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For human mobility studies across many disciplines, mobile network data serves as a primary source of human foot-
prints with geo-referenced and time-stamped records of human communication activities. Nevertheless, the quality of
mobility information provided by mobile network data is usually not satisfactory on many users. Due to the nature
of human communications, individual trajectories inferred from mobile network data are often substantially incom-
plete, and the pattern of missing locations is not uniform over time but is highly related to communication activities.
In this paper, we propose a novel hierarchical approach based on tensor factorization to reconstruct such incomplete
individual trajectories. The data-driven simulation shows that, with ground-truth locations in precision of 200 meters,
our approach can recover a trajectory from 10% of its known locations with a distance error below 750 meters, which
outperforms the existing proposals in the literature.
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1 Introduction
Human footprints are essential to human mobility investigation by providing information of movements.
Datasets of CDR (namely, charging data records or call detail records) have been considered as a primary
data source of human footprints [1]. Collected by cellular network operators as necessary information
for billing purposes, CDR cover large populations easily and contain data entries about when, where and
how mobile network subscribers have issued and received voice calls, sent and received text messages, or
established data traffic sessions. Such mobility information of CDR is needed by many research commu-
nities [1]. Nevertheless, human communication activities are heterogeneous and usually sparse in time [2].
When forging time-stamped and geo-referenced CDR into trajectories with a stable temporal resolution,
not all time slots of a trajectory have locations captured. Due to this missing location problem, many works
cannot utilize CDR smoothly as readily trajectories, but have to first deal with lacking sufficient mobility
information (e.g., in [3]). In this context, we propose a novel hierarchal approach aiming at reconstructing
trajectories using mobile network data. To the best of our knowledge, only one approach based on linear
and cubic interpolation is proposed explicitly for this application scenario [4] in the literature†. We employ
a large-scale mobile network dataset that provides locations with precision of 200 meters to evaluate the
performance of our approach comparatively. The results show that our approach outperforms the existing
one and can generate reconstructed trajectories with an average distance error below 750 meters from 10%
of mobility information.

2 CDR completion problem
Our target is CDR-based trajectories with a stable temporal resolution of one hour. Given a user u, his
trajectory is a time series of locations, represented as Lu

T = {lui |i ∈ T }, where lui is the representative lo-
cation (that the user spends the most time) in the i-th time slot, and T is a set of N equivalent time slots
† We refer the reader to [5] for a more elaborate version of the state of the art.
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covering the observing period. We use an observation set as Ωu ⊆ T to represent the time slots in which
the representative locations are observed, and thus have the observed part of the trajectory, represented as
Lu

Ωu
= {lui |i ∈ Ωu}. Besides, we employ 2-dimensional Euclidean space to represent locations: each loca-

tion lui is a 2-dimensional coordinate. Our CDR completion problem is to infer all missing locations in a
trajectory Lu

T as precise as possible, i.e., mathematically,

min ∑
i∈ΩC

u

|lui − l̂ui |/|ΩC
u |, s.t. Lu

Ωu
(1)

where ΩC
u = T −Ωu and l̂ui is the estimated location of the i-th time slot.

3 Context-enhanced CDR completion
To address the CDR completion problem, we propose a hierarchical approach that leverages the user’s
context of natural sleeping cycles and redundant mobility patterns. The approach receives an incomplete
trajectory Lu

Ωu
as input and infers its missing locations L̂u

Ωc
u

as output. It is composed of two steps, introduced
in the following.

3.1 Nighttime data enhancement
This first step is to address the trajectory’s heterogeneity. Due to the nature of human communication
activities, the captured locations are not uniform over time. As illustrated in Fig. 1(a), there are usually
far more locations captured during daytime hours than nighttime. Therefore, we employ this step to fill
only nighttime time gaps in the trajectory with the user’s home location identified. We leverage human
sleeping cycle and adopt our stop-by-spothome strategy proposed in [6]‡ to identify a user’s nighttime
(10pm,7am) locations. The strategy determines a nighttime period that a user is most likely to stay at home
adaptively. For the strategy, we refer the reader to [6] for more detail. Accordingly, we fill the time slots
in this period with the identified home location (i.e., the most frequent location during nighttime), so as to
lighten nighttime data loss.

3.2 Temporal improved data completion
Hereby we infer all the remaining missing locations on the basis of locations captured by CDR and inferred
in the first step. As an example of a raw CDR-based trajectory given in Fig. 1(a), we see a common
human mobility feature, i.e., daily locations are highly repetitive in the trajectory. Thus, we organize the
trajectory in a structural form and employ tensor factorization, i.e., a specific technique to recover redundant
structural data [8], for the location inference. The repetitive pattern of human movements exists on hourly,
daily, and weekly basis. We divide the observing period into one-week sub-periods that contain one-day
sub-trajectories, and then convert the trajectory Lu

T to a three dimensional tensor X u as shown in Fig. 1(b).

The tensor X u =
{

Xu
i j

}
nw×nd

is composed of each one-day sub-trajectory Xu
i j in the j-th day of the i-th week,

where nw is the number of weeks and nd is the number of observing days in each week. Mathematically,
the tensor X u ∈ Rp×q×r, where p = nw, q = nd , and r = 2N/(ndnw), has known values within the indices
of the observation set Ωu.

Now we construct the optimization problem for recovering missing values in the tensor X u. For such
inference to be applicable, we assume that the tensor X u ∈ Rp×q×r has a CPD (canonical polyadic decom-
position) [8] of three d-rank metrics A ∈ Rp×d , B ∈ Rq×d , and C ∈ Rr×d . In the CPD, each value X u

i jk in
the tensor is approximated as X u

i jk = ∑
d
δ=1 AiδB jδCkδ. For simplicity, we employ the concise CPD expres-

sion, used by Kolda et al. [8], i.e., X u = JA,B,CK. Leveraging the CPD, the incomplete tensor X u can be
recovered as X̂ u = JÂ, B̂,ĈK by solving the following TF (tensor factorization) problem:

(Â, B̂,Ĉ) = argmin
A,B,C

∑
(i, j,k)∈Ωu

(X u
i jk− JA,B,CKi jk)

2 +λ(||A||2F + ||B||2F + ||C||2F), (2)

‡ Major content of [6] is also presented in [7].
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where λ is a penalty parameter to avoid overfitting and || · ||F is the Frobenius norm. By solving this
problem, we obtain an approximation X̂ u and accordingly, the inference of missing locations in Lu

T .
Nevertheless, Eq. (2) is a standard TF problem which treats each dimension of the tensor equally. Re-

garding human mobility redundancy, daily repetitive patterns are usually stronger than weekly ones; also,
locations of consecutive time slots may be identical. To have a realistic and accurate location inference,
we induct two more constrains into the optimization problem Eq. (2) using Toeplitz matrices as illustrated
in Fig. 1(c). The first constrain is to emphasize the daily repetitive pattern. For that, we construct a ma-
trix D = Toeplitz(1,−1,0)q×q (i.e., a matrix with central diagonal given by 1, and the first upper diagonal
given by −1, and the others given by 0), and induct into Eq. (2) a constrain ||X u×q D||2F , where ×q is
the tensor-matrix product [8] (i.e., (X u×q D)imk = ∑

q
n=1 X u

inkDmn) on the second dimension of the tensor
X u. Intuitively, ||X u×q D||2F represents the sum of squared differences of location coordinates in the same
hour of consecutive days. Combining CPD, we have (JA,B,CK×q D)imk = ∑

q
n=1 ∑

d
δ=1 AiδBnδCkδDmn =

∑
d
δ=1 Aiδ(∑

q
n=1 DmnBnδ)Ckδ = ∑

d
δ=1 Aiδ(DB)mδCkδ and equivalently, JA,B,CK×q D = JA,DB,CK, and im-

port into Eq. (2) is ||JA,DB,CK||2F as the first constrain. Next, to enhance the similarity between consecutive
time slots, similarly, we make another Toeplitz matrix H = Toeplitz(1,0,−1,0)r×r and construct the second
constrain as ||X u×r H||2F = ||JA,B,HCK||2F . Accordingly, our novel tensor factorization problem with the
two constrains is constructed as follows:

(Â, B̂,Ĉ) = argmin
A,B,C

∑
(i, j,k)∈Ωu

(X u
i jk− JA,B,CKi jk)

2

+λ(||A||2F + ||B||2F + ||C||2F)
+λD||JA,DB,CK||2F +λH ||JA,B,HCK||2F

(3)

where λH and λD are parameters avoiding overfitting. Practically, the problem in Eq. (3) is solved (instead
of Eq. (2)) to obtain X̂ u. It is a combination of multiple least square problems, and thus, can be addressed
by ALS (alternating least squares) [8].

Overall, the tensor factorization infers all the remaining missing locations. The last operation in this step
is to extract from the tensor approximation X̂ u the complete version of the slotted CDR-based trajectory Lu

T .
We use L̂u

ΩC
u

to represent the set of those inferred locations for the missing time slots, i.e., L̂u
Ωc

u
= {l̂ui |i∈Ωc

u}.

4 Performance evaluation
We employ a data-driven simulation to evaluate our approach. The dataset that we leverage is collected from
Shanghai, by a major cellular network operator in China. It contains trajectories of 28K mobile network
subscribers generated during 10 weekdays of two consecutive weeks, with a temporal resolution of one
location per hour. Each trajectory has at least 20 locations observed per day and has 10× 24 = 240 one-
hour time slots in total. In the simulation, we compare our approach with the other two proposals. The
static approach is to fill all the empty time slots with the nearest preceding or ascending locations. The
fit approach, proposed by Hoteit et al. [4], is to infer missing locations by linear interpolation on location
coordinates if a user has a daily radius of gyration less than 3 km or cubic polynomial interpolation if a user
has a larger radius of gyration. It is worth noting that the fit approach is the only one proposed explicitly
for the CDR completion problem.

The procedure of the simulation is designed as follows. (i) Duplicate each trajectory in the ground-truth
datasets to ”mimic” slotted CDR-based trajectories observed in 60 days. (ii) Generate the target incomplete
slotted CDR-trajectories with the completeness percentage of {5,10,15,20,25,30}. Note that we employ
the per-hour inter-event distributions of real voice calls so as to let these target trajectories follow actual loss
patterns in locations captured by CDR. We refer the reader to [6] for the information of the distributions. (iii)
Apply the baseline static, fit techniques as well as our approach on the target CDR-based trajectories,
and then obtain their inferred complete versions. (iv) For each slotted CDR-based trajectories inferred from
the techniques, compute the performance metrics introduced later on.

We compute the distance error as the average distance between the estimated and actual locations on all
time slots having unknown locations. Mathematically, given a CDR-based trajectory Lu

T with a loss set ΩC
u ,
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Figure 1: (a) Data loss in an actual CDR-based trajectory: each block represents the representative location of an
one-hour time slot; each color represents an observed cell tower location while white color represents missing. (b) An
illustration of converting a trajectory Lu

T into a tensor X u. (c) An example of the Toeplitz matrix. (d) Distance error on
average versus completeness across trajectories of the Shanghai dataset.

the distance error of the trajectory is computed as follows: error(Ωc
u,L

u
T ) =

1
|Ωc

u| ∑i∈Ωc
u
||lui − l̂ui ||geo, where

lui and l̂ui represents the actual and estimated locations at the i-th time slot respectively. Fig. 1(d) show
the mean distance error of all completed trajectories in each ground-truth dataset, where our approach is
marked by tensor and is compared with static and fit. We can clearly observe the following. The
distance error of the approach is less than the ones of other comparison techniques. When the trajectory
completeness ≥ 10%, the approach can almost have the distance error below 0.75 km. It is worth noting
that the size of area that the location represents 200m×200m in the latter. Such distance error is relatively
good regarding the location resolution of the ground-truth datasets. The distance error decreases with
the increasing of data completeness, and moreover, the differences among the techniques become smaller
with the same increasing. This indicates that the increasing of mobility information contributes to all the
techniques. Still, the distance errors of the fit and static approaches are higher than the ones of the
rest, indicating that utilizing the redundancy of human mobility helps to the completion a lot, particularly
when the completeness is low. Overall, these results support the advantage of our approach over the other
competitors.
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