
HAL Id: hal-01784652
https://hal.science/hal-01784652

Submitted on 3 May 2018

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Unique recovery of lower order coefficients for
hyperbolic equations from data on disjoint sets

Yavar Kian, Yaroslav Kurylev, Matti Lassas, Lauri Oksanen

To cite this version:
Yavar Kian, Yaroslav Kurylev, Matti Lassas, Lauri Oksanen. Unique recovery of lower order coeffi-
cients for hyperbolic equations from data on disjoint sets. Journal of Differential Equations, 2019, 267
(4), pp.2210-2238. �10.1016/j.jde.2019.03.008�. �hal-01784652�

https://hal.science/hal-01784652
https://hal.archives-ouvertes.fr


HYPERBOLIC INVERSE PROBLEM WITH DATA ON
DISJOINT SETS

YAVAR KIAN, YAROSLAV KURYLEV, MATTI LASSAS,
AND LAURI OKSANEN

Abstract. We consider a restricted Dirichlet-to-Neumann map
ΛT
S,R associated with the operator ∂2

t −∆g +A+q where ∆g is the

Laplace-Beltrami operator of a Riemannian manifold (M, g), and A
and q are a vector field and a function on M . The restriction ΛT

S,R
corresponds to the case where the Dirichlet traces are supported on
(0, T )×S and the Neumann traces are restricted on (0, T )×R. Here
S and R are open sets, which may be disjoint, on the boundary of
M . We show that ΛT

S,R determines uniquely, up the natural gauge
invariance, the lower order terms A and q in a neighborhood of
the set R assuming that R is strictly convex and that the wave
equation is exactly controllable from S in time T/2. We give also a
global result under a convex foliation condition. The main novelty
is the recovery of A and q when the sets R and S are disjoint.
We allow A and q to be non-self-adjoint, and in particular, the
corresponding physical system may have dissipation of energy.

1. Introduction

Let (M, g) be a smooth, connected and compact Riemannian mani-
fold of dimension n with nonempty boundary ∂M , let A be a smooth
complex valued vector field on M , and let q be a smooth complex val-
ued function on M . We consider the wave equation with Dirichlet data
f ∈ C∞0 ((0,∞)× ∂M),

(∂2
t −∆g + A(x) + q(x))u(t, x) = 0, in (0,∞)×M,

u|(0,∞)×∂M = f, in (0,∞)× ∂M,

u|t=0 = ∂tu|t=0 = 0, in M,

(1)

and denote by uf = u(t, x) the solution of (1). For open and nonempty
sets S,R ⊂ ∂M and T ∈ (0,∞] we define the response operator,

ΛT
S,R : f 7→ (∂νuf −

1

2
(A, ν)guf )|(0,T )×R, f ∈ C∞0 ((0, T )× S).
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Here ν is the exterior unit normal vector field on ∂M , and (A, ν)g is
the inner product of A and ν. We use real inner products throughout
the paper. If A(x) =

∑n
j=1A

j(x)∂j in local coordinates, then (A, ν)g
is given by gjkA

jνk locally.
When f is regarded as a boundary source, the operator ΛT

S,R models
boundary measurements for the wave equation with sources on the set
(0, T ) × S and the waves being observed on (0, T ) × R. We consider
the inverse boundary value problem to determine the manifold (M, g),
the vector field A and the potential q from ΛT

S,R.
We have studied previously the determination of the geometry (M, g)

in the case that A = 0 and q = 0, see [29]. This corresponds to
the recovery of the leading order terms in the wave equation up to
isometries. It appears to us that when the sets S and R are disjoint,
the recovery of the lower order terms A and q is more complicated than
the recovery of the leading order terms, and this is the main focus of the
present paper. It should be emphasized that if S and R are disjoint
and if Λ∞S,R is known only at a fixed frequency in the sense that its
Fourier transform in time is given at fixed point, then it is not possible
to recover even the geometry (M, g), see [11].

In order to recover A and q, we develop a new technique that is based
on exploiting convexity of the set R, and that allows us to construct a
boundary source f such that, at time t = T , the corresponding solution
uf is essentially localized in a small set near R. The shape of this small
set reflects the assumed convexity, see Figure 2 in Section 3.1.

The lower order terms A and q can be determined only up to the
action of a group gauge transformations, that we will describe next.
Let κ be a smooth nowhere vanishing complex valued function on M
satisfying κ = 1 on R. The response operator ΛT

S,R does not change
under the transformation (A, q) 7→ (Aκ, qκ) where

(2) Aκ = A+ 2κ−1 gradg κ, qκ = q + κ(A−∆g)κ
−1,

and gradg is the gradient on (M, g). We refer to [24] for a similar
computation in the self-adjoint case. When U ⊂M is a neighborhood
of R, we write

GU ,R(A, q) = {(Aκ|U , qκ|U); κ ∈ C∞(U), κ 6= 0, κ|R = 1}

for the orbit of the group of gauge transformations on U .
We recall that the wave equation (1) is said to be exactly controllable

from S in time T if the map

(3) f 7→ (uf (T ), ∂tuf (T )) : L2((0, T )× S)→ L2(M)×H−1(M),
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is surjective. If there is such T > 0, then we say that (1) is exactly
controllable from S. The exact controllability can be characterized in
terms of the billiard flow of the manifold (M, g) [3, 8]. The geometric
characterization says roughly that all unit speed geodesics, continued
by reflection on ∂M \ S, must exit M through S during time T . In
particular, the geometric characterization implies that the exact con-
trollability does not depend on the lower order terms A and q.

In this paper we show the following theorem:

Theorem 1. Let S ⊂ ∂M be open and suppose that the wave equation
(1) is exactly controllable from S in time T > 0. Let R ⊂ ∂M be
open and strictly convex. For j = 1, 2, we fix Aj ∈ C∞(M ;TM)
qj ∈ C∞(M ;C), we denote by Λ2T

j,S,R the response operator at time 2T
associated with (1) with A = Aj and q = qj. Then assuming that

(4) Λ2T
1,S,R = Λ2T

2,S,R,

there is a neighborhood U ⊂ M of R, independent of (A1, q1) and
(A2, q2), such that

(5) (A1|U , q1|U) ∈ GU ,R(A2, q2).

We show also a global uniqueness result under the assumption that
there is a convex foliation similar to that in [34]. We assume that Σs,
s ∈ (0, 1], satisfy the following:

(F1) Σs ⊂M int is a smooth manifold of codimension one.
(F2) The union Ωs =

⋃
r∈(0,s) Σr ⊂ M int is open and connected, and

Ωr ⊂ Ωs when r < s.
(F3) ∂Ωs = Σs ∪Rs and Rs ⊂ R where Rs = Ωs ∩ ∂M.
(F4) Σs is strictly convex as a subset of ∂Ms where

Ms = M \ (Ωs ∪Rs).

(F5) The Hausdorff distances satisfy dist(Ωr,Ωs)→ 0 as r → s.
(F6) There is a set R0 ⊂ R such that dist(Ωs,R0)→ 0 as s→ 0.

Furthermore, to simplify the notation, we assume

(F7) R =
⋃
s∈(0,1]Rs.

Theorem 2. Let S ⊂ ∂M be open and suppose that the wave equation
(1) is exactly controllable from S. Let R ⊂ ∂M be open and strictly
convex and let Σs, s ∈ (0, 1], be a convex foliation satisfying (F1)-(F7).
Then (4) implies that there exists U ⊂M an open set of Mcontaining
Ω1 such that

(6) (A1|U , q1|U) ∈ GU ,R(A2, q2).
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In Section 5 we show that, in the above theorem, exact controllability
from S can be replaced with exact controllability from R. Our result
is new even in the following case:

Example 1. Let (M, g) be the Euclidean unit disk {z ∈ C; |z| ≤ 1}.
Let ε > 0 and define R = {eiθ; θ ∈ (−ε, π + ε)}. Let S ⊂ ∂M be
open and nonempty. Then Λ∞S,R determines A and q, up to the gauge
transformations, in the convex hull of R.

Example 2. Let (M, g) be the Euclidean annulus

{z ∈ C; r1 ≤ |z| ≤ r2}, with 0 < r1 < r2.

Let ε > 0 and define R = {r2e
iθ; θ ∈ (−ε, π + ε)}. Let S ⊂ ∂M be

open and nonempty and assume that S satisfies the geometrical control
condition of [3], for example, S = {z ∈ C; |z| = r1}. Then Λ∞S,R
determines A and q, up to the gauge transformations, in the convex
hull of R.

Let us also point out that we could use a time continuation argument
analogous to [29, Lemma 4] and prove Theorem 2 also for measurements
on a long enough but finite time interval.

Our proof is based on the Boundary Control (BC) method. The BC
method was introduced by Belishev [4], and it was first used in a geo-
metric context in [5]. Stability properties of the method are discussed
in [2] and in the recent preprint [7]. First order perturbations have
been considered in the self-adjoint case in [19, 26], and in the non-self-
adjoint case in [25, 27]. All the above results assume that S = R. The
case of disjoint S and R was first considered in the above mentioned
[29] where no first order perturbation was present.

In addition to [29], we are aware of only two results on inverse bound-
ary value problems with disjoint data analogous to the case S ∩R = ∅.
Rakesh [32] considers a wave equation on a one-dimensional interval
with sources supported on one end of the interval and the waves ob-
served on the other end, and Imanuvilov, Uhlmann, and Yamamoto
[18] proved that a zeroth order term in a Schrödinger equation on a
two-dimensional domain homeomorphic to a disk, whose boundary is
partitioned into eight parts Γ1,Γ2, . . . ,Γ8 in the clockwise order, is de-
termined by boundary measurements with Dirichlet data supported on
S = Γ2 ∪ Γ6 and the Neumann trace observed on R = Γ4 ∪ Γ8.

Let us mention also the result on recovery of a conformal scaling fac-
tor in the metric tensor given the Dirichlet-to-Neumann map [36] that,
analogously to our result, uses local convexity of the boundary. The
proof [36] is based on a reduction to the boundary rigidity result [35]
and this approach seems to require that S = R. Let us also mention
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that, using the equivalence between inverse problems for hyperbolic
equation and inverse problems stated for other equations described in
[21, 23], the result of this paper can also be applied in other context
for different types of equations.

A vast majority of results on inverse boundary value problems as-
sume that S∩R 6= ∅. For this type of non-disjoint, partial data results,
we refer to [9, 10, 12, 14, 15, 16, 17, 22].

2. Tools for the inverse problem

In this section we present the two main components of the Boundary
Control method: an integration by parts technique originating from
Blagoveščenskĭı’s study of the 1+1 dimensional wave equation [6], and
a density result based on the hyperbolic unique continuation result by
Tataru [37].

2.1. Blagoveščenskĭı’s identity. Let Γ ⊂ ∂M and B ⊂ M int be
open, and let κ : B → C be a smooth function satisfying

κ(x) 6= 0, x ∈ B.

We define for f ∈ C∞0 ((0,∞)× S),

ΛΓf = (∂νu−
1

2
(A, ν)gu)|(0,∞)×Γ, TB,κf = κu|(0,∞)×B,

where u is the solution of (1), and write TB = TB,κ when considering a
fixed κ.

For all τ > 0 we define Kτ
Γ and Kτ

B,κ, for any f ∈ C∞0 ((0,∞) × S),
(t, x) ∈ (0,+∞)× ∂M and (t, y) ∈ (0,+∞)×B , by

Kτ
Γf(t, x) = ΛΓJ

τf(τ − t, x)− J̃τΛΓf(t, x),(7)

Kτ
B,κf(t, y) = TB,κJτf(τ − t, y)− J̃τTB,κf(t, y),(8)

where Jτψ(t, x) = 1
2

∫ t+τ
τ−t ψ(s, x)ds and J̃τψ(t, x) = 1

2

∫ 2τ−t
t

ψ(s, x)ds.
Let us now consider the adjoint problems

∂2
t v −∆gv − Av + (q − divgA)v = 0, in (0,∞)×M,

v|(0,∞)×∂M = φ, in (0,∞)× ∂M,

v|t=0 = ∂tv|t=0 = 0, in M,

(9)


∂2
tw −∆gw − Aw + (q − divgA)w = H, in (0,∞)×M,

w|(0,∞)×∂M = 0, in (0,∞)× ∂M,

w|t=0 = ∂tw|t=0 = 0, in M,

(10)
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where H ∈ C∞0 ((0,+∞) × B), φ ∈ C∞0 ((0,∞) × ∂M), divg the diver-
gence on (M, g). We fix vf (resp. uf , wH) the unique solution of (9)
(resp. (1), (10)) lying in C1((0,+∞);L2(M)) ∩ C((0,+∞);H1(M)).
Now let us consider the following identity

Lemma 1 (Blagoveščenskĭı type identity). Let τ > 0 and let Γ ⊂ ∂M
and B ⊂ M int be open. Then for functions f ∈ L2

loc((0,+∞) × S),
φ ∈ L2

loc((0,∞)× Γ), H ∈ L2
loc((0,+∞)×B) we have

〈vφ(τ, ·), uf (τ, ·)〉L2(M) = 〈φ,Kτ
Γf〉L2((0,τ)×Γ).(11)

〈wκH(τ, ·), uf (τ, ·)〉L2(M) = 〈H,Kτ
B,κf〉L2((0,τ)×Γ).(12)

Proof. Since the proof of (11) and (12) are similar, we will only treat
(11). Without loss of generality and by density, we assume that f ∈
C∞0 ((0,+∞)× S), φ ∈ C∞0 ((0,∞)× Γ). For t ∈ (0, τ) and s ∈ (0, 2τ),
we start by considering

S(t, s) = 〈vφ(t, ·), uf (s, ·)〉L2(M).

Recall that

(∂2
t − ∂2

s )S(t, s)

= 〈(∆g + A− (q − divgA))vφ(t, ·), uf (s, ·)〉L2(M)

−〈vφ(t, ·), (∆g − A− q)uf (s, ·)〉L2(M)

= 〈∂νvφ(t, ·) +
1

2
(A, ν)gvφ(t, ·), f(s, ·)〉L2(∂M)

−〈φ(t, ·),ΛΓf(s, ·)〉L2(∂M).

Thus, fixing

F (t, s) =〈∂νvφ(t, ·) +
1

2
(A, ν)gvφ(t, ·), f(s, ·)〉L2(∂M)

− 〈φ(t, ·),ΛΓf(s, ·)〉L2(∂M),

we deduce that the function S satisfies the 1 + 1 dimensional wave
equation ∂2

t S − ∂2
sS = F, in (0, τ)× (0, 2τ),

S(0, ·) = 0, ∂tS(0, ·) = 0, in (0, τ),
S(·, 0) = 0, ∂sS(·, 0) = 0, in (0, 2τ).
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We solve this wave equation on the triangle with corners (τ, τ), (0, 0)
and (0, 2τ), and obtain

(13)

〈vφ(τ, ·), uf (τ, ·)〉L2(M)

=
1

2

∫ τ

0

∫ 2τ−t

t

〈∂νvφ(t, ·) +
1

2
(A, ν)gvφ(t, ·), f(s, ·)〉L2(∂M)dsdt

− 1

2

∫ τ

0

∫ 2τ−t

t

〈φ(t, ·),ΛΓf(s, ·)〉L2(∂M)dsdt.

Now, for h ∈ C∞0 ((−∞, τ)× S), let u = RτuRτh and v = vφ where Rτ

is the time reversal operator defined by Rτh(t, x) = h(τ − t, x). Then

〈h, ∂νv +
1

2
(A, ν)gv〉L2((0,T )×∂M) − 〈∂νu−

1

2
(A, ν)gu, φ〉L2((0,τ)×∂M)

= 〈(∂2
t −∆g + A+ q)u, v〉L2((0,τ)×M)

− 〈u, (∂2
t −∆g − A+ (q − divgA))v〉L2((0,τ)×M) = 0.

Therefore, we have

〈h, ∂νvφ +
1

2
(A, ν)gvφ〉L2((0,τ)×∂M) = 〈RτΛΓRτh, φ〉L2((0,τ)×∂M).

Fixing

h(t, ·) :=

∫ 2τ−t

t

f(s, ·)ds

we find

1

2

∫ τ

0

∫ 2τ−t

t

〈∂νvφ(t, ·) +
1

2
(A, ν)gvφ(t, ·), f(s, ·)〉L2(∂M)dsdt

=
1

2

∫ τ

0

〈∂νvφ(t, ·) +
1

2
(A, ν)gvφ(t, ·), h(t, ·)〉L2(∂M)dt

=
1

2

∫ τ

0

〈φ(t, ·), RτΛΓRτh(t, ·)〉L2(∂M)dt

=

∫ τ

0

〈φ(t, ·), RτΛΓJ
τf(t, ·)〉L2(∂M)dt.

Combining this with (13), we deduce (11).
�

2.2. Approximate controllability. Next we consider approximate
controllability on a domain of influence. Let T > 0, Γ ⊂ ∂M and
B ⊂ M int be open, and let V = Γ or V = B. Let h : V → R be
piecewise continuous, and define the domain of influence

M(V , h) = {x ∈M ; inf
y∈V

(d(x, y)− h(y)) ≤ 0},
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where d is the distance function of M . Moreover, we write

B(V , h;T ) = {(t, y) ∈ (0,∞)× V ; T − h(y) < t}.
We extend the notations M(V , h) and B(V , h;T ) for constants h ∈ R
by interpreting h as a constant function. Moreover, we define M(x, h)
by M({x}, h) for points x ∈ ∂M .

We have the following approximate controllability result that is anal-
ogous to [29, Lemma 5] and [26, Lemma 2.5].

Lemma 2. Let T > 0, Γ ⊂ ∂M and h : Γ → R to be piecewise
continuous. Then, the set

{vφ(T, ·); φ ∈ C∞0 (B(Γ, h;T ))}
is dense in L2(M(Γ, h)) = {y ∈ L2(M); supp (y) ⊂ M(Γ, h)}. In the
same way, for B ⊂ M int an open set and h : B → R a piecewise
continuous function satisfying h > 0 pointwise, the set

{wH(T, ·); H ∈ C∞0 (B(B, h;T ))}
is dense in L2(M(B, h)) = {y ∈ L2(M); supp (y) ⊂M(B, h)}.

The L2-topology used in the above lemma does not give control over
the point values of vφ. For this reason, we need occasionally also the
following lemma, that is analogous to Lemma 3.7 in [26].

Lemma 3. Let T > 0, Γ ⊂ ∂M , B ⊂M int and suppose that functions
h1 : Γ → R and h2 : B → R are piecewise continuous. Let x and y
be points in M(Γ, h1)int and M(B, h2)int, respectively. Then there exist
φ ∈ C∞0 (B(Γ, h1;T )) and H ∈ C∞0 (B(B, h2;T )) such that the solution v
of (9) and the solution w of (10) satisfy v(T, x) 6= 0 and w(T, y) 6= 0.

3. Local determination of the first order perturbation

In this section we prove Theorem 1. Before formulating the geo-
metric step of our proof, that is, Proposition 1 below, let us introduce
some notation. Let Γ ⊂ ∂M be open. Then the boundary normal
coordinates adapted to Γ are given by the map

(s, y) 7→ γ(s; y,−ν), y ∈ Γ, s ∈ [0, σΓ,M(y)),(14)

where the cut distance σΓ,M : Γ→ (0,∞) is defined by

σΓ,M(y) = max{s ∈ (0, τM(y)]; d(γ(s; y,−ν),Γ) = s},(15)

τM(y) = sup{s ∈ (0,∞); γ(s; y,−ν) ∈M int}.
Here γ(·;x, ξ) is the geodesic with the initial data (x, ξ) ∈ TM , and
we recall that ν is the exterior unit normal on ∂M . We often write
σΓ = σM,Γ. Note that σΓ(y) > 0, see e.g. [20, p. 50].
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We define

MΓ = {γ(s; y,−ν); y ∈ Γ, s ∈ [0, σΓ(y))}.
Then a point x ∈ MΓ is represented in the coordinates (14) by (s, y),
where s = d(x,Γ) and y is the unique closest point to x in Γ.

We will also use the notations

B(p, r) = {x ∈M ; d(x, p) < r}, p ∈M, r > 0,

B∂M(y, r) = {x ∈ ∂M ; d(x, y) < r}, y ∈ ∂M, r > 0.

3.1. A convexity argument. Our aim is to construct a sequence
of functions (hk)k∈N on R such that the difference of the domains of
influences M(Γ, s) \M(R, hk) converges to a point x ∈ M as k →∞.
Here Γ ⊂ R and s > 0 will be chosen suitably. We will use this
construction to enforce a sequence of solutions of (1) to converge, at
a fixed time, to a point mass at x. The main result of this subsection
can be stated as follows.

Proposition 1. Let Γ ⊂ ∂M be open and strictly convex and let K ⊂ Γ
be compact. Define for p ∈MΓ and small ε > 0,

C(p, ε) = ((s− ε, s+ ε) ∩ [0,∞))×B∂M(y, ε),

in the coordinates (14). There exist a neighborhood U ⊂MΓ of K such
that for all p = (s, y) ∈ U there is ε > 0 satisfying the following. For
any x ∈ Cp = C(p, ε) there exists a sequence of functions (hk,x)k∈N in
C(Γ) such that the set

Xk,x = M(B∂M(y, ε), s+ ε)int \M(Γ, hk,x), k ∈ N,

is a neighborhood of x, and diam (Xk,x)→ 0 as k →∞.

The functions hk,x are given explicitly by (20) below. In order to
prove this result we will need three intermediate results.

Lemma 4. Let Γ ⊂ ∂M be open and strictly convex, and let K ⊂ Γ be
compact. Then there is δ(K) > 0 and a neighborhood U(K) ⊂ MΓ of
K such that, for all p ∈ U(K) and q ∈ B(p, δ(K)) \ {p}, there is z ∈ Γ
satisfying d(z, q) < d(z, p).

Proof. Let us consider a unit speed geodesic γ(t) = (s(t), z(t)) in coor-
dinates (14) and denote the initial data of γ by

γ(0) = (s, y), γ̇(0) = (ρ, η),

where s = s(0). We will first show that there is a neighborhood U ⊂M
of K and ρ0 > 0 such that, for all (s, y) ∈ U and ρ ∈ [−1, ρ0], the
geodesic γ intersects Γ and is distance minimizing until the intersection.
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To this end recall that, in coordinates (14), the metric tensor g is of
the form

(16) g(s, y) =

(
1 0
0 h(s, y)

)
.

We write (x1, . . . , xn) = (s, y) and ∂j = ∂xj . Then it follows from (16)
that the Christoffel symbols Γljk satisfy for α, β = 2, . . . , n,

Γβα1 =
n∑
κ=2

1

2
hβκ∂1hκα = −

n∑
κ=2

hβκΓ1
ακ,

and that the (scalar) second fundamental form of ∂M satisfies

II(∂α, ∂β)(y) = −
n∑
κ=2

hβκΓ
κ
α1(0, y) = Γ1

αβ(0, y).

The geodesic equations imply that

s(t) = s+ tρ− t2

2

n∑
α,β=2

Γ1
αβ(s, y)ηαηβ +O(t3),

see e.g. [33, p. 113]. Moreover, the strict convexity of Γ, the lower
semi-continuity of the cut distance function σΓ and the compactness of
K imply that there is a neighborhood U0 ⊂ MΓ of K and c > a > 0
such that, for all (s, y) ∈ U0,

a|η|2h ≤
n∑

α,β=2

Γ1
αβ(s, y)ηαηβ ≤ c|η|2h.

We will consider only the case |η|2h > 1/2. Note that if ρ0 > 0 is
small and |η|2h ≤ 1/2, then ρ < ρ0 implies that ρ < 0 since (ρ, η) is an
unit vector. For small t > 0, we have the bound

s+ tρ− ct2 ≤ s(t) ≤ s+ tρ− at2

8
.

The above formula implies that there is τ = τ(s, y; ρ, ν) such that
s(τ) = 0 and s(t) > 0 for t < τ . In addition, K ⊂ Γ is closed and γ is
unit speed. Thus there is σ > 0 such that, for s ≤ σ, y ∈ K, ρ ≤ σ with
(s, y) ∈ U0, the geodesic γ(t) intersects Γ at t = τ . Moreover, y(t) ∈ Γ
for 0 ≤ t ≤ τ and γ(t) is the distance minimizing up to zγ = γ(τ).
Thus, for t ∈ (0, τ),

d(zγ, γ(t)) = τ − t < d(zγ, γ(0)).(17)

Let us emphasize that the case s = 0 is also allowed in the above
argument. We take U = {(s, y) ∈ U0; s < σ} and ρ0 = σ.
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∂M

γ0(τU)
γ(t)

(s, y)

Figure 1. A schematic of the short cut argument in the proof
of Lemma 4. The geodesics βt, γ and γ0 are depicted by the solid
red, solid grey and dashed black curves, respectively.

Let (s, y) ∈ U , (ρ, η) be a unit vector and suppose that ρ > ρ0. We
may choose η0 = bη, 0 < b < 1, such that (ρ0, η0) is also a unit vector
at (s, y). Then the geodesic γ0(s) with the initial data

γ0(0) = (s, y), γ̇0(0) = (ρ0, η0)

intersects Γ at zγ0 and is distance minimizing until the intersection.
As ρ0 > 0 we have that τ(s, y; ρ0, η) is strictly positive for (s, y) ∈ U

and η0 ∈ S := {η ∈ Rn−1; |η|2h + ρ2
0 = 1}. Together with continuity of

τ this implies

τU := min
(s,y)∈U,η0∈S

τ(s, y; ρ0, η0)/2 > 0.

Let βt : [0, lt]→M be the distance minimizing unit geodesic from γ(t)
to γ0(τU), see Figure 1. The first variation formula, see e.g. [31, Prop.
10.2], implies that

∂td(γ0(τU), γ(t))|t=0 = ∂t

∫ lt

0

|β̇t(r)|dr
∣∣∣∣
t=0

= −(β̇t(0), ∂tβt(0))g|t=0.

Observe that β̇t(0)|t=0 = γ̇0(0) and that ∂tβt(0) = γ̇(0). Hence

∂td(γ0(τU), γ(t))|t=0 = −(γ̇0(0), γ̇(0))g = −ρ0ρ− b|η0|2h ≤ −ρ2
0.

It follows from the above inequality together with the relative com-
pactness of U that there is δ > 0 such that, if t ∈ (0, δ), (s, y) ∈ U ,
ρ > ρ0, then

d(zγ0 , γ(t)) ≤ d(zγ0 , γ(0))− tρ2
0/2.(18)

The claim now follows from (17) and (18). �

Lemma 5. Let Γ ⊂ ∂M be open and let p ∈ MΓ. Then, for all
q ∈M(Γ, d(p,Γ)) \ {p}, there is z ∈ Γ satisfying d(z, q) < d(z, p).
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Proof. Let p = (s, y), s = d(p,Γ), in coordinates (14), and let z be a
closest point to q in Γ. If z 6= y then

d(z, q) = d(q,Γ) ≤ d(p,Γ) < d(z, p),

since z is not the closest point to p in Γ. Suppose now that z = y and
write r = d(y, q). Then r ≤ d(p,Γ) = s and q = (r, y) in coordinates
(14). Moreover q 6= p, whence r < s. �

Lemma 6. Let δ > 0 and let p ∈ MΓ have the boundary normal
coordinates (s, y). Then there is ε = ε(p, δ) > 0 such that for all
q ∈ B(p, ε),

M(B∂M(y, ε), s+ ε) ⊂M(Γ, d(q,Γ)) ∪B(q, δ).(19)

Proof. To prove (19) we assume the contrary. Then there exist se-
quences εn → 0,

qn = (rn, zn) ∈ B(p, εn), q′n ∈M(B∂M(y, εn), s+ εn),

such that d(q′n,Γ) > rn and d(q′n, qn) ≥ δ. Taking if necessary a subse-
quence, we may assume that q′n → q′. Then it follows from the above
that

d(q′, y) ≤ s, d(q′,Γ) ≥ s, d(q′, p) ≥ δ.

This is a contradiction since the first two conditions imply q′ = p. �

Armed with these lemmas we are now in position to complete the
proof of Proposition 1.

Proof of Proposition 1. We assume that δ > 0 and U ⊂ MΓ are as in
Lemma 4. Moreover, for p = (s, y) ∈ U we fix ε = ε(p, δ) > 0 as
in Lemma 6. We decrease ε > 0, if necessary, so that B∂M(y, ε) ⊂ Γ
and that in the coordinates (14), C(p, ε) ⊂ B(p, δ). Then, for any
x ∈ C(p, ε) we set

(20) hk,x(z) = d(z, x)− 1/k, z ∈ Γ.

The set Xk,x is visualized in Figure 2. It is clear that Xk+1,x ⊂ Xk,x

and that x ∈ Xk,x for all k ∈ N. Suppose that q ∈ Xk,x for all k ∈ N.
If q /∈ B(x, δ) then (19) yields that q ∈ M(Γ, d(x,Γ)). Now Lemma
5 implies that q ∈ M(Γ, hk,x)

int for large k which is a contradiction
with q ∈ Xk,x. If, however, q ∈ B(x, δ) \ {x}, then Lemma 4 implies
that q ∈M(Γ, hk,x)

int for large k which is again a contradiction. Thus
q = x. As the sequence of sets Xk,x is decreasing and

⋂
k≥1

Xk,x = {x},

we have that diam (Xk,x)→ 0 as k →∞. �
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x Γ

p

y

Figure 2. Left. A part of the domain of influence M(Γ, hk,x)
in gray, where (M, g) is the Euclidean unit disk, x = (0, 3/5),
k = 20, and Γ is slightly less than the upper half circle. The black
curve is the boundary of M(B∂M(y, ε), s + ε) where p = (s, y),
y = (0, 1), s = 1/2 and ε = 1/5. The set Xk,x is the white region
around x. Right. Schematic diagram of the sets B∂M(y, ε) ⊂ Γ,
in black around the gray point y, and C(p, ε′), in gray around the
black point p = (s, y). Here ε > ε′ > 0. The black curve is the
boundary of M(B∂M(y, ε), s+ ε).

3.2. Localized solutions. We denote by |X| the Riemannian volume
of a measurable set X ⊂M . Also, we write

UA,q : L2((0, T )× S) 3 f → uf (T, ·) ∈ L2(M),

where uf is the solution of (1). If (1) is exactly controllable from S
in time T , then UA,q is surjective. In this case, by Banach-Schauder
theorem, UA,q admits a pseudoinverse

U†A,q : L2(M)→ L2((0, T )× S)

which is continuous. Moreover, the composition UA,qU†A,q gives the
identity map, see e.g. [13, pp. 33-34].

In this subsection we will prove the following lemma that, together
with Proposition 1, will allow us to enforce a sequence of solutions of
(1) to converge, at a fixed time, to a point mass.

Lemma 7. Let X ⊂ M be open, x ∈ X and let Xk ⊂ M , k ∈ N,
be a sequence of neighborhoods of x satisfying lim

k→∞
diam (Xk) = 0. Let

ψ0 ∈ C∞0 (X ) satisfy ψ0(x) 6= 0. Let T > 0 and suppose that a sequence
(fk)k∈N of functions in L2((0, T )× S) satisfies

(i) there is C > 0 such that ‖fk‖L2((0,T )×S) ≤ C|Xk|−1/2 for all
k ∈ N,

(ii) supp (ufk(T, ·)) ⊂ Xk ∪ (M \ X ) for all k ∈ N,
(iii) (〈ufk(T, ·), ψ0〉L2(M))k∈N converges.
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Then there is κ ∈ C such that 〈ufk(T, ·), ψ〉L2(M) → κψ(x) for all
functions ψ ∈ C∞0 (X ).

Furthermore, if the wave equation (1) is exactly controllable from

S in time T , then the sequence fk = U†A,q1Xk/|Xk|, k ∈ N, satisfies
(i)-(iii), and the corresponding κ is 1.

Let us emphasize that X is open in the topology of M , a manifold
with boundary. In particular, X may intersect ∂M in which case x
may belong to ∂M .

Proof. Let ψ ∈ C∞0 (X ). Observe that supp (ufk(T, ·)ψ) ⊂ Xk. Fixing

Rk(ψ) = 〈ufk(T, ·), ψ〉L2(M) − ψ(x)

∫
Xk

ufk(T, x)dVg(x),

where dVg denotes the Riemannian volume, we get

〈ufk(T, ·), ψ〉L2(M) = ψ(x)〈ufk(T, ·), 1〉L2(Xk) +Rk(ψ).

Using some local coordinates x̃ in Xk for all large enough k, the
remainder term satisfies

|Rk(ψ)| ≤
∫
Xk

|ufk(T, x̃)||ψ(x̃)− ψ(x)|dVg(x̃)

≤ C ‖∇ψ‖C(Xk)

∫
Xk

|ufk(T, x̃)|d(x̃, x)dVg(x̃)

≤ C ‖∇ψ‖C(Xk) ||ufk(T, ·)||L2(M)

(∫
Xk

d2(x̃, x)dVg(x̃)

)1/2

≤ C ‖∇ψ‖C(M) diam (Xk)→ 0.

Notice that the constant C > 0 may increase between the inequalities
and that, at the last inequality, we use

||ufk(T, ·)||L2(M) ≤ C ‖fk‖L2((0,T )×S) ,

see [28], together with (i). We choose ψ = ψ0 and see that the limit

lim
k→∞
〈ufk(T, ·), 1〉L2(Xk) =

1

ψ0(x)
lim
k→∞

(〈ufk(T, ·), ψ0〉L2(M) −Rk(ψ0))

exists. We denote the limit by κ. Thus for any ψ ∈ C∞0 (X ) it holds
that 〈ufk(T, ·), ψ〉L2(M) → κψ(x) as k →∞.

Finally, it is clear that fk = U†A,q1Xk/|Xk| has the properties (i)-(iii)
with κ = 1. �



HYPERBOLIC INVERSE PROBLEM WITH DATA ON DISJOINT SETS 15

3.3. Local recovery near the set R. Armed with the localization
procedure given by Proposition 1 and Lemma 7, we prove Theorem 1
in this section.

From now on, we fix Aj ∈ C∞(M ;TM), qj ∈ C∞(M ;C), j = 1, 2,
and, for functions f ∈ C∞0 ((0,+∞)×∂M), φ ∈ C∞0 ((0,+∞)×∂M) and
H ∈ C∞0 ((0,+∞)×B), we consider uj,f , vj,φ, wj,H solving respectively
(1), (9), (10) with A = Aj and q = qj. We write also

Aj = ∆g − Aj − qj, A∗j = ∆g + Aj − (qj − divg(Aj)).

Before proving Theorem 1 we still need to establish two lemmas.

Lemma 8. Let Γ ⊂ ∂M and B ⊂ M int be open. Let T > 0 and
h : Γ→ [0, T ] be piecewise continuous. Let C ⊂M(Γ, h)∩M int be open
and let κ ∈ C∞(C) be nowhere vanishing. Then the condition

(21) v1,φ(T, x) = κv2,φ(T, x), φ ∈ C∞0 (B(Γ, h;T )), x ∈ C,

implies that A1 = κ−1A2κ on C. In the same way, for h : Γ → [0, T ]
piecewise continuous, C ⊂ M(B, h) ∩M int and κ ∈ C∞(C) be nowhere
vanishing, the condition

(22) w1,κH(T, x) = κw2,H(T, x), H ∈ C∞0 (B(B, h;T )), x ∈ C,

implies that A1 = κ−1A2κ on C.

Proof. Since the proof of these two results are similar, we will only
show that (21) implies A1 = κ−1A2κ on C. We start by proving that
(21) implies

(23) A∗1v1,φ(T, ·) = κA∗2v2,φ(T, ·), φ ∈ C∞0 (B(Γ, h;T )).

For this purpose, we fix φ ∈ C∞0 (B(Γ, h;T )) and remark that there is
ε > 0 such that supp(φ) ⊂ [ε,+∞)× ∂M and φ ∈ C∞0 (B(Γ, h− ε;T )).
Thus, taking into account the translation invariance in time of (9) and
fixing φs : (t, x) 7→ φ(s+ t, x), we obtain that

vj,φs(T, ·) = vj,φ(s+ T, ·), s ∈ [0, ε), j = 1, 2

and (21) implies

v1,φ(s+ T, ·) = κv2,φ(s+ T, ·), s ∈ [0, ε).

Differentiating twice this identity with respect to s, we get (23).
Now let ψ be a function in C∞0 (C). Applying again (21), we can

compute

〈κA∗2v2,φ(T, ·), ψ〉L2(C) = 〈κv2,φ(T, ·), κ−1A2κψ〉L2(C)

= 〈v1,φ(T, ·), κ−1A2κψ〉L2(C).
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Applying (23), we get

〈A∗1v1,φ(T, ·), ψ〉L2(C) = 〈κA∗2v2,φ(T, ·), ψ〉L2(C) = 〈v1,φ(T, ·), κ−1A2κψ〉L2(C)

and it follows

(24) 〈v1,φ(T, ·), (A1 − κ−1A2κ)ψ〉L2(C) = 0, ψ ∈ C∞0 (C).
As the functions v1,φ(T, ·)|C, φ ∈ C∞0 (B(Γ, h;T )), are dense on L2(C),
we deduce from (24) that A1 = κ−1A2κ on C, which completes the
proof of the lemma. �

The next lemma will be used only for j = 2.

Lemma 9. Let Γ ⊂ ∂M and B ⊂ M int be open, and let V = Γ or
V = B. Let T > 0 and let h : V → [0, T ] be piecewise continuous.
In the case when V = B suppose, moreover, that h > 0 pointwise.
Let C1 ⊂ M(Γ, h) ∩ M int and C2 ⊂ M(B, h) ∩ M int be open and let
κ` : C` → C. Then the following properties hold:

(1) For j = 1, 2, if κ1vj,φ(T, ·) ∈ C∞(C1) for all φ ∈ C∞0 (B(Γ, h;T ))
then κ1 ∈ C∞(C1). In the same way, if κ2wj,H(T, ·) ∈ C∞(C2)
for all H ∈ C∞0 (B(B, h;T )) then κ2 ∈ C∞(C2).

(2) If for all x ∈ C1 there is φ ∈ C∞0 (B(Γ, h;T )) such that

κ1(x)vj,φ(T, x) 6= 0

then κ1(x) 6= 0 for all x ∈ C1. If for all x ∈ C2 there is H ∈
C∞0 (B(B, h;T )) such that κ2(x)wj,H(T, x) 6= 0 then κ2(x) 6= 0
for all x ∈ C2.

Moreover, in the case V = Γ we can enforce smoothness up to the

boundary, that is, we define C̃ = C1 ∪ (S ∩ C1) where S is an open set
in ∂M such that h > 0 in S, and have the following:

(3) For j = 1, 2, if κ1vj,φ(T, ·) ∈ C∞(C̃) for all φ ∈ C∞0 (B(Γ, h;T ))

then κ1 ∈ C∞(C̃).

Proof. The proof for V = Γ or V = B being similar, we consider only
the results for V = Γ. Let x ∈ C1. By Lemma 3, there is a neighborhood
U of x and φ ∈ C∞0 (B(Γ, h;T )) such that vj,φ(T, ·) is non-vanishing in

U . We have that κ1 =
κ1vj,φ(T,·)
vj,φ(T,·) in U , and (1) and (2) follow.

Suppose now that x ∈ S ∩ C1. Then there is a neighborhood of U ⊂
M of x and φ ∈ C∞0 (B(Γ, h;T )) such that vj,φ(T, ·) is non-vanishing in
U , since on S we can choose vj,φ(T, ·) = φ(T, ·) to be non-vanishing.
The function vj,φ(T, ·) is smooth up to ∂M , whence κ1 is smooth in
U . �

We are ready to prove the local result formulated in the introduction.
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Proof of Theorem 1. As the wave equation is exactly controllable from
S in time T , [3, Theorem 3.2] implies that σR ≤ T pointwise on R.
We recall that σR is defined by (15). For j = 1, 2 and κ ∈ C∞(Ωs), we
fix KT

j,R given by (7) for ΛΓ = Λ2T
j,S,R and applying (4) we deduce that

(25) KT
1,R = KT

2,R.

Let K ⊂ R be compact, and consider the sets defined in Proposition
1 for Γ = R, U ⊂ MR and p = (s, y) ∈ U . We write Cp(K) = Cp to
emphasize the dependence on K, and use an analogous notation also
for other quantities in Proposition 1. We will start by proving that
there exists κ ∈ C∞(Cp(K)) such that the following identity holds

(26) v1,φ(T, x) = κ(x)v2,φ(T, x),

for φ ∈ C∞0 (B(B∂M(y, ε), s + ε;T )) and x ∈ Cp(K). For any x ∈
Cp(K), we consider functions hk,x and sets Xk,x satisfying the properties
described in Proposition 1. We will apply the result of Lemma 7,
with X = M(B∂M(y, ε), s + ε)int and Xk = Xk,x. Using the exact
controllability assumption, we fix

(27) fk,x = U†A1,q1
1Xk,x/|Xk,x|, k ∈ N.

We remark that

(28) lim
k→+∞

〈
u1,fk,x(T, ·), ψ

〉
L2(M)

= ψ(x), ψ ∈ C∞0 (X ).

Let us now show that the conditions (i)-(iii) of Lemma 7 are fulfilled
with respect to j = 2. Clearly (i) holds, as it does not depend on
j = 1, 2. The equations (11) and (25) imply that

(29)

〈
u1,fk,x(T, ·), v1,φ(T, ·)

〉
L2(M)

= 〈KT
1,Rfk,x, φ〉L2((0,T )×R)

= 〈KT
2,Rfk,x, φ〉L2((0,T )×R)

=
〈
u2,fk,x(T, ·), v2,φ(T, ·)

〉
L2(M)

.

Finite speed of propagation implies that supp (v1,φ(T, ·)) ⊂ M(Γ, hk,x)
for all φ ∈ C∞0 (B(R, hk,x;T )). Observe that u1,fk,x(T, ·) = 1Xk,x/|Xk,x|
by (27), and recall that by definition X = M(B∂M(y, ε), s + ε)int and
Xk,x = X \M(Γ, hk,x), see Proposition 1 for the latter. Hence〈

u2,fk,x(T, ·), v2,φ(T, ·)
〉
L2(M)

=
〈
u1,fk,x(T, ·), v1,φ(T, ·)

〉
L2(M)

= 0

and the density result of Lemma 2 implies that u2,fk,x(T, ·) = 0 in
M(Γ, hk,x). Therefore

supp (u2,fk,x(T, ·)) ⊂M \M(Γ, hk,x) ⊂ Xk,x ∪ (M \ X ),
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and (ii) holds. Moreover, equations (28)-(29) imply that the sequence

(
〈
u2,fk,x(T, ·), v2,φ(T, ·)

〉
L2(M)

)k∈N

converges for any φ ∈ C∞0 (B(B∂M(y, ε), s+ ε;T )). Thus, condition (iii)
of Lemma 7 is also fulfilled. Note that by Lemma 3, the function φ can
be chosen so that v2,φ(T, x) 6= 0. According to Lemma 7 there exists
κx such that

(30) lim
k→+∞

〈
u2,fk,x(T, ·), ψ

〉
L2(M)

= κxψ(x), ψ ∈ C∞0 (X ).

We define a function κ : Cp(K)→ C by κ(x) = κx, and remark that
applying (28) with ψ = v1,φ(T, ·) for φ ∈ C∞0 ((B∂M(y, ε), s+ ε, T )), and
using (29), we have

(31) v1,φ(T, x) = lim
k→+∞

〈
u2,fk,x(T, ·), v2,φ(T, ·)

〉
L2(M)

= κ(x)v2,φ(T, x).

This establishes (26). Moreover, combining (26) with the fact that
v1,φ(T, ·) ∈ C∞(M), for φ ∈ C∞0 (B(B∂M(y, ε), s + ε, T )), and applying

Lemma 9, we deduce that κ ∈ C∞(Cp(K) ∪ (Cp(K) ∩ R)). Finally,
applying Lemma 3 we deduce that for all x ∈ Cp(K) there exists φx
such that vφx(T, x) 6= 0. Thus, (31) and Lemma 9 imply κ is nowhere
vanishing in Cp(K).

We consider now a collection {Ki; i ∈ I} of compact sets in R
and pi = (si, yi) lying in a neighborhood of Ki as in Proposition 1.
We assume that {Ki; i ∈ I} and {pi; i ∈ I} are chosen in such a
way that

⋃
i∈I Cpi(Ki) is a neighborhood of R. Repeating the above

argumentation, for all i ∈ I, we find κi ∈ C∞(Cpi(Ki)∪ (Cpi(Ki)∩R))
such that, for all x ∈ Cpi(Ki), we have

(32) v1,φ(T, x) = κi(x)v2,φ(T, x), φ ∈ C∞0 (B∂M(yi, εi), si + εi, T )).

Now let i1, i2 ∈ I be such that Cpi1 (Ki1) ∩ Cpi2 (Ki2) 6= ∅. Since both
Cpi1 (Ki1) and Cpi2 (Ki2) are cylindrical domains, Cpi1 (Ki1) ∩ Cpi2 (Ki2)
is also cylindrical and we have B∂M(yi1 , εi1) ∩ B∂M(yi2 , εi2) 6= ∅. Com-
bining this with (32), we obtain for any

φ ∈ C∞0 (B(B∂M(yi1 , εi1) ∩B∂M(yi2 , εi2),max(si1 + εi1 , si2 + εi2), T ))

and any x ∈ Cpi1 (Ki1) ∩ Cpi2 (Ki2), the equation

(33) κi2(x)v2,φ(T, x) = v1,φ(T, x) = κi1(x)v2,φ(T, x).

In view of Lemma 3, for any x ∈ Cpi1 (Ki1) ∩ Cpi2 (Ki2), we can choose
φ such that v2,φ(T, x) 6= 0. Combining this with (33), we have

(34) κi1(x) = κi2(x), x ∈ Cpi1 (Ki1) ∩ Cpi2 (Ki2).
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Therefore, we can define κ ∈ C∞
(⋃

i∈I Cpi(Ki)
)

such that, for all i ∈ I,
κ|Cpi (Ki) = κi. In light of (32), we deduce that κ|R = 1 and Lemma 9
implies that κ 6= 0. Moreover, applying Lemma 8 on Cpi(Ki), for any
i ∈ I, we deduce that

A1 = κ−1A2κ = ∆g − (A2 + 2κ−1gradgκ)− (q2 + κ(A2 −∆g)κ
−1)

holds true on
⋃
i∈I Cpi(Ki). Therefore, we can define U a neighbor-

hood of R, contained into
⋃
i∈I Cpi(Ki), such that κ ∈ C∞(U) and

(A1|U , q1|U) ∈ GU ,R(A2, q2). This completes the proof of the theo-
rem. �

4. Reconstruction of the first order perturbation along
a convex foliation

In this section we prove the global result stated in Theorem 2. The
proof of this result is based on iterating the local reconstruction method
of the previous section along the convex foliation.

4.1. Local recovery near the set Σs. Let Σs, s ∈ (0, 1], be a convex
foliation satisfying (F1)-(F7). Let Γ ⊂ Σs be open and let h : Γ → R
be piecewise continuous. We recall that Ms is defined in (F4), and
consider the domain of influence on Ms,

Ms(Γ, h) := {x ∈Ms; inf
y∈Γ

(dMs(x, y)− h(y)) ≤ 0}.

Here dMs(x, y) is the distance function on (Ms, g). We will also use the
notation dΩs

(x, y) for the distance function on (Ωs, g).

Lemma 10. Let Σs, s ∈ (0, 1], be a convex foliation satisfying (F1)-
(F7), and let s ∈ (0, 1]. Let h : Σs → R be piecewise continuous.
Then

(35) Ms(Σs, h) ∪ Ωs = M(Ωs, h̃),

where h̃(y) = max(supz∈Σs(h(z)− dΩs
(z, y)), dΩs

(y, ∂Ωs)).

Proof. Let us show first that

d(x, z) = dMs(x, z), x, z ∈Ms.

It is enough to show that a shortest path γ between x and z stays in
Ms. To get a contradiction suppose that S < s, where

S = inf{r ∈ [0, s]; γ ∩ Σr 6= ∅},
and we have used the notation Σ0 = R0. Let p ∈ γ∩ΣS. Let us consider
first the case S > 0. Then γ is a geodesic near p. As γ ∩ ΩS = ∅, the
intersection is tangential. But then the strict convexity of ΣS implies
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that γ is in ΩS near p, which is a contradiction. On the other hand, if
S = 0 then the intersection must be tangential again, since a shortest
path is C1, see [1]. But this is impossible by the strict convexity of
Σ0 ⊂ R.

Let us now show (35). Note that h̃(y) ≥ h(y) for y ∈ Σs and that

h̃ > 0 on Ωs. Hence Ms(Σs, h) ∪ Ωs ⊂ M(Ωs, h̃). On the other hand,

if x ∈ M(Ωs, h̃) \ Ωs then there is y ∈ Ωs such that d(x, y)− h̃(y) ≤ 0

and z ∈ Σs such that h̃(y) = h(z)− dΩs
(z, y). Thus

dMs(x, z)− h(z) = d(x, z)− dΩs
(z, y)− h̃(y) ≤ d(x, y)− h̃(y) ≤ 0,

and x ∈Ms(Σs, h). �

Let us prove next the following analogue of Theorem 1 with internal
data on Ωs. Note that contrary to Theorem 1, we do not require κ to
have a specific value on Σs. We recall that for and open set U ⊂ M int

and f ∈ C∞0 ((0,∞)× S),

Tj,U,κf = κuj|(0,∞)×U ,

where uj is the solution of (1) for A = Aj and q = qj.

Lemma 11. Let S ⊂ ∂M be open and suppose that the wave equation
(1) is exactly controllable from S in time T > 0. Let Σs, s ∈ (0, 1],
be a convex foliation satisfying (F1)-(F7), let s ∈ (0, 1], and let κ0 ∈
C∞(Ωs) be nowhere vanishing. Then there is a neighborhood Us ⊂ Ms

of Σs such that the condition

(36) T1,Ωs,1 = T2,Ωs,κ0

implies that there exists κ ∈ C∞(Us) such that

κ(x) 6= 0, x ∈ Us
and

(37) A1|Us = κ−1A2κ|Us .

Proof. For j = 1, 2, we fix Kj,Ωs,κ given by (8) for B = Ωs and TΩs,κ =
Tj,Ωs,κ and applying (36) we deduce that

(38) KT
1,Ωs,1 = KT

2,Ωs,κ0
.

Let K ⊂ Σs be compact, and consider the sets defined in Proposition
1 with M replaced by Ms, Γ replaced by Σs. We fix U(K) the neigh-
borhood of K in Ms satisfying the properties of Proposition 1. For all

p = (s, y) ∈ U(K), we define Bp(K) = B(Ωs, h̃, T ) (see the beginning

of Section 2.2 for the definition of this set), where h̃ is as in Lemma
10 with the choice h = (s + ε)1Γp(K), and ε is as in Proposition 1.
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For all H ∈ C∞0 (Bp(K)) and j = 1, 2, we denote by wj,H the solution
of (10) with A = Aj, q = qj. We will start by proving that, for all
p = (s, y) ∈ U(K) there exists κ ∈ C∞(Cp(K)) such that the following
identity holds

(39) w1,H(T, x) = κ(x)w2,H(T, x),

for H ∈ C∞0 (Bp(K)) and x ∈ Cp(K). For any x ∈ Cp(K), we con-
sider functions hk,x and sets Xk,x satisfying the properties described in

Proposition 1 with X = Ms(Ωs, h̃)int. Analogously to the proof of The-
orem 1, we use Lemma 2 together with Lemma 10, (12) and Lemma 7,
with Xk = Xk,x, to define fk,x ∈ C∞0 ((0,+∞)× S, k ∈ N, such that

w1,H(T, x) = lim
k→+∞

〈
u1,fk,x(T, ·), w1,H(T, ·)

〉
L2(M)

= lim
k→+∞

〈
u2,fk,x(T, ·), w2,H(T, ·)

〉
L2(M)

= κxw2,H(T, x).

We introduce the function κ : Cp(K) → C by κ(x) = κx, and we get
(39). Moreover, applying Lemma 9, we deduce that κ is smooth and

nowhere vanishing in Cp(K) ∪ (Cp(K) ∩ Σs).
We consider now a collection {Ki; i ∈ I} of compact sets in Σs

and pi = (si, yi) lying in a neighborhood of Ki as in Proposition 1.
We assume that {Ki; i ∈ I} and {pi; i ∈ I} are chosen in such a
way that

⋃
i∈I Cpi(Ki) is a neighborhood of Σs. Repeating the above

argumentation, for all i ∈ I, we find κi ∈ C∞(Cpi(Ki)∪ (Cpi(Ki)∩R))
such that, for all x ∈ Cpi(Ki), we have

(40) w1,H(T, x) = κi(x)w2,H(T, x), H ∈ C∞0 (Bpi(Ki)).
In a similar way to the end of the proof of Theorem 1, applying Lemma
3, we can define κ ∈ C∞

(⋃
i∈I Cpi(Ki)

)
such that, for all i ∈ I,

κ|Cpi (Ki) = κi. Combining this with (40), we can define Us a neigh-
borhood of Σs, such that (37) is fulfilled. �

4.2. Gluing of the gauges. Let S,R ⊂ ∂M satisfy the assumptions
of Theorem 2, and let Σs, s ∈ (0, 1], be a convex foliation satisfying
(F1)-(F7). From now on, we assume that (4) is fulfilled and our goal
is to prove (6). For this purpose, we define the set

J = {s ∈ (0, 1]; there exists Us ⊂M an open set of M(41)

containing Ωs such that

(A1|Us , q1|Us) ∈ GUs,R(A2, q2)}
According to Theorem 1 and condition (F6), we know that J 6= ∅ since
for s small enough we have that Ωs ⊂ U , where U is a neighborhood
of R as in Theorem 1. Moreover, the continuity condition (F5) implies
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that J is open. Therefore, since (0, 1] is a connected set, the proof of
Theorem 2 will be completed if we show that J is closed. This will be
our main task from now on. We start with four intermediate results.

Let U ⊂M int be open. We define

K(U) := {κ ∈ C∞(U); κ|U∩R = 1, κ(x) 6= 0, x ∈ U}.

Lemma 12. Let U ⊂ M int be open and connected and suppose that
U ∩ ∂M ⊂ R and that the interior of U ∩ R in ∂M is nonempty.
Assume that there exists a piecewise smooth function κ0 : U → C with
the following properties:

(i) κ0(x) 6= 0 for all x ∈ U ,
(ii) there is a neighbourhood W ⊂ M of R such that κ0 is smooth

in U ∩W and extends smoothly to U ∩R,
(iii) the smooth extension satisfies κ0 = 1 in U ∩R.

Suppose that, for Aj = ∆g − Aj − qj, j = 1, 2, the conditions (4) and

(42) A1|U = κ−1
0 A2κ0|U

are fulfilled. Then κ0 is smooth and has a smooth extension κ to U .
The smooth extension satisfies κ ∈ K(U) and the condition

(43) T1,U,1 = T2,U,κ

is fulfilled.

Proof. We will divide the proof in four steps.
Step 1. We will show that (43) holds with U replaced by a small

subset of U lying close to R. As the interior of U ∩ R in ∂M is
nonempty, we can choose a nonempty open set Γ ⊂ U ∩ R and r > 0
such that M(Γ, r) ⊂ U . For j = 1, 2, f ∈ C∞0 ((0,+∞) × S) and
φ ∈ C∞0 ((T−r, T )×Γ) we consider uj,f , vj,φ solving respectively (1), (9)
with A = Aj and q = qj. By the finite speed of propagation (e.g. [20,
Lemma 3.9]), we know that, for all t ∈ [0, T ], supp(v2,φ(t, ·)) ⊂M(Γ, r).
Then, (42) and the uniqueness of solutions of (9) imply

(44) v1,φ = (κ0)−1v2,φ.

By Lemma 1, the condition (4) implies that

〈v1,φ(T, ·), u1,f (T, ·)〉L2(M) = 〈v2,φ(T, ·), u2,f (T, ·)〉L2(M)

and combining this with (44) we get

〈v1,φ(T, ·), u1,f (T, ·)− κ0u2,f (T, ·)〉L2(M) = 0.

Then, using the density of the functions v1,φ(T, ·), φ ∈ C∞0 ((T −r, T )×
Γ), in L2(M(Γ, r)), given by Lemma 2, we find for x ∈M(Γ, r) that

(45) u1,f (T, x) = κ0u2,f (T, x).
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Now allowing T > 0 to be arbitrary, we deduce that

(46) T1,B,1 = T2,B,κ0 ,

where B = M(Γ, r)int.
Step 2. Supposing that p ∈ U and ε > 0 satisfy B(p, 2ε) ⊂ U , we

will show that

(47) T1,B(p,ε),1 = T2,B(p,ε),κ0 ,

implies

(48) T1,B(p,2ε),1 = T2,B(p,2ε),κ0 .

For H ∈ C∞0 ((0,+∞)×B(p, ε)), we consider wj,H solving (10) with
A = Aj and q = qj. Applying Lemma 1 and (47), for H ∈ C∞0 ((0,∞)×
B(p, ε)), f ∈ C∞0 ((0,∞)× S), we get

〈w1,H(T, ·), u1,f (T, ·)〉L2(M) = 〈w2,κ0H(T, ·), u2,f (T, ·)〉L2(M).

On the other hand, for H ∈ C∞0 ((T − ε, T )×B(p, ε)), the finite speed
of propagation and (42) imply w2,κ0H(T, ·) = κ0w1,H(T, ·). Then we
have

〈w1,H(T, ·), u1,f (T, ·)− κ0u2,f (T, ·)〉L2(M) = 0

and using the density of the functions w1,H(T, ·), H ∈ C∞0 ((T − ε, T )×
B(p, ε)), in L2(M(B(p, ε), ε)), given by Lemma 2, we find

u1,f (T, x) = κ0u2,f (T, x), x ∈ B(p, 2ε).

Allowing T > 0 to be arbitrary, we get (48).
Step 3. We will show that T1,U,1 = T2,U,κ0 . Let p ∈ U and p′ ∈

M(Γ, r)int and connect p to p′ with a path γ : [0, 1] → U . Then there
is ε > 0 such that B(γ(t), 2ε) ⊂ U for all t ∈ [0, 1] and B(γ(0), ε) ⊂
M(Γ, r)int. Now we can iteratively prove that

T1,B(γ(t),ε),1 = T2,B(γ(t),ε),κ0 , t ∈ [0, 1].

Since p ∈ U can be chosen arbitrarily, we deduce that T1,U,1 = T2,U,κ0 .
Step 4. We will show that κ0 is smooth and that it has a smooth,

nowhere vanishing extension to U . Let x0 ∈ U ∩M int. By Lemma 3
there is f ∈ C∞0 ((0,∞)× S) and a neighborhood B ⊂M int of x0 such
that u2,f (T, x) 6= 0 for x ∈ B. Therefore,

κ0(x) =
u1,f (T, x)

u2,f (T, x)
, x ∈ B ∩ U.

As uj,f (T, ·) ∈ C∞(U) for both j = 1, 2, this implies that κ0 is smooth
in B ∩ U and has a smooth extension to B ∩ U . By varying x0, we
see that κ0 has a smooth extension to U ∩ M int. Recalling also the
assumption (ii), we see that κ0 has a smooth extension to whole U .
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The extension is unique and we denote it by κ. The smoothness of κ
and (45) for x ∈ U imply that

(49) u1,f (T, x) = κ(x)u2,f (T, x),

for all x ∈ U and all f ∈ C∞0 ((0,∞) × S). To see that κ is nowhere
vanishing in U , let x ∈ U ∩M int and choose f ∈ C∞0 ((0,∞)× S) such
that u1,f (T, x) 6= 0 (using Lemma 3 again). Now (49) implies that
κ(x) 6= 0. �

A direct consequence of this last result is given by the following.

Corollary 1. Let s ∈ J where J is defined by (41). Then (4) implies
that there exists κs ∈ K(Ωs) such that

A1|Ωs = κ−1
s A2κs|Ωs , T1,Ωs,1 = T2,Ωs,κs .

Let us also consider the following result which will be important for
the gluing of the gauge class.

Lemma 13. Let s1, s2 ∈ J where J is defined by (41), and suppose
that s1 < s2. Then (4) implies that there exist κ` ∈ K(Ωs`), ` = 1, 2,
such that κ2|Ωs1 = κ1 and such that the condition

(50) A1|Ωs` = κ−1
` A2κ`|Ωs` , T1,Ωs` ,1

= T2,Ωs` ,κ`
, ` = 1, 2

is fulfilled.

Proof. By Corollary 1 there exist κ` ∈ K(Ωs`), ` = 1, 2, such that
(50) is fulfilled and the proof will be completed if we can show that
κ2|Ωs1 = κ1. For this purpose, we remark that (50) implies

T2,Ωs1 ,κ1
f(x) = T2,Ωs2 ,κ2

f(x), f ∈ C∞0 ((0,∞)× S), x ∈ Ωs1 .

We fix x ∈ Ωs1 . By Lemma 3 there is f ∈ C∞0 ((0,∞) × S) and a
neighborhood B ⊂ M int of x such that u2,f (T, x) 6= 0 in B, where u2

is the solution of (1) for A = A2 and q = q2. Thus κ1 = κ2 in B ∩ Ωs1

and allowing x ∈ Ωs1 to be arbitrary, we deduce that κ2|Ωs1 = κ1. This
completes the proof of the lemma. �

Lemma 14. Let (s`)`∈N be a strictly increasing sequence of R such that
s` ∈ J , ` ∈ N, and suppose that lim`→∞ s` = s. Here J is defined by
(41). Then (4) implies that there exists κ ∈ K(Ωs) such that

A1|Ωs = κ−1A2κ|Ωs , T1,Ωs,1 = T2,Ωs,κ.

Proof. An induction using Corollary 1 and Lemma 13 shows that, for
all ` ∈ N, there exists κ` ∈ K(Ωs`), such that the following conditions
are fufilled

(51) A1|Ωs` = κ−1
` A2κ`|Ωs` , T1,Ωs` ,1

= T2,Ωs` ,κ`
, ` ∈ N,
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(52) κ`+1|Ωs` = κ`, ` ∈ N.

According to (52), the functions κ`, ` ∈ N, fit together and give a
function κ∞ on Ωs defined by

κ∞|Ωs` = κ`, ` ∈ N.

Moreover, by (51) we have

A1|Ωs = κ−1
∞A2κ∞|Ωs .

Here we recall that κ∞ is smooth in Ωs, up to Ωs ∩ R, κ∞ is nowhere
vanishing in Ωs and satisfies κ∞ = 1 in Ωs∩R. Now Lemma 12 implies
that κ∞ has a smooth extension κ ∈ K(Ωs). �

Armed with the above lemmas, we are now in position to complete
the proof of the global result.

Proof of Theorem 2. It remains to show that J is closed. Let (s`)`∈N
be a strictly increasing sequence of R such that s` ∈ J , ` ∈ N, and
suppose that lim`→∞ s` = s. We will show that s ∈ J . By Lemma 14,
there exists κ0 ∈ K(Ωs) such that

(53) A1|Ωs = κ−1
0 A2κ0|Ωs , T1,Ωs,1 = T2,Ωs,κ0 .

Combining this with Lemma 11, we deduce that there exist a neigh-
borhood Us ⊂Ms of Σs and κ1 ∈ C∞(Us) such that

A1|Us = κ−1
1 A2κ1|Us .

Combining this with (53), we obtain that for κ defined by

κ(x) =

{
κ0(x), x ∈ Ωs,

κ1(x), x ∈ Us,

and for Us = Ωs ∪ Us we have

A1|Us = κ−1A2κ|Us .

It is immediate that κ is piecewise smooth, and Lemma 12 implies then
that κ is in K(Us). Thus J is closed and since J is also open in (0, 1],
we deduce that J = (0, 1]. In particular 1 ∈ J which completes the
proof. �
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5. Complementary results

In this section we show that instead of assuming exact controllability
from S and strict convexity of R, we may assume that exact controlla-
bility holds from either S or R and that one of them is strictly convex.
In the case that exact controllability holds from the set that is also
strictly convex, we need the additional assumption that all the points
in M can be reached from the other set in time T . More precisely,
supposing that exact controllability holds from strictly convex R, we
assume that

(54) T > max
x∈M

d(x,S).

Then we can determine A and q, up to the gauge equivalence, near the
strictly convex set R or S.

Observe first that the adjoint of ΛT
S,R is RΛT

R,SR where R is the
time-reversal Rφ(t) = φ(T − t). Thus Theorem 1 implies that we can
determine the geometry and the lower order terms near S if it is strictly
convex and exact controllability holds from R.

We will show next that the conclusion of Theorem 1 holds when R
is strictly convex, the wave equation (1) is exactly controllable from
R, and (54) holds. The fourth case, that is, exact controllability holds
from strictly convex S and (54) holds with S replaced by R, follows
then again by transposition. The global uniqueness result in Theorem
2 can also be changed in the analogous manner.

We used the exact controllability only once in the proof of Theorem
1, namely when we invoked Lemma 7. Lemma 15 below will substi-
tute Lemma 7 in the case when the exact controllability holds from R
instead of from S.

Lemma 15. Let X ⊂M be open, x ∈ X and let Xk ⊂M , k ∈ N, be a
sequence of neighborhoods of x satisfying limk→∞ diam (Xk) = 0. Let
ψ0 ∈ C∞0 (X ) satisfy ψ0(x) 6= 0. Let T > 0 and suppose that a sequence
(fkl)

∞
k,l=1 of functions in L2((0, T )× S) satisfies

(0) for all k, there is hk ∈ L2(M) such that the sequence (ufkl(T, ·))∞l=1

converges weakly to hk in L2(M),
(i) there is C > 0 such that ‖hk‖L2(M) ≤ C|Xk|−1/2 for all k,

(ii) supp (hk) ⊂ Xk ∪ (M \ X ) for all k,
(iii) (〈hk, ψ0〉L2(M))

∞
k=1 converges.

Then there is κ ∈ C such that lim
k→∞

lim
l→∞
〈ufkl(T, ·), ψ〉L2(M) = κψ(x) for

all ψ ∈ C∞0 (X ).
Furthermore, if (54) holds, then there is a sequence (fkl)

∞
k,l=1 that

satisfies (i)-(iii) and for which κ = 1.
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Proof of Lemma 15. Let ψ ∈ C∞0 (X ). Then supp (hkψ) ⊂ Xk and

〈hk, ψ〉L2(M) = ψ(x)〈hk, 1〉L2(Xk) +Rk,

where the remainder term Rk converges to zero as k → ∞. This can
be seen as in the proof of Lemma 7 since ‖hk‖ ≤ C|Xk|−1/2 for all k.
We choose ψ = ψ0 and see that limk→∞〈hk, 1〉L2(Xk) exists. We denote
the limit by κ. Thus for any ψ ∈ C∞0 (X ) it holds that

lim
k→∞

lim
l→∞
〈KT
Rfkl, ψ〉L2((0,T )×R) = lim

k→∞
〈hk, ψ〉L2(M) = κψ(x).

Let us now assume that T > max
x∈M

d(x,S). Then Lemma 2 implies

that for each k there is a sequence (fkl)
∞
l=1 in L2((0, T )× S) such that

(ufkl(T, ·))∞l=1 converges to 1Xk/|Xk| in L2(M). Then the conditions
(0), (ii) and (iii) hold. �

Let us now outline how the proof of Theorem 1 needs to be changed
when Lemma 7 is replaced by Lemma 15. Let x ∈ Cp(K) let Xk,x and
X be as in the proof of Theorem 1. We use the shorthand notation
Xk = Xk,x and do not emphasize the dependence on x in the notation
below.

As in the proof of Lemma 15, let (fkl)
∞
k,l=1 in L2((0, T )×S) be such

that (u1,fkl(T, ·))∞l=1 converges to 1Xk/|Xk| in L2(M). Note that

lim
k→+∞

lim
l→+∞

〈u1,fkl(T, ·), ψ〉L2(M) = ψ(x), ψ ∈ C∞0 (X ).

We will show that the conditions (0)-(iii) of Lemma 15 are fulfilled with
respect to j = 2. Then Lemma 15 implies the following analogue of
equation (30) in the proof of Theorem 1,

lim
k→∞

lim
l→∞
〈u2,fkl(T, ·), ψ〉L2(M) = κψ(x), ψ ∈ C∞0 (X ).

The rest of the proof of Theorem 1 is unchanged.
Analogously to (29), we have

(55) 〈u1,fkl(T, ·), v1,φ(T, ·)〉L2(M) = 〈u2,fkl(T, ·), v2,φ(T, ·)〉L2(M) ,

for φ ∈ L2((0, T )×R). Therefore

(56) lim
l→∞
〈u2,fkl(T, ·), v2,φ(T, ·)〉L2(M) = 〈1Xk/|Xk|, v1,φ(T, ·)〉L2(M) .

Recall that Hilbert spaces are sequentially weakly complete, see e.g.
[38, Th. V.7]. Assuming exact controllability from R, we have

(57) {v2,φ(T, ·); φ ∈ L2((0, T )×R)} = L2(M),

and hence (56) implies that (u2,fkl(T, ·))l∈N converges weakly in L2(M).
This establishes (0), and we denote the weak limit by hk.
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It follows from (56), using the Cauchy-Schwarz inequality, that〈
|Xk|1/2hk, v2,φ(T, ·)

〉
L2(M)

=
〈
1Xk/|Xk|1/2, v1,φ(T, ·)

〉
L2(M)

≤ ‖v1,φ(T, ·)‖L2(M) .

Thus (57) together with the uniform boundedness theorem implies that
(|Xk|1/2hk)k∈N is bounded in L2(M). Therefore (i) holds. Using again
(56), we have

〈hk, v2,φ(T, ·)〉L2(M) = 〈1Xk/|Xk|, v1,φ(T, ·)〉L2(M) = 0

for all φ ∈ C∞0 (B(R, hk,x;T )), since v1,φ(T, ·) is supported in the set
M(R, hk,x) that is disjoint with Xk, see Proposition 1. Thus the density
result of Lemma 2 implies (ii). Using once more (56), and recalling that
X = M(B∂M(y, ε), s+ε)int, we have for φ ∈ C∞0 (B(B∂M(y, ε), s+ε;T )),

lim
k→∞

lim
l→∞
〈u2,fkl(T, ·), v2,φ(T, ·)〉L2(M) = v1,φ(T, x).

Thus, condition (iii) of Lemma 7 is also fulfilled when φ is chosen so
that v2,φ(T, x) 6= 0.
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