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We leverage two large-scale real-world datasets to provide the pioneer results on the limits of predictability of per-
user mobile data traffic demands over time and space. Using information theory tools, we measure the maximum
predictability that any algorithm has potential to achieve. We first focus on the predictability of mobile data traffic
consumption patterns in isolation. Our results show that it is theoretically possible to anticipate individual demands
with a typical accuracy of 85%. Then, we analyze the joint predictability of mobile data traffic demands and mobility
patterns. Their correlation that we find leads to a higher theoretical potential performance in joint prediction. Besides,
we propose a novel practice to evaluate the spatiotemporal correlation of per-user mobile data traffic.
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1 Introduction
The quantitative understanding of human behaviors (e.g., user’s whereabouts or mobile data traffic de-
mands) has recently emerged as a central question in multi-disciplinary research [1]. In the context of fore-
casting human behaviors, any practical technique’s performance is bounded theoretically by predictability
which measures to what degree a specific behavior can be foreseen. In this paper, we analyze the pre-
dictability of mobile data traffic from the viewpoint of individual users, in terms of their consumed data
volumes and whereabouts. Our study allows answering an important question: to what degree is the indi-
vidual consumption of mobile data traffic predictable? To the best of our knowledge, there is no analysis of
(i) how per-user regularity of mobile data traffic is translated into actual predictability, or (ii) the associated
impacts to predictability brought by jointly considering users’ visited locations. We refer the reader to [2]
for a more elaborate version of the literature review.

In this paper, we evaluate the predictability by studying per-user variations of mobile data traffic over
time and space and investigating their predictability limits by using tools from information theory. Based
on two large-scale real-world datasets, our results reveal a promising upper bound (85%) to the perfor-
mance of practical algorithms that forecast future mobile data traffic volumes from a user’s historical usage.
Then, our pioneer investigation reveals a strong correlation between mobility and mobile service usage.
Such correlation, on the power of jointly forecasting when, where, and how much mobile data traffic is
generated by individual users, leads to a performance gain (10%) in terms of the joint predictability. Fi-
nally, our discussion about the cause of the high (joint) predictability sheds light on the design of predicting
algorithms.

2 Data overview
Our study is based on the behavioral data of footprints and mobile data traffic demands of 45K anonymous
mobile network subscribers during 92 consecutive days in 2014. The users come from the capital city of a
Latin American country. Each user has (1) call detail records, i.e., time-stamped and geo-referenced logs
attached to all his voice calls, and (2) session records, i.e., time-stamped logs of Internet data sessions with
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data volumes. The users meet the following criteria: (i) they have visited at least 2 locations; (ii) they have
footprints in at least 20% of the observing hours; (iii) they establish data sessions in at least 73 days (80%
of the observing period). The criteria ensure statistical significance of our analysis.

We compute for each user u two representative discretized time series (1) of data traffic volumes, marked
as vT

1 (u), and (2) of locations, marked as `T
1 (u), both of which cover the same T = 24 hours/day×92 days=

2208 time slots. For the former, data session records are aggregated and quantized in a straight-forward
way. In a time series vT

1 (u) = {v1
u, · · · ,vT

u }, each discretized volume vi
u is marked by one of the eight

quantizations, i.e., 0 (idle), (1,10), (10,102), . . . , (106,107) in kilobytes, representing the aggregated mo-
bile data traffic of the corresponding time slot. For the latter, in the i-th time slot, `i

u of a time series
`T

1 (u) = {`1
u, · · · , `T

u } is the representative location (which has the most frequent appearance) of that time
slot. Note that the original location source (from voice calls) cannot offer complete mobility information.
Thus, we apply the stop-by-spothome approach [3] on call detail records in advance, to enhance the
temporal coverage of locations, particularly overnight, without affecting the localization precision. For
more details of the data and preprocessing, we refer the reader to the full version [2].

3 Predictability of mobile data traffic
We first study the predictability of mobile data traffic generated by individual subscribers, particularly, on
the forecast of mobile data traffic volumes in isolation. For each user u, we consider that his discrete vol-
umes come from a random process V = {Vt} and compute the entropy rate Hu(V )= limT→+∞

1
T ∑

T
t=1 H(Vt |Vt−1, · · · ,V1)

that represents the average uncertainty of discrete volumes at each time slot given preceding volumes
as a prior knowledge. We derive three entropy rate variants from different models. (i) The temporal-
uncorrelated entropy rate is formulated as Hunc

u (V ) ≡ −∑v∈vT
1 (u)

P(v) logP(v) where the user’s traffic fol-
lows a heterogeneous and time-independent model. This entropy rate characterizes the heterogeneity of
a mobile demand model that has no temporal correlations, hence its name. (ii) The nonzero-temporal-
uncorrelated entropy rate is based on the same model of Hunc

u (V ), but it is limited to those cases when the
user is not idle. Formally, it is Hn0

u (V ) ≡ −∑v∈vT
1 (u)/{0}P(v|v 6= 0) logP(v|v 6= 0). It captures the hetero-

geneity of data traffic volumes exchanged during active hours only, yet still ignoring temporal correlations.
(iii) The actual entropy rate Hu(V ) depends not only on the frequency of appearance of each discretized
traffic volume but also on the order in which they appear, capturing the temporal order presented in a sub-
scriber’s data traffic usage pattern. Since we only have a finite time series vT

1 (u), we employ an estimator
based on Lempel-Ziv compression [4] to compute Hu(V ). It is worth noting that we favor the binary
logarithm so that the unit of all entropy rate variants is bit.

These entropy rate variants are computed as a prepositive step of measuring predictability. Intuitively,
entropy (rate) and predictability are negatively correlated variables: a behavior with low (or high) uncer-
tainty is highly (or little) predictable. Mathematically, given an entropy rate variant H, its predictability
Π satisfies Π ≤ Φ−1(H) where Φ(x) ≡ (1− x)log(N− 1)− x logx− (1− x) log(1− x) and Φ−1(x) is its
inverse function [5]. In our context, an upper bound is an estimation of the maximum achievable accuracy
in the prediction of mobile data traffic demands given a particular model. Hence, three upper bounds of
the predictability, i.e., Πmax

u (V ), Πunc
u (V ), and Πn0

u (V ), are calculated from the corresponding entropy
variants.

We portray the PDF (probability density function) of all the entropy rate variants in Fig. 1(a). Let us start
with the temporal-uncorrelated entropy Hunc

u (V ). It has a high peak at 2Hunc
u (V ) = 21.63 ≈ 3, indicating that

each user tends to generate data traffic that is described by just three quantization levels (although there are
eight) when we only focus on the overall probability of each level’s appearance. Interestingly, idle time
intervals do not bias such regularity. Indeed, the PDF of Hn0

u (V ) overlaps well to that of Hunc
u (V ), sug-

gesting that the considerations above also hold when only time intervals with data sessions are considered.
However, our main result is the significant shift presented by the PDF of Hu(V ), which peaks at 0.97.
When taking the temporal ordering of data sessions into account, one can reduce the uncertainty to just two
quantization levels.

The distributions in Fig. 1(b) confirm the findings above and provide upper numerical bounds to the
predictability of per-user mobile data traffic demand. We observe that Πunc

u (V ) and Πn0
u (V ) at 0.69 and
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Figure 1: (Best viewed in colors) (a) Distributions of the per-user entropy rate variants of discrete data traffic volumes
in isolation. (b) Corresponding distributions of upper bounds on the predictability of data traffic volumes in isolation.
(c) Distributions of the different flavors of joint entropy rate variants. (d) Distributions of the corresponding joint
predictability upper bounds. (e) An example of mapping a user’s data sessions into a three-dimensional space. (f) CDF
of each cluster’s relative cohesion RC(∗) on the three dimensions.

0.66, respectively, which means that a relatively good predictability can be possibly achieved even if we do
not consider temporal regularity in prediction. More importantly, Πmax

u (V ) indicates that the demand of a
subscriber can be possibly predicted within 85% accuracy on average. It means that in only 15% of the time
does a user generate data traffic volumes in a manner which appears to be random, but in the remaining
85% of the time, we could hope to predict his volume accurately. This result proves, for the first time, that
data traffic volumes which subscribers generate via their mobile devices are highly predictable.

4 Joint predictability of traffic and mobility
We further study the joint predictability of future mobile data traffic volumes and visited locations on a
per-user basis. We investigate how predictable is the combination of how much traffic is generated by a
mobile phone user and where this happens on each time slot. First, leveraging `T

1 (u), we measure two
entropy rate variants on mobility of each user u, i.e., the temporal-uncorrelated entropy rate Hunc

u (L)
and the actual entropy rate Hu(L), as well as their corresponding predictability upper bounds Πunc

u (L)
and Πmax

u (L). Then, combining `T
1 (u) and vT

1 (u), we compute two joint entropy rate variants that con-
sider volumes and locations of each user together. The temporal-uncorrelated entropy rate Hunc

u (V ,L) ≡
−∑v∈vT

1 (u),`∈`T
1 (u)

P(v, `) logP(v, `) determines the joint heterogeneity of a user’s locations and data traffic
volumes. The joint actual entropy rate Hu(V ,L) is defined as the actual entropy rate of the joint station-
ary process {(Vt ,Lt)}. It expresses the combined uncertainty of a user’s locations and data traffic volumes
on each time slot, considering his previous history of movements and mobile service usage. Also, the
corresponding predictability upper bounds Πunc

u (V ,L) and Πmax
u (V ,L) are calculated.

Figs. 1(c) and 1(d) concern our actual measures of interest with respect to the uncertainty and predictabil-
ity of mobile data traffic and mobility. A first interesting remark is that, Hunc

u (V ,L) and Hunc
u (V ) +

Hunc
u (L), and consequently Πunc

u (V ,L) and Πunc
u (V ) ·Πunc

u (L), are nearly indistinguishable. Instead,
Hu(V ,L) and Hu(V )+Hu(L), and consequently Πmax

u (V ,L) and Πmax
u (L) ·Πmax

u (V ), show significant
differences. Accordingly, there exists some correlation between mobility and data traffic consumption pro-
cesses. Such correlation mainly emerges when considering – and it is thus driven by – the temporal ordering
of events. As observed in Fig. 1(d), a joint prediction of the next consumed data traffic amount and location
where this occurs, from the user’s previous actions, can yield a better accuracy than forecasting the two
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separately, since the shift between Πmax
u (L) ·Πmax

u (V ) and Πmax
u (V ,L) is 10%. Therefore, our main con-

clusion is that it is possible to anticipate how much mobile data traffic (as an order of magnitude) will be
consumed by a given user and where this will occur in a very effective manner (i.e., with an 88% accuracy
on average), by knowing the historical activities.

5 Discussion
To understand the cause of the high (joint) predictability, we map each user’s data sessions into a three-
dimensional space of location, time, and volume, so as to have an intuitive spatiotemporal representation.
Each session becomes then a point p(l, t,v) into this space. Note that we express l as the linear ordering
of the corresponding bidimentional locations, as returned by the density-based Optics cluster algorithm
that places spatially close bidimentional locations as neighbors in the ordering l. Time t is expressed by
hours with decimals from 0 to 24, where the date is ignored. Volume v is the magnitude of the traffic
volume, i.e., log10(·). This mapping reveal how a user generates mobile Internet sessions. Fig. 1(e), most
sessions are aggregated on two major locations (30 and 60), probably mapping to home and working place
according to their time of visits. Sessions containing data traffic over 10MB mainly occur at the loca-
tion 30 during nighttime. To quantitatively investigate the 3D space representation of p(l, t,v) points, we
use DBScan to cluster each user’s sessions in the three-dimensional space. For the clustering, a weighted
euclidean distance is measured between every two points p1(l1, t1,v1) and p2(l2, t2,v2), where the dis-
tance of each dimension is computed as follows: (i) dist(location)(p1, p2) = ωl |l1− l2|geo in kilometers; (ii)
dist(time)(p1, p2) = ωt |t1− t2| in hours; (iii) dist(volume)(p1, p2) = ωv|v1− v2| (|log10

Vol1
Vol2
|). Each distance

is applied to 99% percentile normalization. For each cluster shown in Fig. 1(e), we then use the relative

cohesion (RC) to quantify the contribution of each dimension to a given cluster as RC(∗) = ∑p∈C dist(∗)(p,c)2

∑p∈C dist(p,c)2 ,

where C and c respectively represent the cluster and its centroid c = (lcentroid , tmean,vmean). The RCs of the
three dimensions satisfy RC(loc)+RC(time)+RC(vol) = 1, where 0 < RC(∗) < 1. Hence, if a cluster’s RC
in one dimension is significantly smaller than the other two dimensions, this dimension is contributing the
most to creating the cluster.

Fig. 1(f) shows the distributions of RCs along the three dimensions for all users. The most striking
behavior is the much lower RC in space than time or traffic volume: i.e., “where a user is” drives the
creation of majority clusters: The location of a mobile user has a high probability to trigger some routine
service consumption activity. Hence, anticipating the future location of a user should be the first target of
a solution aiming at predicting mobile user activity. However, we also observe that locations alone do not
explain all clusters. A non-negligible fraction of clusters showing high RC in space and low RC in time and
traffic volume are also present in several cases. We conclude that the three dimensions are complementary,
and though different weights, they are all important for an accurate prediction of mobile users’ behaviors.
This is consistent with – and explains – our results on the high joint predictability of temporally correlated
visited locations and consumed traffic. Consequently, our results indicate that there is a large space for
predicting mobile data traffic and adapting network optimizing solutions based on the latter, such as for
load balancing.
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