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This paper addresses structured covariance matrix estimation under t-distribution. Covariance matrices frequently reveal a particular structure due to the considered application and taking into account this structure usually improves estimation accuracy. In the framework of robust estimation, the t-distribution is particularly suited to describe heavy-tailed observation. In this context, we propose an efficient estimation procedure for covariance matrices with convex structure under t-distribution. Numerical examples for Hermitian Toeplitz structure corroborate the theoretical analysis.

INTRODUCTION

In adaptive signal processing, the estimation of the Covariance Matrix (CM) is a step at the center of most of the existing algorithms [START_REF] Zoubir | Array and Statistical Signal Processing[END_REF]. In addition to the Hermitian and positive properties, CM generally exhibits a specific structure due to the considered application. For example, using uniform linear arrays, CM reveals the Toeplitz structure [START_REF] Haardt | Subspace methods and exploitation of special array structures[END_REF]. For certain statistical models such as MIMO communications, CM can be expressed as a Kronecker product of two smaller dimension matrices, which could be themselves structured [START_REF] Wirfält | On kronecker and linearly structured covariance matrix estimation[END_REF] (e.g., the reader is referred to [START_REF] Barton | Covariance structures for multidimensional data[END_REF] for further examples of structured CM). Taking into account this structure, leads to a better estimation accuracy, since the degree of freedom in the estimation problem decreases. This problem has been widely explored in the Gaussian framework [START_REF] Ottersten | Covariance matching estimation techniques for array signal processing applications[END_REF]. However, the Gaussian case is not suited for heavy tailed observations. Conversely, the class of Complex Elliptically Symmetric [START_REF] Maronna | Robust M-estimators of multivariate location and scatter[END_REF][START_REF] Ollila | Complex elliptically symmetric distributions: Survey, new results and applications[END_REF] (CES) includes most of usual non Gaussian distributions [START_REF] Sangston | Adaptive detection of radar targets in compound-Gaussian clutter[END_REF][START_REF] Watts | Radar detection prediction in sea clutter using the compound K-distribution model[END_REF][START_REF] Ward | Maritime surveillance radar. part 1: Radar scattering from the ocean surface[END_REF][START_REF] Kotz | Multivariate T-Distributions and Their Applications[END_REF]. Notably, it includes the t-distribution, which gives a convenient extension of the normal distribution that can accurately model spiky radar clutter measurements [START_REF] Sangston | Adaptive detection of radar targets in compound-Gaussian clutter[END_REF][START_REF] Ward | Maritime surveillance radar. part 1: Radar scattering from the ocean surface[END_REF]. The extra-parameter of this distribution, called degree of freedom, provides a more flexible modeling with moderate increase in computational complexity [START_REF] Lange | Robust statistical modeling using the t distribution[END_REF]. In this context, the main contribution of this paper is to propose a consistent and efficient estimator for CM with convex structures under t-distributed data. This paper is organized as follows. In section 2, we relate our contribution to prior work. In section 3, a brief review on tdistribution and the Fisher Information Matrix (FIM) is presented.
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Section 4 focuses on the proposed estimator. The performance analysis is treated in Section 5. Section 6 gives a particular application considering a Hermitian Toeplitz structure with simulation results.

In the following, the notation d = indicates "has the same distribution as". Convergence in distribution and in probability are, respectively, denoted by d → and P →. For a matrix A, |A| and Tr (A) denote the determinant and the trace of A. A T (respectively A H ) stands for the transpose (respectively conjugate transpose) matrix. The vecoperator vec(A) stacks all columns of A into a vector. The operator ⊗ refers to Kronecker matrix product and finally, the subscript "e" refers to the true value.

RELATION TO PRIOR WORK

In recent works, unstructured CM estimator under t-distribution with unknown degree of freedom has been studied in [START_REF] Fortunati | Matched, mismatched, and robust scatter matrix estimation and hypothesis testing in complex t-distributed data[END_REF] by combining Maximum Likelihood (ML) and Method of Moments (MoM) approaches. However, the convergence of this latter iterative procedure is not guaranteed. Furthermore, robust estimation of CM with convex structures from normalized observations has been inspired by the unstructured distribution-free scatter matrix estimator proposed by Tyler [START_REF] Tyler | A distribution-free M-estimator of multivariate scatter[END_REF]. Specifically, in [START_REF] Soloveychik | Tyler's covariance matrix estimator in elliptical models with convex structure[END_REF], a COnvexly ConstrAined (COCA) CM estimator is proposed, leaning on the General MoM for the Tyler's estimator subject to convex constraints. This estimator is consistent but suffers from heavy computational cost. In [START_REF] Sun | Robust estimation of structured covariance matrix for heavy-tailed elliptical distributions[END_REF][START_REF] Breloy | Robust rank constrained kronecker covariance matrix estimation[END_REF], estimators have been proposed minimizing Tyler's cost function under structure constraints with iterative Majorization-Minimization algorithms. In [START_REF] Mériaux | Robust-COMET for covariance estimation in convex structures: algorithm and statistical properties[END_REF], an efficient estimator for convex structured scatter matrix and normalized data is derived based on the COvariance Matching Estimation Technique (COMET) approach [START_REF] Ottersten | Covariance matching estimation techniques for array signal processing applications[END_REF]. To the best of our knowledge, no estimator has been carried out for convex structured CM in a t-distribution context. In this paper, we fill this lack.

BACKGROUND AND PROBLEM SETUP

Background on the complex t-distribution

A m-dimensional zero mean random vector (r.v.), y n ∈ C m follows a complex t-distribution with d degrees of freedom, denoted by y n ∼ Ct m,d (0, R), if it has the following probability density function (pdf) [START_REF] Ollila | Complex elliptically symmetric distributions: Survey, new results and applications[END_REF]:

p(y n ; R, d) = Γ(d + m) π m d m Γ(d) |R| -1 g y H n R -1 y n ( 1 
)
where R is the scatter matrix, d is a positive real number and the function g(•), called the density generator function, is given by g(s) = (1 + s/d) -(d+m) . Furthermore, the covariance matrix of the observations is related to the scatter matrix by

Cov(y n ) = E y n y H n = d d -1 R, d = 1
. This distribution has heavier tail than the Gaussian distribution. For example, the case d = 0.5 corresponds to the complex Cauchy distribution and the limit case d → ∞ coincides with the Gaussian distribution. It has finite 2nd-order moment for d > 1. The 2nd-order modular variate, Qn defined as Qn

d = y H n R -1
y n is a non-negative random variable, whose pdf is expressed by

p(q; R, d) = Γ(d + m) d m Γ(d)Γ(m) q m-1 g(q) (2) 
The t-distribution belongs to the subclass of Compound-Gaussian distributions [START_REF] Ollila | Complex elliptically symmetric distributions: Survey, new results and applications[END_REF][START_REF] Pascal | Covariance structure maximum-likelihood estimates in compound gaussian noise: Existence and algorithm analysis[END_REF]. Indeed, a t-distributed r.v. with d degrees of freedom, y has the following stochastic representation

y d = 2d x n, with x ∼ χ 2 2d and n ∼ CN (0, R) (3) 
where χ 2 ν denotes the central chi-squared distribution with ν degrees of freedom.

Fisher Information Matrix

The Fisher Information Matrix (FIM) is a useful tool to study the ultimate performance of unbiased estimators. Specifically, the Cramér-Rao bound (CRB), which is the inverse of the FIM, is a lower bound on the mean squarre error. In the Gaussian framework, the FIM can be easily derived using the so-called Slepian-Bang formula [START_REF] Slepian | Estimation of signal parameters in the presence of noise[END_REF][START_REF] Bangs | Array processing with generalized beamformers[END_REF]. In [START_REF] Besson | On the fisher information matrix for multivariate elliptically contoured distributions[END_REF], an extension of this formula has been derived for the CES distribution. Considering the particular case of the complex tdistribution with zero mean and a scatter matrix R parameterized by µ, the (k, ) element of the FIM for a single vector of observation is given by [START_REF] Besson | On the fisher information matrix for multivariate elliptically contoured distributions[END_REF]:

[F] (k, ) = (d + m)Tr R -1 Rk R -1 R -Tr R -1 Rk Tr R -1 R d + m + 1 (4) 
in which Rk = ∂R ∂µ k . As noticed previously, for d → ∞, we retrieve the Slepian-Bang's formula in the Gaussian case.

Problem setup

Let us consider N i.i.d. zero mean t-distributed observations, y n ∼ Ct m,d (0, Re) , n = 1, . . . , N . We assume that the scatter matrix belongs to a convex subset S of Hermitian positive-definite matrices, and that there exists a one-to-one differentiable mapping µ → R(µ) from R P to S . The vector µ is the unknown parameter of interest with exact value µ e , and Re = R(µ e ) corresponds to the exact scatter matrix. The negative log-likelihood function is given, up to an additive constant, by

L(y 1 , ., y N ; µ) = (d + m) N N n=1 log 1 + y H n R(µ) -1 y n d + log |R(µ)| (5) 
The above function is non-convex w.r.t R, its minimization w.r.t. µ is therefore a difficult and time consuming problem. To overcome this issue, we propose in the next section a new estimation method that gives unique, consistent and asymptotically efficient estimates. Furthermore, for linear structures, we obtain closed form expressions of the estimates.

PROPOSED ALGORITHM

In this section, we propose a two step estimation procedure of µ.

The first step consists in computing the unstructured ML-estimator of R. The estimation of µ is then obtained by solving a weighted least squares problem, derived from the so-called EXIP (EXtended Invariance Principle) approach [START_REF] Stoica | On reparametrization of loss functions used in estimation and the invariance principle[END_REF]. For notational convenience, we omit the dependence on N for the estimators based on N observations when there is no ambiguity.

4.1.

Step 1: unstructured ML-estimation of R

Let N i.i.d. observations, y n ∼ Ct m,d (0, R) with N > m.
The unstructured ML-estimator for the scatter matrix, denoted by R, minimizing the negative log-likelihood ( 5) is the solution of the following fixed point equation:

R = d + m N N n=1 y n y H n d + y H n R -1 y n HN ( R) (6) 
The reader can refer to [START_REF] Maronna | Robust M-estimators of multivariate location and scatter[END_REF][START_REF] Kent | Redescending M-estimates of multivariate location and scatter[END_REF] for the study of existence and uniqueness related to [START_REF] Maronna | Robust M-estimators of multivariate location and scatter[END_REF], for which the iterative algorithm R k+1 = HN (R k ) converges to R for any initialization point [START_REF] Ollila | Complex elliptically symmetric distributions: Survey, new results and applications[END_REF]. Moreover, the consistency and the asymptotic Gaussianity of this estimator have been proved in [7, Section VI]. Specifically, one has the following properties by [START_REF] Mahot | Asymptotic properties of robust complex covariance matrix estimates[END_REF] √

N vec R -R d -→ CN (0, Σ, Ω) (7) 
with

   Σ = σ1 R T ⊗ R + σ2vec (R) vec (R) H Ω = σ1 R T ⊗ R K + σ2vec (R) vec (R) T where σ1 = d + m + 1 d + m and σ2 = d + m + 1 d(d + m) [13].

Step 2: Estimation of µ

For the second step, the estimator on µ is obtained from the FIM and the unstructured ML-estimator for R. It is determined by minimizing the following function, designed from the EXIP method [START_REF] Stoica | On reparametrization of loss functions used in estimation and the invariance principle[END_REF]:

µ =arg min µ ( γ -γ(µ)) T F ( γ -γ(µ)) =arg min µ k, ( γ k -γ k (µ)) [F] (k, ) ( γ -γ (µ))
where γ k denotes the k-th component of γ = J vec R = J r, γ(µ) = J vec (R(µ)) = J r (µ) with J the matrix transforming the complex-valued vector r into a real-valued vector γ by the Hermitian property. The matrix J is invertible since the mapping between r and γ is one-to-one. In practice, the FIM is unknown, then we use its estimate, denoted by F and obtained from (4) by plugging an estimate of R. Therefore, we obtain, by noting

R k = ∂R ∂γ k , µ = arg min µ (d + m)Tr R -1 Q R -1 Q -Tr R -1 Q Tr R -1 Q with Q = k ( γ k -γ k (µ)) R k . Furthermore, we remark that Q = Re + k ( γ k -γe k ) R k -Re + k (γ k (µ) -γe k ) R k
In the above expression, we notice two first order Taylor expansions of R, respectively R(µ), around Re justified by the consistency of γ and µ, whose the latter is provided by the EXIP method [START_REF] Stoica | On reparametrization of loss functions used in estimation and the invariance principle[END_REF]. We finally achieve the following criterion

µ = arg min µ J (µ) with J (µ) =(d + m)Tr R -1 R -R(µ) R -1 R -R(µ) -Tr R -1 R -R(µ) 2 (8) 
Using the following relations Tr A H B = vec (A) H vec (B) and vec (AXB) = B T ⊗ A vec (X), we rewrite (8) as

µ =arg min µ ( r -r(µ)) H Y ( r -r(µ)) = Y 1/2 ( r -r(µ)) 2 (9) with Y = (d+m) W -1 -vec R -1 vec R -1 H and W = R T ⊗ R.
Given R, the function J (µ) is convex w.r.t R(µ). Therefore, for R ∈ S convex set, the minimization of ( 9) w.r.t. R(µ) is a convex problem that admits a unique solution. In the following, we address the study of consistency and efficiency of µ given as minimizer of (9).

ASYMPTOTIC PERFORMANCES

This section provides a statistical analysis of the proposed estimator µ, which is the unique solution minimizing the criterion (8) w.r.t µ = (µ1, . . . , µP ) T ∈ R P as already mentioned.

Theorem 1. The estimator µ, given by ( 8), is a consistent estimator of µ e . Likewise, R ( µ) is a consistent estimator of R(µ e ).

Proof. Using the consistency of R [START_REF] Ollila | Complex elliptically symmetric distributions: Survey, new results and applications[END_REF] and for large N, we obtain Y P → Ye, r P → re. Consequently, (9) becomes

µ = arg min µ Y 1/2 e (re -r(µ)) 2 . ( 10 
)
Since Y

1/2 e is a full-rank matrix, the unique solution of the above problem satisfies re = r( µ). Hence, under the assumption of a one-to-one mapping, the only solution is µ e , which establishes the consistency of µ. Finally, the continuous mapping implies R( µ)

P → R(µ e )
Theorem 2. Let µ N be the estimator of µ e defined by [START_REF] Sangston | Adaptive detection of radar targets in compound-Gaussian clutter[END_REF] and based on N i.i.d. observations, y n ∼ Ct m,d (0, R(µ e )). µ N is asymptotically unbiased, efficient and Gaussian distributed. Specifically,

√ N ( µ N -µ e ) d → N (0, CRB) (11) 
with CRB = (d + m + 1) ∂r ∂µ

H

Ye ∂r ∂µ

-1

, in which we note

Ye = (d + m)W -1 e -vec R -1 e vec R -1 e
H and ∂r(µ) ∂µ refers to the Jacobian matrix of r(µ).

Proof. The estimate µ N is given by minimizing the function J (µ).

The consistency of µ N allows us to write the following Taylor expansion around µ e :

0 = ∂J (µ) ∂µ µ= µ N = ∂J (µ) ∂µ µ=µ e + ∂ 2 J (µ) ∂µ∂µ T µ=ξ N ( µ N -µ e )
with ξ N such as |ξ N -µe| ≤ | µ N -µe|, leading to

µ N -µe = - ∂ 2 J (µ) ∂µ∂µ T µ=ξ N -1 ∂J (µ) ∂µ µ=µe s.t. invertibility
Therefore lim

N →∞
ξ N = µe by consistency of µ N . According to [START_REF] Ottersten | Covariance matching estimation techniques for array signal processing applications[END_REF][START_REF] Ljung | System Identification : Theory for the User[END_REF], we obtain for large N

µ N -µe d = -H(µ e ) -1 g N (µ e ) with g N (µ) = ∂J (µ) ∂µ and H(µ) = lim N →∞ ∂ 2 J (µ) ∂µ∂µ T
invertible in the neighborhood of µ e . After some calculus, we obtain from ( 9) Then,

g N (µ) = -2 ∂r(µ) ∂µ H Y ( r -r(µ)) H(µ e ) = 2 ∂r(µ) ∂µ 
Cov ( µ N ) H(µ e ) -1 E g N (µ e )g N (µ e ) H H(µ e ) -1
Using the asymptotic distribution of r given by ( 7), we finally obtain, in asymptotic regime, where the CRB was obtained from the equation ( 4). It follows from the Delta method [27, Chapter 3] generalized for complex-valued estimators connected by a C-differentiable function [START_REF] Delmas | Performance bounds and statistical analysis of doa estimation[END_REF][START_REF] Delmas | Survey and some new results on performance analysis of complex-valued parameter estimators[END_REF] that

E [ µ N -µ e ] -E H(µ e ) -1 g N (µ e ) 2H(µ e ) -1 ∂r(µ) ∂µ H µ=µ e YeE [ r -r(µ e )] E g N (µ e )g N (µ e ) H 4(d + m + 1) N ∂r(µ) ∂µ
√ N vec ( µ N -µ e ) d -→ N (0, CRB)

NUMERICAL RESULTS

In this section, we illustrate the results of the previous statistical analysis for an Hermitian Toeplitz scatter matrix, which has indeed a convex structure. A natural parameterization for the Toeplitz structure is to take the real and imaginary parts of the first row in the matrix as interest parameter. For m = 4, the Toeplitz scatter matrix is generated from the Vandermonde matrix, A with [A] k, = e j2π(k-1)f , f > 0 and the positive diagonal matrix, D, by R = ADA H and a trace equal to m. We generate 5000 sets of N independent m-dimensional t-distributed samples, y n ∼ Ct m,d (0, Re) , n = 1, . . . , N with d = 5 degrees of freedom, using the stochastic representation (3).

We compare the performance of the proposed algorithm to the state-of-the-art and the CRB. Furthermore, we display the performance of the proposed estimation scheme by replacing the first step by the joint-algorithm proposed in [START_REF] Fortunati | Matched, mismatched, and robust scatter matrix estimation and hypothesis testing in complex t-distributed data[END_REF] (to deal with the possibility of unknown parameter d). Our algorithm is compared to RCOMET from [START_REF] Mériaux | Robust-COMET for covariance estimation in convex structures: algorithm and statistical properties[END_REF] and COCA from [START_REF] Soloveychik | Tyler's covariance matrix estimator in elliptical models with convex structure[END_REF]. Both methods are based on the Tyler's scatter estimator [START_REF] Tyler | A distribution-free M-estimator of multivariate scatter[END_REF] using normalized observations zn = y n / y n . To the best of our knowledge, there is no other algorithm specifically derived for t-distributed observations dealing with structured scatter matrix. Finally, we compare to the intuitive estimate µ obtained by averaging the real and imaginary parts of diagonals of the unstructured ML estimator (projection onto the Toeplitz set). The algorithms proposed in [START_REF] Sun | Robust estimation of structured covariance matrix for heavy-tailed elliptical distributions[END_REF][START_REF] Breloy | Robust rank constrained kronecker covariance matrix estimation[END_REF] are not adapted for the considered case. COCA [START_REF] Soloveychik | Tyler's covariance matrix estimator in elliptical models with convex structure[END_REF] RCOMET [START_REF] Mériaux | Robust-COMET for covariance estimation in convex structures: algorithm and statistical properties[END_REF] Projection (step 1: ML) Fig. 1. Bias simulation Fig. 1 presents the Euclidean norm of the estimated bias for µ based on 5000 runs for each N . As shown previously, our algorithm with the unstructured ML estimator is asymptotically unbiased as well as the other algorithms. Performance of the proposed estimation scheme with the joint-algorithm as first step are not displayed for small N , since the joint-algorithm does not converge for part of the 5000 runs.

The asymptotic efficiency of our estimator is checked on Fig. 2: it reaches the CRB as N increases. RCOMET, and COCA do not reach this bound since they do not take into account the underlying distribution of the data. Despite the absence of convergence proof for the joint-algorithm, we remark that optimal asymptotic performances for µ may be approached with unknown d. COCA [START_REF] Soloveychik | Tyler's covariance matrix estimator in elliptical models with convex structure[END_REF] RCOMET [START_REF] Mériaux | Robust-COMET for covariance estimation in convex structures: algorithm and statistical properties[END_REF] Projection (step 1: ML) Fig. 2. Efficiency simulation 1 recaps the averaging calculation time of the different algorithms. As already mentioned, the COCA estimator suffers from heavy computational cost, since the number of constraints grows linearly in N . The estimation scheme with the joint-algorithm is slower than the one using the exact ML-estimator, which makes sense since the degree of freedom of the t-distribution is also estimated.

CONCLUSION

In this paper, we addressed structured covariance estimation for convex structures. We proposed a consistent, asymptotically unbiased and efficient estimator for t-distribution. Numerical simulations validate the theoretical analysis and show a performance gain compared to other algorithms, which normalize first the observations.
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 1 Average calculation timeThe Table

	N	RCOMET [18]	Projection (step1: ML)	Proposed algo.(step1: ML)	Proposed algo.(step1: [13])	COCA [15]
	100	0.012 s	0.017 s	0.018 s	0.46 s	2.18 s
	500	0.048 s	0.086 s	0.086 s	1.94 s	15.1 s
	1000	0.090 s	0.17 s	0.17 s	3.63 s	50.4 s