the alternative x is assigned to the upper category GOOD
if, and only if, the set of points of view according to which x
is approved is sufficient, i.e.

NCSS,〈Ai〉(x) =

{
GOOD, if {i ∈ N : x ∈ Ai} ∈ S
BAD, else

S is the set of sufficient coalitions of the model, and each Ai
is the approved set according to the point of view i ∈ N .

Example 2. (ex. 1 continued) Suppose the approved sets
are as follows: A1 := {a, b, f},A2 := {e, b, c},A3 :=
{f, a, b},A4 := {d, a, c},A5 := {c, e, b}, corresponding to
the three best alternatives according to the respective points
of view (3-approval). Suppose also the points of view are
aggregated according to the simple majority rule, i.e. B ∈
S ⇐⇒ |B| ≥ 3. Then, the corresponding noncompensatory
model assigns a, b, c to the GOOD category, and d, e, f to the
BAD one. Hence, α := {(a,GOOD), (b,GOOD), (c,GOOD),
(d,BAD), (e,BAD), (f,BAD)}. We note the same assign-
ment α can be obtained with different sorting parameters, e.g.
approved sets A′1 := {a, b, f},A′2 := {e, b, c, d, a},A′3 :=
{},A′4 := {d, a, c},A′5 := {c} and sufficient coalitions S ′
containing the coalitions {1, 2}, {5} and their supersets.

This model may appear particularly unwieldy to use ex-
plicitly, as it requires to handle a set of sufficient coalitions
that lies in the power set of the points of view.

1Meaning 〈Ai〉i∈N is a tuple of subsets of X such that, for all
i ∈ N ,Ai is an upset of (X,%i). Also, throughout the paper, when
the indexing is left unspecified, the tuples are indexed by points of
view i ∈ N .



We propose an indirect approach w.r.t. the parameters of
the noncompensatory sorting model implicitly describing the
decision process: we suppose the inputs (ordinal preferences
over the alternatives according to each point of view) and out-
puts (an assignment of each alternative to a category, either
GOOD or BAD) of the aggregation model are given, and we
query the parameters (sufficient coalitions of points of view
and accepted sets according to each point of view) of the
model. Unlike the usual learning approach, based on the in-
verse problem of finding the value of a suitable tuple of pa-
rameters permitting to restore the output given the input, we
instead focus on versions of this problem where the issue is
merely the existence of such a tuple of parameters, and, in
the case of a positive answer, to find suitable values for the
accepted sets (but not for the set of sufficient coalitions).

Definition 3 (Inverse noncompensatory sorting problem: In-
v-NCS). Given an assignment α : X → {GOOD,BAD}
of alternatives to categories, we say that α can be repre-
sented in the noncompensatory sorting model if, and only if,
there is a pair of parameters (S, 〈Ai〉) where S is an up-
set of (P(N ),⊆) and 〈Ai〉i∈N is a tuple of subsets of X
such that, for all i ∈ N ,Ai is an upset of (X,%i), so that
α ≡ NCSS,〈Ai〉.

We say that α is a possible assignment if it is a YES in-
stance of Inv-NCS, i.e. α can be represented in the noncom-
pensatory sorting model. When there is some jurisprudence
α?, the assignment of a new candidate x can be necessary, in
the sense that no other assignment is possible.

Definition 4 (Necessary assignment w.r.t. reference cases).
Given a YES instance α? of Inv-NCS, an alternative x ∈ X is
necessarily assigned to a category C ∈ {GOOD,BAD} w.r.t.
assignment α? if α? ∪ {(x,C)} is a NO instance of Inv-NCS,
where C denotes the category opposite to C.

3 Feasibility of the Inverse NCS Problem
In this section, we propose a characterization of the possibil-
ity, given ordinal preferences over the alternatives according
to each point of view and an assignment of each alternative to
a category, either GOOD or BAD, of representing this assign-
ment in the non-compensatory sorting model. This formula-
tion circumvents any reference to the power set of points of
view, so we derive a compact SAT formulation for the inverse
problem, which is shown to be NP-hard.

3.1 Inv-NCS with Fixed Approved Sets
When the approved sets are given, solving the inverse NCS
problem – i.e. learning a set of sufficient coalitions permit-
ting to represent the assignment in the noncompensatory sort-
ing model – is similar to learning a disjunctive normal form
from training examples. From this observation, we derive a
tractable (computable in polynomial time) algorithm yielding
the version space [Mitchell, 1982] of the noncompensatory
sorting model with fixed approved sets:

Definition 5 (Observed sufficient and insufficient coalitions
given approved sets). Given α : X → {GOOD,BAD} and a

tuple 〈Ai〉 of upsets of 〈(P(X),%i)〉, we note:

T〈Ai〉(α) := cl⊇P(N )

(⋃
g∈α−1(GOOD){i ∈ N : g ∈ Ai}

)
,

F〈Ai〉(α) := cl⊆P(N )

(⋃
b∈α−1(BAD){i ∈ N : b ∈ Ai}

)
Proposition 1 (Lower and upper bounds for the sufficient
coalitions given the approved sets). Given an assignment α,
a tuple 〈Ai〉 of upsets of 〈(P(X),%i)〉 and an upset S of
(P(N ),⊆), α is represented by the noncompensatory sort-
ing model NCSS,〈Ai〉 if, and only if:

T〈Ai〉(α) ⊆ S ⊆ P(N ) \ F〈Ai〉(α)

Proof. α is represented by NCSS,〈Ai〉 iff i) for all alterna-
tives g ∈ α−1(GOOD), NCSS,〈Ai〉(g) = GOOD; and ii) for
all alternatives b ∈ α−1(BAD), NCSS,〈Ai〉(b) = BAD

i) holds iff S contains
⋃
g∈α−1(GOOD){i ∈ N : g ∈ Ai}

and, as a consequence of being an upset for inclusion, S con-
tains T〈Ai〉(α). ii) holds iff S does not contain any coalition
pertaining neither to

⋃
b∈α−1(BAD){i ∈ N : b ∈ Ai} nor to

F〈Ai〉(α).

Corollary 1 (complexity of Inv-NCS with fixed approved
sets). Given an assignment α of alternatives to categories
and a tuple 〈Ai〉 of upsets of 〈(P(X),%i)〉, the problem of
deciding whether α can be represented in the noncompen-
satory sorting model with approved sets 〈Ai〉 is tractable
(computable in polynomial time).

Indeed, it boils down to checking whether T〈Ai〉(α) ∩
F〈Ai〉(α) is empty or not, which is O(|X|2 · |N |).

3.2 A Pairwise Formulation for Inv-NCS
The following Theorem is very important as it says that, in or-
der to check that an assignment α is compatible with NCS, it
is equivalent to find approval subsets over each point of view
such that one can discriminate each pair of GOOD and BAD
alternatives on at least one point of view (i.e. the GOOD al-
ternative is approved on this point of view, and not the BAD
one). Interestingly, the concept of sufficient coalitions disap-
pears in the characterization.

Theorem 1 (Pairwise formulation of the noncompensatory
sorting model). An assignment α of alternatives to categories
can be represented in the noncompensatory sorting model if,
and only if, there is a tuple 〈Ai〉 ∈ P(X)N such that:

1. for each point of view i ∈ N , Ai is an upset of (X,%i)
2. for each pair of alternatives (g, b) ∈ α−1(GOOD) ×
α−1(BAD), there is at least one point of view i ∈ N
such that g ∈ Ai and b /∈ Ai.

Proof. [¬(1+2) ⇒ ¬NCS] If there are two alternatives g ∈
α−1(GOOD) and b ∈ α−1(BAD) that falsify Condition 2,
then, for any potential parameters S, 〈Ai〉 of a noncompen-
satory sorting model, the nesting {i ∈ N : g ∈ Ai} ⊆ {i ∈
N : b ∈ Ai} results in a sorting NCSS,〈Ai〉 at least as favor-
able to b as to g, whereas α(b) = BAD is strictly worse than
α(g) = GOOD.



[(1+2) ⇒ NCS] Given a tuple 〈Ai〉 ∈ P(X)N satisfy-
ing conditions 1 and 2, we consider the sets of coalitions
T〈Ai〉(α) and F〈Ai〉(α).

According to Proposition 1, α can be represented in the
noncompensatory model iff T〈Ai〉(α) ∩ F〈Ai〉(α) = ∅. Sup-
pose this intersection is nonempty, and let B ∈ T〈Ai〉(α) ∩
F〈Ai〉(α). By definition of T〈Ai〉(α), there is an alternative
g ∈ α−1(GOOD) such that B ⊇ {i ∈ N : g ∈ Ai}:
for all points of view i /∈ B, g /∈ Ai. By definition of
F〈Ai〉(α), there is an alternative b ∈ α−1(BAD) such that
B ⊆ {i ∈ N : b ∈ Ai}: for all points of view i ∈ B,
b ∈ Ai. Consequently, there is no point of view according
to which g is accepted but not b, contradicting condition 2.
Hence, T〈Ai〉(α) ∩ F〈Ai〉(α) = ∅.

3.3 Complexity of Inv-NCS
We show that the inverse NCS problem is intractable.

Proposition 2 (NP-hardness of Inv-NCS).
Given an assignment α of alternatives to categories, the prob-
lem of deciding whether α can be represented in the noncom-
pensatory sorting model is NP-hard.

Proof. By reduction from SAT: consider a SAT instance in
conjunctive normal form, with n variables y1, . . . , yn and m
clauses c1 ∧ · · · ∧ cm. We build a gadget assignment with
m+n points of view and 2m alternatives: g1, . . . , gm are as-
signed to GOOD whereas b1, . . . , bm are assigned to BAD.
First, let us focus on the first m points of view: for each
k ∈ 1 . . .m, let gk ∼k bk �k g1 ∼k · · · ∼k gk−1 ∼k
gk+1 ∼k · · · ∼k gm ∼k b1 ∼k · · · ∼k bk−1 ∼k bk+1 ∼k
· · · ∼k bm. The preference %k has two equivalence classes,
the upper one containing {gk, bk} and the lower one contain-
ing
⋃
k′ 6=k{gk′ , bk′}. The n last points of view of the gadget

are built considering the SAT formula. From the j-th clause,
written in disjunctive form cj :=

∨
k∈Pj

yk ∨
∨
k∈Nj

¬yk,
where Pj and Nj are disjoint subsets of 1 . . . n indexing the
positive (resp. negative) atoms of cj , we build the prefer-
ence relation %j+m. It has at most 3 equivalence classes: the
uppermost containing the alternatives

⋃
k∈Pj
{gk}, the one in

the middle containing
⋃
k∈Pj
{bk}∪

⋃
k∈Nj

{gk}, and the low-
est containing

⋃
k∈Nj

{bk} ∪
⋃
k/∈Pj∪Nj

{gk, bk}. We note
trivial accepted sets – i.e. points of view i ∈ N such that
Ai = ∅ orAi = X – do not contribute to the feasibility of the
inverse NCS problem. For the m first points of view, there
is only one nontrivial accepted set: it accepts the upper class
and rejects the lower one. For the n last points of view of
the gadget, the nontrivial accepted sets accept the uppermost
equivalence class, reject the lowest class, and either accept or
reject the class in the middle. We define a one-to-one map-
ping between the nontrivial accepted sets of the gadget and
the assignment of the n variables of the SAT problem: yj is
False ⇐⇒

⋃
k∈Pj
{bk} ∪

⋃
k∈Nj

{gk} ∈ Am+j . Each non
trivial assignment discriminates all pairs (gk, bk′) with k 6= k′

w.r.t. the point of view k. The pairs (gk, bk) is discriminated
iff the clause ck is satisfied. Thus, a solution of the SAT prob-
lem is mapped to a tuple of accepted sets that discriminates
all pairs with opposite assignments and reciprocally.

3.4 A Compact SAT Formulation for Inv-NCS
We leverage Theorem 1 by formulating a boolean satisfiabil-
ity problem that answers the decision problem: can the as-
signment α be represented in the non-compensatory model?
If the instance is a YES, any solution of the satisfiability prob-
lem translates into suitable, yet arbitrary, explicit values for
the approved sets. Upper and lower bounds for the set of suf-
ficient coalitions can be obtained thanks to Proposition 1.
Corollary 2 (CNF Pairwise SAT formulation for NCS). Let
α : X → {GOOD,BAD} an assignment. We define the
boolean function φpairwise

α with variables:
• λi,x indexed by a point of view i ∈ N , and a value x ∈ X,
• µi,g,b indexed by a point of view i ∈ N , a good alternative
g ∈ α−1(GOOD) and a bad alternative b ∈ α−1(BAD),
as the conjunction of clauses: φpairwise

α := φ1α∧φ2α∧φ3α∧φ4α

φ1α :=
∧
i∈N

∧
x′%ix

(λi,x′ ∨ ¬λi,x)

φ2α :=
∧
i∈N , g∈α−1(GOOD), b∈α−1(BAD) (¬µi,g,b ∨ ¬λi,b)

φ3α :=
∧
i∈N , g∈α−1(GOOD), b∈α−1(BAD) (¬µi,g,b ∨ λi,g)

φ4α :=
∧
g∈α−1(GOOD), b∈α−1(BAD) (

∨
i∈N µi,g,b)

α can be represented in the noncompensatory sorting
model if, and only if, φpairwise

α is satisfiable.
Moreover, if 〈λi,x〉, 〈µi,g,b〉 is an antecedent of 1

by φpairwise
α , then the noncompensatory sorting model

NCSS,〈Ai〉 with accepted sets defined by Ai := {x ∈ X :
λi,x = 1} and any upset S of (P(N ),⊆) of sufficient coali-
tions containing the upset T〈Ai〉(α) and disjoint from the
lower set F〈Ai〉(α) satisfies α ≡ NCSS,〈Ai〉.

Variables λi,x are assigned to 1 when the alternative x is
accepted from the point of view i, and variables µi,g,b are
assigned to 1 when the point of view i accepts g but not b.

The clauses φ1α ensure the sets of accepted values of each
point of view meet the first condition of Theorem 1, i.e. Ai
is an upset. The clauses φ2α (resp. φ3α) ensure each variable
µi,g,b cannot take a value of one unless g is accepted (resp.
unless b is not accepted). The clauses φ4α ensure the second
condition of Theorem 1 is met.

The formulation is compact: O(|N | · |X|2) variables,
O(|N | · |X|2) binary clauses and O(|X|2) |N |-ary clauses.

4 Accountable Decisions with Inv-NCS
In this section we describe how the theoretical and algorith-
mic tools described in Section 3 in order to assess the feasi-
bility of the inverse NCS problem (see Def. 3) can be used
to support a decision process. More precisely, we address
the situation described in Section 1 where a committee has to
assign alternatives either to the GOOD or the BAD category,
and to account for this assignment. Section 4.1 addresses the
first situation S1, where an audit is commissioned to check
the compliance of the committee to its terms of reference,
by referring to the notion of possible assignment. Section
4.2 addresses the second situation S2, where the committee is
challenged by a stakeholder to defend a specific decision, by
referring to the notion of necessary assignment.



4.1 Auditing Conformity
We consider the situation S1 depicted in Section 1, where an
independent audit agency has to check that the decision α
of the committee on candidates X is compatible with NCS.
We assume X? = ∅: all the assignments should be justified
together, and none should be taken for granted.

Should the burden of proof be left to the auditor, the audit
procedure could require either i) full disclosure of the pref-
erence profile 〈(X,%i)〉i∈N , and the auditor solving the NP-
hard Inv-NCS problem, e.g. using a SAT solver and Corollary
2; or ii) full disclosure of the approved sets 〈Ai〉i∈N , and the
auditor solving the tractable Inv-NCS with fixed accepted sets
problem as described by Proposition 1.

If we consider putting the burden of proof on the commit-
tee, Theorem 1 can be leveraged to compute and provide a
certificate of feasibility for Inv-NCS(α) that involves the dis-
closure of less information, as illustrated below:

Example 3. (ex. 2 cont.) If the approved sets of the com-
mittee are A1, . . . ,A5, then it needs to disclose information
concerning three points of view in order to prove the assign-
ment α is consistent with an approval procedure, e.g. :

• according to the first point of view, b is approved (and so
is a which is better than b) whereas e is not (and neither
is d which is worse than e), hence the procedure is able
to discriminate a, b from d, e;

• according to the second point of view, c is approved (and
so is b which is better than c) whereas d is not (and nei-
ther is f which is worse than d), hence the procedure is
able to discriminate b, c from d, f ;

• according to the fourth point of view, c is approved (and
so is a which is better than c) whereas e is not (and nei-
ther is f which is worse than e), hence the procedure is
able to discriminate a, c from e, f .

The following table summarizes the points of view permitting
to discriminate each pair:

BAD
d e f

a 1 1 4
GOOD b 1 1 2

c 2 4 2

This manner of arguing that a given assignment is indeed a
possible outcome of an approval sorting procedure can be for-
malized into an argument scheme, an operator tying a tuple of
premises – pieces of information satisfying some conditions
– to a conclusion [Walton, 1996].

Definition 6 (Argument Scheme (AS1)). We say a tuple
〈(i1, g1, G1, b1, B1), . . . , (in, gn, Gn, bn, Bn)〉 instantiates
the argument scheme AS1 supporting the assignment α if: i)
for all k ∈ {1 . . . n}, ik ∈ N , gk ∈ Gk, α(Gk) = {GOOD},
∀g ∈ Gk, g %ik gk, bk ∈ Bk, α(Bk) = {BAD}, ∀b ∈
Bk, bk %ik b and gk �ik bk; and ii)

⋃
k∈{1...n}Gk × Bk =

α−1(GOOD)× α−1(BAD)

Hence, according to the point of view ik, gk is the least pre-
ferred alternative in the subset of GOOD alternatives Gk and
it is preferred to bk, the most preferred alternative in the sub-
set of BAD alternatives Bk. This scheme is somewhat frugal

in the number of pairs of the profile 〈(X,%i)〉i∈N revealed to
the auditor, as the comparisons inside Gk × Gk or Bk × Bk
are not disclosed. Theorem 1 can be reworded as follows:
Corollary 3. An assignment α is a YES instance of Inv-NCS
if, and only if, there is an instance of AS1 supporting it.
Example 4. (Example 3 cont.) The explanations given in Ex-
ample 3 instantiate AS1 as follows:

〈
(1, b, {a, b}, e, {d, e}),

(2, c, {b, c}, d, {d, f}), (4, c, {a, c}, e, {e, f})〉
The length n of an explanation instantiating the argument

scheme AS1 offers an indication regarding its cognitive com-
plexity as well as the amount of information disclosed to the
auditor. Therefore, we would rather provide the shortest pos-
sible explanations, and strive to mention as few points of view
as possible. Obviously, an explanation needs to reference a
specific point of view at most once, so n ≤ |N |. Unfortu-
nately, the following result shows that one might require all
points of view in a complete explanation, even in situations
with relatively few alternatives.
Proposition 3. For every set of points of view N , there
exists a set of |N | + 1 alternatives X and an assignment
α : X → {GOOD,BAD} for which any tuple instantiating
the argument scheme AS1 and supporting α has length |N |.
Sketch of the Proof. The result is shown by induction on |N |.
For |N | = {1}, we consider α1 := {(g,GOOD), (b,BAD)}
with g �1 b. Consider by induction an assignment αp on p
candidates Xp assessed on points of view N = {1 . . . p}. We
introduce a new alternative z, judged as GOOD, and a new
point of view p+ 1, such that the candidates in Xp are indif-
ferent on the new point of view, and z can be discriminated
from b only on the new point of view.

4.2 Justifying Individual Decisions
We now wish to justify the decision of the committee on a
candidate x ∈ X (Situation S2). As we have seen in the pre-
vious section, a complete explanation of the assignment of
x necessarily implies the disclosure of many information re-
lated to the other candidates, which might not be acceptable.

A possible solution is for committee to base their de-
cision on reference cases, an assignment α∗ : X∗ →
{GOOD,BAD}, e.g. compiling past decisions that are rep-
resentative of its functioning mode. In order to get rid of the
influence of the other candidates, we are looking for neces-
sary assignments given these reference cases.
Example 5. (ex. 2 cont.) We consider the alternatives
a, b, c, d, e, f and their assignment α? have a reference sta-
tus, and we are interested in deciding on the assignment of
two candidates, x, y such that:

a �1 f �1 b �1 e �1 c �1 y �1 d �1 x

e �2 b �2 y �2 c �2 d �2 a �2 f �2 x

f �3 a �3 d �3 b �3 y �3 x �3 e �3 c

d �4 a �4 c �4 e �4 x �4 y �4 f �4 b

c �5 y �5 e �5 b �5 f �5 x �5 d �5 a

It is not possible to represent the assignment (x,GOOD) to-
gether with the reference assignment α. Thus, x is neces-
sarily assigned to BAD . On the contrary, both assignments
(y,GOOD) and (y,BAD) can be represented together with α.



Necessary Decisions Entailed by the Jurisprudence
An explanation of the necessity of an assignment is intrinsi-
cally more complex than that for its possibility: one needs
to prove that it is not possible to separate all pairs of GOOD
and BAD candidates on at least one point of view. The proof
relies on some deadlock that needs to be shown. Formally,
this situation manifests itself in the form of an unsatisfiable
boolean formula, e.g. given by Corollary 2. The unsatisfi-
ability of the entire formula can be reduced to a ⊆-minimal
unsatisfiable subset of clauses (MUS), which are commonly
used as certificates of infeasibility, and can also be leveraged
to produce explanations [Junker, 2004; Besnard et al., 2010;
Geist and Peters, 2017]. In the case of the necessary deci-
sions by approval sorting with a reference assignment, any
MUS pinpoints a set of pairs of alternatives in (α−1(GOOD)∪
{x}) × α−1(BAD) that cannot be discriminated simultane-
ously according to the points of view.

Example 6. (ex. 5 cont.) Consider the subset of alternatives
c, d, e, f, x, and assume x to be assigned to GOOD. Each pair
in GB := {(c, e), (x, d), (x, f)} needs to be discriminated
from at least one point of view in N , but this is not possible
simultaneously: i) none of the pairs in GB can be discrim-
inated neither from the first, the second nor the third point
of view, as the overall GOOD alternative is deemed worse
than the BAD one. ii) no more than one pair in GB can be
discriminated according to each point of view among {4, 5},
and there are more pairs to discriminate than points of view.

The pattern of deadlock illustrated by Example 6 can be
generalized and formalized into an argument scheme, with
premises: i) a k-tuple of pairs 〈(g1, b1), . . . , (gk, bk)〉 of al-
ternatives with opposite assignment, ii) a subset of points of
view B ⊆ N with cardinality k − 1, such that, according to
all points of view i /∈ B, bj �i gj for all j, and, according to
all points of view i ∈ B the intervals ]b1, g1]i, . . . , ]b

k, gk]i
are pairwise disjoint.

Clearly, the existence of an argument instantiating the
premises of this scheme is a sufficient condition for the infea-
sibility of representing the given assignment in the noncom-
pensatory model, which in turn yields the conclusion that the
candidate x is necessarily assigned to the other category.

If we assume that the cognitive burden demanded by an ex-
planation along the lines of this argument scheme increases
with the number of its premises, we derive an implicit hierar-
chy among the necessary decisions supported by the scheme,
with a nesting E1 ⊆ E2 ⊆ · · · ⊆ E|N |+1, where Ek denotes
the set of decisions supported by a scheme with premises ref-
erencing at most k pairs of alternatives with opposite assign-
ment. E1 is exactly the set of decisions stemming from Pareto
dominance, where a candidate is either at least as good as
a reference alternative in the GOOD category, or at most as
good as a reference alternative in the BAD category.

The question of deciding if this scheme captures a neces-
sary condition, i.e. if any decision entailed by the jurispru-
dence can be supported by such an explanation, is left open.

Ambivalent Situations
It may happen that, for a given candidate, both assignments
to GOOD and to BAD are possible. This situation is obviously

all the more frequent as the reference set is small, or the num-
ber of points of view is high. In such a case, a design option
would consist in constraining the decision of the committee,
either favorably (e.g. following an innocent unless proven
guilty principle) or unfavorably (e.g. following a precaution-
ary principle). Another, more common, venue would give the
freedom of choice to the committee. In this case, as opposed
to the situation where the decision is entailed by the jurispru-
dence, and where the committee just needs to make obvious
the link between the current case and the reference cases, the
committee needs to disclose some information concerning its
inner functioning. In some cases, though, Proposition 1 offers
a solution that avoids a complete disclosure: suppose that,
given the approved sets 〈Ai〉, the candidate is approved from
a coalition of points of view that is known to be insufficient
(resp. sufficient), because a reference alternative is assigned
to the BAD (resp. GOOD) category in a similar, or even better
(resp. worse) situation than the candidate. This fortunate sit-
uation circumvents the need of discussing the particulars of
the set of sufficient coalitions by referring to its upper bound
P(N ) \ F〈Ai〉(α) (resp. lower bound T〈Ai〉(α)).

Example 7. (ex. 6 cont.) According to the first point of view,
y is disapproved, as it is worse than c /∈ A1. According to
the third point of view, y is disapproved, as it is worse than
b /∈ A3. According to the fifth point of view, y is disapproved,
as it is worse than f /∈ A5. Furthermore, being approved
according to both the second and fourth points of view is not
enough to warrant access to the GOOD category, as illus-
trated by e. Hence, y is assigned to the BAD category.

5 Related Work and Conclusion
In this paper we are interested in the problem of account-
ability of decisions issued from a noncompensatory sorting
model (NCS) [Bouyssou and Marchant, 2007]. Two situa-
tions have been mainly studied. In the first one, the commit-
tee needs to justify that its decision is a possible NCS assign-
ment. A characterization result helps to turn the existence of
such assignment to finding separations of the pairs of GOOD
and BAD candidates over at least one point of view, which
can be formulated as a SAT problem. This allows us to gen-
erate a single argument scheme that can explain all possible
NCS assignments. The second situation arises when the as-
signment of a new candidate is necessarily derived from ju-
risprudence. Thanks to the characterization result, one can
also construct an argument scheme representing deadlock sit-
uations. The use of argument schemes as formal tools to
convey explanation in the context of multi-criteria aiding has
also been advocated in [Labreuche, 2011; Nunes et al., 2014;
Belahcene et al., 2017].

Our solutions stem from an original take of the dual no-
tions of possibility and necessity, often used in so-called ro-
bust optimization, decision making [Greco et al., 2010] or
voting contexts [Boutilier and Rosenschein, 2016] to account
for incomplete information, conveying epistemic stances of
skepticism or credulousness. Instead we use them to describe
the leeway left to the committee in setting its expectations:
the decisions taken are bound from above by possibility, de-
scribed as the feasibility of the Inv-NCS problem related to



their decision, and from below by necessity, described as the
infeasibility of the Inv-NCS problem simultaneously related
to the reference cases and impossible assignments.

Barrot et al. (2013) study the problem of identifying the
possible winners of an approval election, when votes are
given but approval thresholds are unspecified. They show that
determining whether a set of candidates are co-winners is NP-
complete when voters have fixed (even equal) importance.
Approval voting has been studied in the context of multi-
winner elections [Aziz et al., 2015], which may seem close
to our setting: indeed, we could see the candidates ranked in
GOOD as the winners. However, in our context, each candi-
date is ranked without consideration to the other candidates,
and voters are not assumed to have equal importance.

Finally, several algorithms have been proposed to learn the
parameters of a noncompensatory sorting model from obser-
vation: [Leroy et al., 2011] relies on a MIP formulation, [So-
brie et al., 2015] relies on a metaheuristic.
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