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1 Univ. Grenoble Alpes, CNRS, Grenoble INP, VERIMAG, 38000 Grenoble, France
2 IRISA, INRIA Rennes

Abstract

In this paper, we study a general class of algorithms designed for networks endowed
with a sense of direction describing a spanning forest (e.g., a directed tree or a network
where a directed spanning tree is available) whose characterization is a simple (i.e.,
quasi-syntactic) condition. We show that any algorithm of this class is (1) silent and
self-stabilizing under the distributed unfair daemon, and (2) has a stabilization time
which is polynomial in moves and asymptotically optimal in rounds. To illustrate the
versatility of our method, we review several existing works where our results apply.

Keywords: Self-stabilization, silence, tree networks, bottom-up actions, and top-
down actions.

1 Introduction

Self-stabilization [1] is a versatile technique to withstand any finite number of transient
faults in a distributed system: regardless of the arbitrary initial configuration of the system
(and therefore also after the occurrence of transient faults), a self-stabilizing (distributed)
algorithm is able to recover in finite time a so-called legitimate configuration from which its
behavior conforms to its specification.

After the seminal work of Dijkstra, many self-stabilizing algorithms have been proposed
to solve various tasks such as spanning tree constructions [2], token circulations [3], clock
synchronization [4], propagation of information with feedbacks [5]. Those works consider a
large taxonomy of topologies: ring [6, 7], (directed) trees [5, 8, 9], planar graphs [10, 11],
arbitrary connected graphs [12, 13], etc. Among those topologies, the class of directed (in-)
trees (i.e., trees where one process is distinguished as the root and edges are oriented toward
the root) is of particular interest. Indeed, such topologies often appears, at an intermediate
level, in self-stabilizing composite algorithms. Composition is a popular way to design self-
stabilizing algorithms [14] since it allows to simplify both the design and proofs. Numerous
self-stabilizing algorithms, e.g., [15, 2, 16], are actually made as a composition of a spanning
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directed treelike (e.g. tree or forest) construction and some other algorithms specifically de-
signed for directed tree/forest topologies. Notice that, even though not mandatory, most of
these constructions achieve an additional property called silence [17]: a silent self-stabilizing
algorithm converges within finite time to a configuration from which the values of the com-
munication registers used by the algorithm remain fixed. Silence is a desirable property.
Indeed, as noted in [17], the silent property usually implies more simplicity in the algorithm
design, and so allows to write simpler proofs; moreover, a silent algorithm may utilize less
communication operations and communication bandwidth.

In this paper, we consider the locally shared memory model with composite atomicity
introduced by Dijkstra [1], which is the most commonly used model in self-stabilization.
In this model, executions proceed in (atomic) steps and the asynchrony of the system is
captured by the notion of daemon. The weakest (i.e., the most general) daemon is the
distributed unfair daemon. Hence, solutions stabilizing under such an assumption are highly
desirable, because they work under any other daemon assumption.

The daemon assumption and time complexity are closely related. The stabilization time,
i.e., the maximum time to reach a legitimate configuration starting from an arbitrary one,
is the main time complexity measure to compare self-stabilizing algorithms. It is usually
evaluated in terms of rounds, which capture the execution time according to the speed of
the slowest process. But, another crucial issue is the number of local state updates, called
moves. Indeed, the stabilization time in moves captures the amount of computations an
algorithm needs to recover a correct behavior. Now, this latter complexity can be bounded
only if the algorithm works under an unfair daemon. Actually, if an algorithm requires a
stronger daemon to stabilize, e.g., a weakly fair daemon, then it is possible to construct
executions whose convergence is arbitrary long in terms of (atomic) steps, meaning that, in
such executions, there are processes whose moves do not make the system progress in the
convergence. In other words, these latter processes waste computation power and so energy.
Such a situation should be therefore prevented, making the unfair daemon more desirable
than the weakly fair one.

There are many self-stabilizing algorithms proven under the distributed unfair daemon,
e.g., [13, 18, 19, 20, 21]. However, analyses of the stabilization time in moves is rather unusual
and this may be an important issue. Indeed, recently, several self-stabilizing algorithms which
work under a distributed unfair daemon have been shown to have an exponential stabilization
time in moves in the worst case, e.g., the silent leader election algorithms from [19, 20] (as
shown in [13]), the Breadth-First Search (BFS) algorithm of Huang and Chen [22] (as shown
in [23]), or the silent self-stabilizing algorithm for the shortest-path spanning tree of [21] (as
shown in [24]).

Contribution. In this paper, we study a general class of algorithms designed for networks
endowed with a sense of direction describing a spanning forest (e.g., a directed tree, or a
network where a directed spanning tree is available) whose characterization is a simple (i.e.,
quasi-syntactic) condition. We show that any algorithm of this class is (1) silent and self-
stabilizing under the distributed unfair daemon, and (2) has a stabilization time which is
polynomial in moves and asymptotically optimal in rounds.

Our condition, referred to as acyclic strategy, is based on the notions of top-down and
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bottom-up actions. Until now, these types of actions was used rather informally in the
context of self-stabilizing algorithms dedicated to directed trees. Our first goal has been to
formally define these two paradigms. We have then compiled this formalization together
with a notion of acyclic causality between actions and a last criteria called correct-alone
(n.b., only this latter criteria is not syntactic) to obtain the notion of acyclic strategy. We
show that any algorithm that follows an acyclic strategy reaches a terminal configuration
in a polynomial number of moves, assuming a distributed unfair daemon. Hence, if its
terminal configurations conform to the specification, then the algorithm is both silent and
self-stabilizing. Unfortunately, we show that our condition is not sufficient to guarantee a
stabilization time that is asymptotically optimal in rounds, i.e., O(H) rounds where H is the
height of the spanning forest. However, we propose to enforce our condition with an extra
property, called local mutual exclusivity, which is sufficient to obtain the asymptotic optimal
bound in rounds. Finally, we propose a generic method to add this latter property to any
algorithm that follows an acyclic strategy but is not locally mutually exclusive, allowing then
to obtain a complexity in O(H) rounds. Our method has no overhead in terms of moves.
Finally, to illustrate the versatility of our method, we review several existing works where
our results apply.

Related Work. General schemes and efficiency are usually understood as orthogonal is-
sues. For example, general schemes have been proposed [25, 26] to transform almost any
algorithm (specifically, those algorithms that can be self-stabilized) for arbitrary connected
and identified networks into their corresponding stabilizing version. Such universal trans-
formers are, by essence, inefficient both in terms of space and time complexities: their
purpose is only to demonstrate the feasibility of the transformation. In [25], authors con-
sider asynchronous message-passing systems, while the synchronous locally shared memory
model is assumed in [26].

However, few works, like [27, 28, 29], target both general self-stabilizing algorithm pat-
terns and efficiency in rounds.

In [27, 28], authors propose a method to design silent self-stabilizing algorithms for
a class of fix-point problems (namely fix-point problems which can be expressed using r-
operators). Their solution works in non-bidirectional networks using bounded memory per
process. In [27], they consider the locally shared memory model with composite atomicity
assuming a distributed unfair daemon, while in [28], they bring their approach to asyn-
chronous message-passing systems. In both papers, they establish a stabilization time in
O(D) rounds, where D is the network diameter, that holds for the synchronous case only,
moreover move complexity is not considered.

The remainder of the related work only concerns the locally shared memory model with
composite atomicity assuming a distributed unfair daemon.

In [29], authors use the concept of labeling scheme introduced by Korman et al [30]
to design silent self-stabilizing algorithms with bounded memory per process. Using their
approach, they show that, every static task has a silent self-stabilizing algorithm which
converges within a linear number of rounds in an arbitrary identified network, however no
move complexity is given.

To our knowledge, until now, only two works [31, 32] conciliate general schemes for sta-
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bilization and efficiency in both moves and rounds. In [31], Cournier et al propose a general
scheme for snap-stabilizing wave, henceforth non-silent, algorithms in arbitrary connected
and rooted networks. Using their approach, one can obtain snap-stabilizing algorithms that
execute each wave in polynomial number of rounds and moves. In [32], authors propose a
general scheme to compute, in a linear number of rounds, spanning directed treelike data
structures on arbitrary networks. They also exhibit polynomial upper bounds on its stabi-
lization time in moves holding for large classes of instantiations of their scheme. Hence, our
approach is complementary to [32].

Roadmap. The remainder of the paper is organized as follows. In the next section, we
present the computational model and basic definitions. In Section 3, we define the notion
of acyclic strategy based on the notions of top-down and bottom-up actions. In Section 4,
we exhibit a polynomial upper bound on the move complexity of algorithms that follow an
acyclic strategy. In Section 5, we propose a simple case study. This example shows that
our upper bound is tight, but in contrast, the acyclic strategy is not restrictive enough as it
allows degenerated solutions where the stabilization time in rounds is in Ω(n) where n is the
number of processes in the network. In Section 6, we show that any algorithm that follows an
acyclic strategy and whose actions are locally mutually exclusive stabilizes in O(H) rounds,
where H is the height of the spanning forest; we also show how to add this latter property
without increasing the move complexity. In Section 7, we review several existing works where
our method allows to trivially deduce both correctness and stabilization time (both in terms
of moves and rounds). Section 8 is dedicated to concluding remarks.

2 Preliminaries

We consider the locally shared memory model with composite atomicity [1] where processes
communicate using locally shared variables.

2.1 Network

A network is made of a set of n interconnected processes. Communications are assumed
to be bidirectional. Hence, we model the topology of the network by a simple undirected
graph G = (V,E), where V is a set of processes and E is a set of edges that represents
communication links, i.e., {p, q} ∈ E means that p and q can directly exchange information.
In this latter case, p and q are said to be neighbors. For a process p ∈ V , we denote by p.Γ
the set of its neighbors: p.Γ = {q ∈ V : {p, q} ∈ E}. We also note ∆ the degree of G,
namely ∆ = max{|p.Γ| : p ∈ V }.

2.2 Algorithm

A distributed algorithm A is a collection of n = |V | local algorithms, each one operating on a
single process: A = {A(p) : p ∈ V } where each process p is equipped with a local algorithm
A(p) = (V arp, Actionsp):

• V arp is the finite set of variables of p,
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• Actionsp is a finite set of actions (guarded commands).

Notice that A may not be uniform in the sense that some local algorithm A(p) may be
different from some other(s). We identify each variable involved in Algorithm A by the
notation p.x ∈ V arp, where x is the name of the variable and p ∈ V the process that holds
it. Each process p runs its local algorithm A(p) by atomically executing actions. If executed,
an action of p consists of reading all variables of p and its neighbors, and then writing into
a part of the writable (i.e., non-constant) variables of p. Of course, in this case, the written
values depend on the last values read by p. For a process p ∈ V , each action in Actionsp is
written as follows

L(p) :: G(p) 7−→ S(p)

L(p) is a label used to identify the action in the discussion. The guard G(p) is a Boolean
predicate involving variables of p and its neighbors. The statement S(p) is a sequence of
assignments on writable variables of p. A variable q.x is said to be G-read by L(p) if
q.x is involved in predicate G(p) (in this case, q is either p or one of its neighbors). Let
G-Read(L(p)) be the set of variables that are G-read by L(p). A variable p.x is said to be
written by L(p) if p.x appears as a left operand in an assignment of S(p). Let Write(L(p))
be the set of variables written by L(p).

An action can be executed by a process p only if it is enabled, i.e., its guard evaluates to
true. By extension, a process is said to be enabled when at least one of its actions is enabled.

2.3 Semantics

The state of a process p ∈ V is a vector of valuations of its variables and belongs to C(p), the
Cartesian product of the sets of all possible valuations for each variables of p. A configuration
of an algorithm A is a vector made of a state of each process in V . We denote by C =
Πp∈V C(p) the set of all possible configuration (of A). For any configuration γ ∈ C, we denote
by γ(p) (resp. γ(p).x) the state of process p ∈ V (resp. the value of the variable x ∈ V arp
of process p) in configuration γ.

The asynchronism of the system is modeled by an adversary, called the daemon. Assume
that the current configuration of the system is γ. If the set of enabled processes in γ is
empty, then γ is said to be terminal. Otherwise, a step of A is performed as follows: the
daemon selects a non-empty subset S of enabled processes in γ, and every process p in S
atomically executes one of its action enabled in γ, leading the system to a new configuration
γ′. The step (of A) from γ to γ′ is noted γ 7→ γ′: 7→ is the binary relation over C defining
all possible steps of A in G. Precisely, in γ 7→ γ′, for every selected process p, γ′(p) is set
according to the statement of the action executed by p based on the values it G-reads on γ,
whereas γ′(q) = γ(q) for every non-selected process q.

An execution of A is a maximal sequence γ0γ1...γi... of configurations of C such that
γi−1 7→ γi for all i > 0. The term “maximal” means that the execution is either infinite, or
ends at a terminal configuration.

Recall that executions are driven by a daemon. We define a daemon D as a predicate over
executions. An execution e is then said to be an execution under the daemon D if e satisfies
D. In this paper, we assume that the daemon is distributed and unfair. “Distributed” means
that, unless the configuration is terminal, the daemon selects at least one enabled process
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(maybe more) at each step. “Unfair” means that there is no fairness constraint, i.e., the
daemon might never select a process unless it is the only enabled one.

2.4 Time Complexity

We measure the time complexity of an algorithm using two notions: rounds [33] and moves [1].
The complexity in round evaluates the execution time according to the speed of the slowest
processes. The definition of round uses the concept of neutralization: a process v is neutral-
ized during a step γi 7→ γi+1, if v is enabled in γi but not in configuration γi+1, and it is not
activated in the step γi 7→ γi+1. Then, the rounds are inductively defined as follows. The
first round of an execution e = γ0, γ1, ... is its minimal prefix e′ such that every process that
is enabled in γ0 either executes a action or is neutralized during a step of e′. If e′ is finite,
then the second round of e is the first round of the suffix γt, γt+1, ... of e starting from the
last configuration γt of e′, and so forth. The complexity in moves captures the amount of
computations an algorithm needs. Indeed, we say that a process moves in γi 7→ γi+1 when
it executes an action in γi 7→ γi+1.

2.5 Silent Self-Stabilization and Stabilization Time

Definition 1 (Silent Self-Stabilization [34]). Let A be a distributed algorithm for a network
G, SP a predicate over the configurations of A, and D a daemon. A is silent and self-stabili-
zing for SP in G under D if the following two conditions hold:

• Every execution of A under D is finite, and

• every terminal configuration of A satisfies SP .

In this case, every terminal (resp. non-terminal) configuration is said to be legitimate w.r.t.
SP , (resp. illegitimate w.r.t. SP ).

The stabilization time in rounds (resp. moves) of a silent self-stabilizing algorithm is
the maximum number of rounds (resp. moves) over every execution possible under the
considered daemon (starting from any initial configuration) to reach a terminal (legitimate)
configuration.

3 Algorithm with Acyclic Strategy

In this section, we define a class of algorithm, the distributed algorithms that follow an cyclic
strategy, for which we will study the correctness and time complexity. Let A be a distributed
algorithm running on some network G = (V,E).

3.1 Variable Names

We assume that every process is endowed with the same set of variables and we denote by
Names the set of names of those variables, namely: Names = {x : p ∈ V ∧ p.x ∈ V arp}.
We also assume that for every name x ∈ Names, for all processes p and q, variables p.x
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and q.x have the same definition domain. The set of names is partitioned into two subsets:
ConstNames, the set of constant names, and V arNames = Names \ConstNames, the set
of writable variable names. A name x is in V arNames as soon as there exists a process p
such that p.x ∈ V arp and p.x is written by an action of its local algorithm A(p). For every
c ∈ ConstNames and every process p ∈ V , p.c is never written by any action and it has a
pre-defined constant value (which may differ from one process to another, e.g., Γ, the name
of the neighborhood).

We assume that A is well-formed, i.e., V arNames can be partitioned into k sets V ar1,
..., V ark such that ∀p ∈ V , A(p) consists of exactly k actions A1(p), ..., Ak(p) such that
Write(Ai(p)) = {p.v : v ∈ V ari}, for all i ∈ {1, ..., k}. Let Ai = {Ai(p) : p ∈ V }, for all
i ∈ {1, ..., k}. Every Ai is called a family (of actions). By definition, A1, ..., Ak is a partition
over all actions of A, henceforth called a families’ partition.

Remark 1. Since A is assumed to be well-formed, there is exactly one action of A(p) where
p.v is written, for every process p and every writable variable p.v (of p).

3.2 Spanning Forest

In this work, we assume that every process is endowed with constant variables that define a
spanning forest over the graphG. Precisely, we assume the constant names parent, children ∈
ConstNames such that for every process p ∈ V , p.parent and p.children are preset as fol-
lows:

• p.parent ∈ p.Γ ∪ {⊥}: p.parent is either a neighbor of p (its parent in the forest), or
⊥. In this latter case, p is called a (tree) root.

Hence, the graph made of vertices V and edges {(p, p.parent) : p ∈ V ∧p.parent 6= ⊥}
is assumed to be a spanning forest of G.

• p.children ⊆ p.Γ: p.children contains the neighbors of p which are the children of p in
the forest, i.e., for every p, q ∈ V , p.parent = q ⇐⇒ p ∈ q.children.

Notice that the latter constraint implies that the graph made of vertices V and edges
{(q, p) : p ∈ V ∧ q ∈ p.children} is also a spanning forest of G.

If p.children = ∅, then p is called a leaf.

Note that p.Γ \ ({p.parent} ∪ p.children) may not be empty. The set of p’s ancestors,
Ancestors(p), can be recursively defined as follows:

• Ancestors(p) = {p} if p is a root,

• Ancestors(p) = {p} ∪ Ancestors(p.parent) otherwise.

Similarly, the set of p’s descendents, Descendents(p), can be recursively defined as follows:

• Descendents(p) = {p} if p is a leaf,

• Descendents(p) = {p} ∪
⋃

q∈p.childrenDescendents(q) otherwise.

7



3.3 Acyclic Strategy

Let A1, ..., Ak be the families’ partition of A. Ai, with i ∈ {1, ..., k}, is said to be correct-
alone if for every process p and every step γ 7→ γ′ such that Ai(p) is executed in γ 7→ γ′,
if no variable in G-Read(Ai(p)) \Write(Ai(p)) is modified in γ 7→ γ′, then Ai(p) is disabled
in γ′. Notice that if a variable in Write(Ai(p)) is modified in γ 7→ γ′, then it is necessarily
modified by Ai(p), by Remark 1.

Let ≺A be a binary relation over the families of actions of A such that for i, j ∈ {1, ..., k},
Aj ≺A Ai if and only if i 6= j and there exist two processes p and q such that q ∈ p.Γ ∪ {p}
and Write(Aj(p)) ∩ G-Read(Ai(q)) 6= ∅. We conveniently represent the relation ≺A by
a directed graph GC called Graph of actions’ Causality and defined as follows: GC =
({A1, ..., Ak}, {(Aj, Ai), Aj ≺A Ai}).

Intuitively, a family of actions Ai is top-down if activations of its corresponding actions
are only propagated down in the forest, i.e., when some process q executes action Ai(q),
Ai(q) can only activate Ai at some of its children p, if any. In this case, Ai(q) writes to
some variables G-read by Ai(p), these latter are usually G-read to be compared to variables
written by Ai(p) itself. In other words, a variable G-read by Ai(p) can be written by Ai(q)
only if q = p or q = p.parent. Hence, a family of actions Ai is said to be top-down if for every
process p and every q.v ∈ G-Read(Ai(p)), we have q.v ∈Write(Ai(q))⇒ q ∈ {p, p.parent}.

Intuitively, a family of actions Ai is bottom-up if activations of its corresponding actions
are only propagated up in the forest, i.e. when some process q executes action Ai(q), Ai(q)
can only activate Ai at its parent p, if any. In this case, Ai(q) writes to some variables G-
read by Ai(p), these latter are usually G-read to be compared to variables written by Ai(p)
itself. In other words, a variable G-read by Ai(p) can be written by Ai(q) only if q = p or
q ∈ p.children. Hence, a family Ai is said to be bottom-up if for every process p and every
q.v ∈ G-Read(Ai(p)), we have q.v ∈Write(Ai(q))⇒ q ∈ p.children ∪ {p}.

A distributed algorithm A follows an acyclic strategy if it is well-formed, its graph of
actions’ causality GC is acyclic, and for every Ai in its families’ partition, Ai is correct-
alone and either bottom-up or top-down.

4 Move Complexity of Algorithms with Acyclic Strat-

egy

In this section, we exhibit a polynomial upper bound on the move complexity of any algorithm
that follows an acyclic strategy. Throughout this section, we consider a distributed algorithm
A which follows an acyclic strategy and runs on the network G = (V,E). We use the same
notation as in the previous section, in particular, we let A1, ..., Ak be the families’ partition
of A.

4.1 Definitions

Let p be a process and Ai, i ∈ {1, ..., k} a family of actions.
We define the impacting zone of p and Ai, noted Z(p,Ai), as follows:

• Z(p,Ai) = Ancestors(p) if Ai is top-down,
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• Z(p,Ai) = Descendents(p) otherwise (i.e., Ai is bottom-up).

Remark 2. By definition, we have 1 ≤ |Z(p,Ai)| ≤ n. Moreover, if Ai is top-down, then
we have 1 ≤ |Z(p,Ai)| ≤ H + 1 ≤ n, where H is the height of G, i.e., the maximum among
the heights1 of the roots of all trees of the forest

We also define the quantity M(Ai, p) as:

• the level2 of p in G if Ai is top-down,

• the height of p in G otherwise (i.e., Ai is bottom-up).

Remark 3. By definition, we have 0 ≤M(Ai, p) ≤ H, where H is the height of G.

We define

Others(Ai, p) = {q ∈ p.Γ : ∃Aj, i 6= j ∧Write(Aj(q)) ∩G-Read(Ai(p)) 6= ∅}

the set of neighbors q of p that have actions other than Ai(q) which write variables that are
G-read by Ai(p). We also note:

maxO(Ai) = max({|Others(Ai, p)| : p ∈ V } ∪ {maxO(Aj) : Aj ≺A Ai)})

Remark 4. By definition, we have maxO(Ai) ≤ ∆. Moreover, if ∀p ∈ V , ∀i ∈ {1, ..., k},
Others(Ai, p) is empty, i.e., no neighbor q of p writes into a variable read by Ai(p) using an
action other than Ai(q), then ∀j ∈ {1, ..., k}, maxO(Aj) = 0.

4.2 Stabilization Time in Moves

Lemma 1. Let Ai be a family of actions and p be a process. For every execution e of the
algorithm A on G, we have

#m(e, Ai, p) ≤
(
n.
(
1 + d.

(
1 +maxO(Ai)

)))H(Ai)

.|Z(p,Ai)|

where #m(e, Ai, p) is the number of times p executes Ai(p) in e, d is the in-degree of GC,3

and H(Ai) is the height of Ai in GC.4

Proof. Let e = γ0, ..., γx, ... be any execution of A on G.
Let K(Ai, p) = M(Ai, p) + (H + 1).H(Ai). We proceed by induction on K(Ai, p).

1The height of p in G is 0 if p is a leaf. Otherwise the height of p in G is equal to one plus the maximum
among the heights of its children.

2The level of p in G is the distance from p to the root of its tree in G (0 if p is the root itself).
3d = max{|{Aj : Aj ≺A Ai}| : i ∈ {1, ..., k}}.
4The height of Ai in GC is 0 if Ai is a leaf of GC. Otherwise, it is equal to one plus the maximum of

the heights of the Ai’s predecessors w.r.t. ≺A.
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Base Case: Assume K(Ai, p) = 0 for some family Ai and some process p. By definition,
H ≥ 0, H(Ai) ≥ 0 and M(Ai, p) ≥ 0. Hence, K(Ai, p) = 0 implies that H(Ai) = 0
and M(Ai, p) = 0. Since M(Ai, p) = 0, Z(p,Ai) = {p}. So, since Ai is top-down or
bottom-up, for every q.v ∈ G-Read(Ai(p)), q.v ∈ Write(Ai(q)) ⇒ q = p. Moreover,
since H(Ai) = 0, ∀j 6= i, Aj 6≺A Ai. So, for every j 6= i and every q ∈ p.Γ ∪ {p},
Write(Aj(p))∩G-Read(Ai(q)) = ∅. Hence, no action except Ai(p) can modify a variable
in G-Read(Ai(p)). Thus, #m(e, Ai, p) ≤ 1 since Ai is correct-alone.

Induction Hypothesis: Let K ≥ 0. Assume that for every family Aj and every process q
such that K(Aj, q) ≤ K, we have

#m(e, Aj, q) ≤
(
n.
(
1 + d.

(
1 +maxO(Aj)

)))H(Aj)

.|Z(q, Aj)|

Induction Step: Assume that for some family Ai and some process p, K(Ai, p) = K +
1. If #m(e, Ai, p) equals 0 or 1, then the result trivially holds. Assume now that
#m(e, Ai, p) > 1 and consider two consecutive executions of Ai(p) in e, i.e., there exist
x, y such that 0 ≤ x < y, Ai(p) is executed in both γx 7→ γx+1 and γy 7→ γy+1, but not
in steps γz 7→ γz+1 with z ∈ {x+ 1, ..., y − 1}. Then, since Ai is correct-alone, at least
one variable in G-Read(Ai(p)) has to be modified by an action other than Ai(p) in a
step γz 7→ γz+1 with z ∈ {x, ..., y − 1} so that Ai(p) becomes enabled again. Namely,
there are j ∈ {1, ..., k} and q ∈ V such that (a) j 6= i or q 6= p, Aj(q) is executed in a
step γz 7→ γz+1, and Write(Aj(q)) ∩G-Read(Ai(p)) 6= ∅. Note also that, by definition,
(b) q ∈ p.Γ ∪ {p}. Finally, by definitions of top-down and bottom-up, (a), and (b),
Aj(q) satisfies: (1) j 6= i ∧ q = p, (2) j = i ∧ q ∈ p.Γ ∩ Z(p,Ai), or (3) j 6= i ∧ q ∈ p.Γ.
In other words, at least one of the three following cases occurs:

(1) p executes Aj(p) in step γz 7→ γz+1 with j 6= i and Write(Aj(p))∩G-Read(Ai(p)) 6=
∅.
Consequently, Aj ≺A Ai and, so, H(Aj) < H(Ai). Moreover, M(Aj, p)−M(Ai, p) ≤
H and H(Aj) < H(Ai) imply K(Aj, p) < K(Ai, p) = K + 1. Hence, by induction
hypothesis, we have:

#m(e, Aj, p) ≤
(
n.
(
1 + d.

(
1 +maxO(Aj)

)))H(Aj)

.|Z(p,Aj)|

(2) There is q ∈ p.Γ ∩ Z(p,Ai) such that q executes Ai(q) in step γz 7→ γz+1 and
Write(Ai(q)) ∩G-Read(Ai(p)) 6= ∅.
Then, M(Ai, q) < M(Ai, p). Since M(Ai, q) < M(Ai, p), K(Ai, q) < K(Ai, p) =
K + 1 and, by induction hypothesis, we have:

#m(e, Ai, q) ≤
(
n.
(
1 + d.

(
1 +maxO(Ai)

)))H(Ai)

.|Z(q, Ai)|

(3) A neighbor q of p executes an action Aj(q) in step γz 7→ γz+1, with j 6= i and
Write(Aj(q)) ∩G-Read(Ai(p)) 6= ∅.
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Consequently, q ∈ Others(Ai, p) and Aj ≺A Ai and, so, H(Aj) < H(Ai). More-
over, M(Aj, q)−M(Ai, p) ≤ H and H(Aj) < H(Ai) imply K(Aj, q) < K(Ai, p) =
K + 1. Hence, by induction hypothesis, we have:

#m(e, Aj, q) ≤
(
n.
(
1 + d.

(
1 +maxO(Aj)

)))H(Aj)

.|Z(q, Aj)|

(Notice that Cases 1 and 3 can only occur when H(Ai) > 0.)

We now bound the number of times each of the three above cases occur in the execution
e.

Case 1: By definition, there exist at most d predecessors Aj of Ai in GC (i.e., such
that Aj ≺A Ai). For each of them, we have H(Aj) < H(Ai), |Z(p,Aj)| ≤ n (by
Remark 2) and maxO(Aj) ≤ maxO(Ai). Hence, overall this case appears at most∑
{Aj : Aj≺AAi}#m(e, Aj, p)

≤
∑

{Aj : Aj≺AAi}

(
n.
(
1 + d.

(
1 +maxO(Aj)

)))H(Aj)

.|Z(p,Aj)|

≤
∑

{Aj : Aj≺AAi}

(
n.
(
1 + d.

(
1 +maxO(Ai)

)))H(Ai)−1

.n

≤ d

(
n.
(
1 + d.

(
1 +maxO(Ai)

)))H(Ai)−1

.n

≤ d.nH(Ai).
(
1 + d.

(
1 +maxO(Ai)

))H(Ai)−1
(1)

Case 2: By definition,

Z(p,Ai) = {p} ]
⊎

q∈p.Γ∩Z(p,Ai)

Z(q, Ai)

Hence, overall this case appears at most
∑

q∈p.Γ∩Z(p,Ai)
#m(e, Ai, q)

≤
∑

q∈p.Γ∩Z(p,Ai)

(
n.
(
1 + d.

(
1 +maxO(Ai)

)))H(Ai)

.|Z(q, Ai)|

≤ nH(Ai).
(
1 + d.

(
1 +maxO(Ai)

))H(Ai).
(
|Z(p,Ai)| − 1

)
(2)

Case 3: Again, for every Aj ≺A Ai, we have H(Aj) < H(Ai), maxO(Aj) ≤ maxO(Ai),
and Z(q, Aj) ≤ n (Remark 2). By definition, there are at most d families Aj such
that Aj ≺A Ai. Finally, |Others(Ai, p)| ≤ maxO(Ai), by definition. Hence,
overall this case appears at most

11



∑
{Aj : Aj≺AAi}

∑
{q∈Others(Ai,p)}#m(e, Aj, q)

≤
∑

{Aj : Aj≺AAi}

∑
{q∈Others(Ai,p)}

(
n.
(
1 + d.

(
1 +maxO(Aj)

)))H(Aj)

.|Z(q, Aj)|

≤
∑

{Aj : Aj≺AAi}

∑
{q∈Others(Ai,p)}

(
n.
(
1 + d.

(
1 +maxO(Ai)

)))H(Ai)−1

.n

≤ d.maxO(Ai).n
H(Ai).

(
1 + d.

(
1 +maxO(Ai)

))H(Ai)−1

(3)

Overall #m(e, Ai, p) is less than or equal to 1 plus the sum of (1), (2), and (3) which
less than or equal to

nH(Ai).
(
1 + d.

(
1 +maxO(Ai)

))H(Ai).|Z(p,Ai)|

Since maxO(Ai) ≤ ∆ (Remark 4) and |Z(p,Ai)| ≤ n (by Remark 2), we have

Corollary 1. Every execution of A on G contains at most
(
1 + d.(1 + ∆)

)H
.k.nH+2 moves,

where k is the number of families of A, d is the in-degree of GC, and H the height of GC.

From Corollary 1 and Definition 1, follows.

Theorem 1. Let A be a distributed algorithm for a network G endowed with a spanning
forest, SP a predicate over the configurations of A. If A follows an acyclic strategy and
every terminal configuration of A satisfies SP , then

• A is silent and self-stabilizing for SP in G under the distributed unfair daemon, and

• its stabilization time is at most
(
1 + d.(1 + ∆)

)H
.k.nH+2 moves,

where k is the number of families of A, d is the in-degree of GC, and H the height of GC.

5 Toy Example

In this section, we propose a simple example of algorithm, called Algorithm T E , to show how
to instantiate our results. The aim of this section is threefold: (1) show that correctness and
move complexity of T E can be easily deduced from our general results, (2) our upper bound
on stabilization time in moves is tight for this example, and (3) our definition of acyclic
strategy allows the design of solutions (like T E) that are inefficient in terms of rounds. We
will show how to circumvent this latter negative result in Section 6.
T E assumes an constant integer input p.input ∈ N at each process. T E computes the

sum of all inputs and then spreads this result everywhere in the network. T E assumes that
the network T = (V,E) is a tree (i.e., an undirected connected acyclic graph) with a sense of
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direction (given by variables named parent and children) which defines a spanning in-tree
rooted at process r (the unique root, i.e., the unique process satisfying r.parent =⊥).

Apart from the inputs and the constants used to describe the topology, every process
p has two variables: p.sub ∈ N (which is used to compute the sum of input values in the
subtree of p) and p.res ∈ N (which stabilizes to the result of the computation, i.e., the
sum of all inputs). The algorithm consists of two families of actions S and R. S computes
variables sub and is defined as follows.

For every process p

S(p) :: p.sub 6= (
∑

q∈p.children

q.sub) + p.input 7−→ p.sub← (
∑

q∈p.children

q.sub) + p.input

R computes variables res and is defined as follows.

R(r) :: r.res 6= r.sub 7−→ r.res← r.sub

For every process p 6= r

R(p) :: p.res 6= max(p.parent.res, p.sub) 7−→ p.res← max(p.parent.res, p.sub)

Remark that S is bottom-up and correct-alone, while R is top-down and correct-alone.
Moreover, the graph of actions’ causality is simply

S −→ R

So, by Corollary 1 (with d = 1, H = 1 and k = 2), every execution of the algorithm contains
at most (2+∆).n3 moves and, as a direct consequence, every execution terminates under the
distributed unfair daemon. Notice also that in every terminal configuration, every process p
satisfies the following properties:

(1) p.sub = p.input+
∑

q∈p.children q.sub,

(2) p.res = p.sub if p = r, p.res = max(p.parent.res, p.sub) otherwise.

Let Pinput ≡ ∀p ∈ V, p.res =
∑

q∈V q.input. By induction on the tree T , we can show that
Pinput holds in any terminal configuration. Hence, by Theorem 1, follows:

Lemma 2. The algorithm T E is silent and self-stabilizing for Pinput in T under a distributed
unfair daemon; its stabilization time is at most (2 + ∆).n3 moves.

Using Lemma 1 directly, the move complexity of T E can be further refined. Let e be
any execution and H be the height of T . First, note that, maxO(S) = maxO(R) = 0, by
Remark 4.

(1) Since S is bottom-up, |Z(p, S)| ≤ n, for every process p. Moreover, the height of S is
0 in the graph of actions’ causality. Hence, by Lemma 1, we have #m(e, S, p) ≤ n, for
all processes p. Thus, e contains at most n2 moves of S.
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(2) Since R is top-down, |Z(p,R)| ≤ H + 1, for every process p. Moreover, the height of
R is 1 in the graph of actions’ causality. Hence, by Lemma 1, we have #m(e, R, p) ≤
2.n.(H + 1), for all processes p. Thus, e contains at most 2.n2.(H + 1) moves of R.

Overall, we have

Lemma 3. The stabilization time of the algorithm T E is at most n2(3 + 2H) moves, i.e.,
O(H.n2) moves.

5.1 Lower Bound in Moves

We now show that the stabilization time of T E is Ω(H.n2) moves, meaning that the upper
bound given by Lemma 3 is asymptotically reachable. To that goal, we consider a directed
line of n processes, with n ≥ 4, noted p1, ..., pn: p1 is the root and for every i ∈ {2, ..., n},
there is a link between pi−1 and pi, moreover, pi.parent = pi−1 (note that H = n). We build
a possible execution of T E running on this line that contains Ω(H.n2) moves. We assume a
central (unfair) daemon: at each step exactly one process executes an action. (The central
daemon is a particular case of the distributed unfair daemon.)

In this execution, we fix that pi.input = 1, for every i ∈ {1, ..., n}. Moreover, we consider
two classes of configurations: Configurations X2i+1(with 3 ≤ 2i+ 1 ≤ n) and Configurations
Y2i+2 (with 4 ≤ 2i+ 2 ≤ n), see Figure 1.

Configuration X2i+1, 3 ≤ 2i+ 1 ≤ n:

p1 . . . p2i−2 p2i−1 p2i p2i+1 p2i+2 p2i+3 p2i+4 p2i+5 . . .
input 1 . . . 1 1 1 1 1 1 1 1 . . .
sub 2i . . . 3 2 1 0 2i 0 2i+ 2 0 . . .
res 2i . . . 2i 2i 2i 0 0 0 0 0 . . .

Configuration Y2i+2, 4 ≤ 2i+ 2 ≤ n:

p1 . . . p2i−2 p2i−1 p2i p2i+1 p2i+2 p2i+3 p2i+4 p2i+5 . . .
input 1 . . . 1 1 1 1 1 1 1 1 . . .
sub 4i+ 1 . . . 2i+ 4 2i+ 3 2i+ 2 2i+ 1 2i 0 2i+ 2 0 . . .
res 4i+ 1 . . . 4i+ 1 4i+ 1 4i+ 1 4i+ 1 0 0 0 0 . . .

Figure 1: Configurations X2i+1 and Y2i+2

The initial configuration of the execution is X3. Then, we proceed as follows: the system
converges from configuration X2i+1 to configuration Y2i+2 and then from Y2i+2 to X2i+3, back
and forth, until reaching a terminal configuration (Xn if n is odd, Yn otherwise).

The system converges from configuration X2i+1 to configuration Y2i+2, for every i ≥ 1
and 2i+ 2 ≤ n, in Ω(i2) moves when the central daemon activates processes in the following
order:
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1: for j=2i+ 1 down to 1 do
2: pj executes S(pj) . pj.sub = 4i+ 2− j
3: for k=j to 2i+ 1 do
4: pk executes R(pk) . pk.res = 4i+ 2− j
5: done
6: done

Then, the system converges from configuration Y2i+2 to configuration X2i+3, for every
i ≥ 1 and 2i + 3 ≤ n in Ω(i) moves when the central daemon activates processes in the
following order:

1: for j=2i+ 2 down to 1 do
2: pj executes S(pj) . pj.sub = 2i+ 3− j
3: done
4: for j=1 to 2i+ 2 do
5: pj executes R(pj) . pj.res = 2i+ 2
6: done

Hence, following this scheduling of actions, the execution that starts in configuration X3

converges to Xn (resp. Yn) if n is odd (resp. even) and contains Ω(n3) moves, i.e., Ω(H.n2)
since the network is a line.

Remark that in this execution, for every process p, when R(p) is activated, S(p) is
disabled: this means that if the algorithm is modified so that S(p) has local priority over R(p)
for every process p (like in the method proposed in Subsection 6.2), the proposed execution is
still possible keeping to a move complexity in Ω(H.n2) even for such a prioritized algorithm.

5.2 Lower Bound in Rounds

We now show that T E has a stabilization time in Ω(n) rounds in any tree of height H = 1,
i.e., a star network. This negative result is mainly due to the fact that families R and S are
not locally mutually exclusive. In the next section, we will propose a simple transformation
to obtain a stabilization time in O(H) rounds, so O(1) rounds in the case of a star network.
We will also show that this latter transformation does not affect the move complexity.

Our proof consists in exhibiting a possible execution that terminates in n + 3 rounds
assuming a central unfair daemon, that is, at each step exactly one process executes an
action. Notice that the central unfair daemon is a particular case of the distributed unfair
daemon.

input=1
sub=1
res=1

p1 = r

input=1
sub=0
res=1

p2

input=1
sub=0
res=1

pn

…

Figure 2: C1, initial con-
figuration.

input=1
sub=i
res=i

p1 = r

input=1
sub=1
res=i

p2

input=1
sub=1
res=i

pi

input=1
sub=0
res=i

pn

… …
input=1
sub=0
res=i

pi+1

Figure 3: Ci, i ∈ {2, ..., n−1}.

input=1
sub=n
res=n

p1 = r

input=1
sub=1
res=n

p2

input=1
sub=1
res=n

pn

…

Figure 4: Cn, terminal
configuration.
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We consider a star network of n processes (n ≥ 2): p1 is the root of the tree and p2, ..., pn
are the leaves (namely links are {{p1, pi}, i = 2, ..., n}). We note Ci, i ∈ {1, ..., n}, the
configuration satisfying the following three conditions:

• for every j ∈ {1, ..., n}, pj.input = 1;

• p1.sub = i, for every j ∈ {2, ..., i}, pj.sub = 1, and for every j ∈ {i+1, ..., n}, pj.sub = 0;
and

• for every j ∈ {1, ..., n}, pj.res = i.

C1, Ci with i ∈ {2, ..., n − 1}, and Cn are respectively shown in Figures 2, 3, and 4. In
these figures, a variable is underlined whenever an action is enabled to modify it. Note that
in configuration Ci, processes p1, ..., pi are disabled and processes pi+1, ..., pn are enabled
for S. We now build a possible execution that starts from C1 and successively converges
to configurations C2, ..., Cn (Cn is a terminal configuration). To converge from Ci to Ci+1,
i ∈ {1, ..., n− 1}, the daemon applies the following scheduling:

1: pi+1 executes S(pi+1) . pi+1.sub = 1
2: p1 executes S(p1) . p1.sub = i+ 1
3: p1 executes R(p1) . p1.res = i+ 1
4: for j=2 to n do
5: pj executes R(pj) . pj.res = i+ 1
6: done

For i ∈ {1, ..., n − 2}, the convergence from Ci to Ci+1 lasts exactly one round. Indeed,
each process executes at least one action between Ci and Ci+1 and process pn is enabled at
configuration Ci and remains continuously enabled until being activated as the last process
to execute in the round. The convergence from Cn−1 to Cn lasts four rounds: in Cn−1, only
pn is enabled to execute S(pn) hence the round terminates in one step where only S(pn) is
executed. Similarly, p1 then sequentially executes S(p1) and R(p1) in two rounds. Finally,
p2, ..., pn execute R in one round and then the system is in the terminal configuration Cn.

Hence the above execution lasts n+ 3 rounds.

6 Round Complexity of Algorithms with Acyclic Strat-

egy

In this section, we first propose an extra sufficient condition for any algorithm following an
acyclic strategy to stabilize in O(H) rounds. We then propose a simple method to add this
property to any algorithm that follows an acyclic strategy, without compromising the move
complexity.

6.1 A Condition for a Stabilization Time in O(H) rounds

Let A1, ..., Ak be the families’ partition of A. We say that two families Ai and Aj are
locally mutually exclusive if for every process p, there is no configuration γ where both Ai(p)
and Aj(p) are enabled. By extension, we say A is locally mutually exclusive if for every
i, j ∈ {1, ..., k}, i 6= j implies that Ai and Aj are locally mutually exclusive.
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Theorem 2. Let A be a distributed algorithm for a network G endowed with a spanning
forest. If A follows an acyclic strategy and is locally mutually exclusive, then every execution
of A reaches a terminal configuration within at most (H + 1).(H + 1) rounds, where H the
height of the graph of actions’ causality GC of A and H is the height of the spanning forest
in G.

Proof. Let Ai be a family of actions of A and p be a process. We note R(Ai, p) = H(Ai).(H+
1) +M(Ai, p) + 1 (recall that H(Ai) and M(Ai, p) are defined in Section 4).

We now show by induction that for every family Ai and every process p, after R(Ai, p)
rounds Ai(p) is disabled forever.

Let p be a process and Ai be a family. By definition, H(Ai) ≥ 0, H ≥ 0, and M(Ai, p) ≥ 0,
hence R(Ai, p) ≥ 1.

Base Case: Assume that R(Ai, p) = 1. By definition, M(Ai, p) = 0 and H(Ai) = 0. Since
M(Ai, p) = 0, Z(p,Ai) = {p}. So, since Ai is top-down or bottom-up, for every
q.v ∈ G-Read(Ai(p)), q.v ∈Write(Ai(q))⇒ q = p. Moreover, since H(Ai) = 0, ∀j 6= i,
Aj 6≺A Ai. So, for every j 6= i and every q ∈ p.Γ∪{p}, Write(Aj(p))∩G-Read(Ai(q)) =
∅. Hence, no action except Ai(p) can modify a variable inG-Read(Ai(p)). Thus, if Ai(p)
is (initially) disabled, then Ai(p) is disabled forever. Otherwise, Ai(p) is continuously
enabled until being executed; and, within at most one round, Ai(p) is executed since
A is locally mutually exclusive. After this first execution of Ai(p), Ai(p) is disabled
forever since Ai is correct-alone.

Induction Hypothesis: Let R ≥ 1. Assume that for every family Aj and every process q
such that R(Aj, q) ≤ R, after R(Aj, q) rounds, R(Aj, q) is disabled forever.

Induction Step: Assume that for some family Ai and some process p, R(Ai, p) = R + 1.

Since Ai is either bottom-up or top-down and by definition of ≺A, we can deduce that
for every family Aj, every q ∈ p.Γ∪{p}, and every q.v ∈Write(Aj(q))∩G-Read(Ai(p))
one of the following four conditions hold:

(1) j = i ∧ q = p.

(2) j = i ∧ q ∈ p.Γ ∩ Z(p,Ai). In this case, M(Ai, q) < M(Ai, p), so R(Ai, q) <
R(Ai, p) = R + 1.

(3) j 6= i ∧ q = p ∧Aj ≺A Ai. In this case, Aj ≺A Ai implies that H(Aj) < H(Ai), so
R(Aj, q) = R(Aj, p) < R(Ai, p) = R + 1.

(4) j 6= i ∧ q ∈ p.Γ ∧ Aj ≺A Ai. In this case, Aj ≺A Ai implies that H(Aj) < H(Ai).
Moreover, M(Aj, q)−M(Ai, p) ≤ H. So, R(Aj, q) < R(Ai, p) = R + 1.

Thus, by induction hypothesis, after R rounds, all variables of G-Read(Ai(p)) satisfying
Cases (2), (3), or (4) are constant forever, i.e. all variables of G-Read(Ai(p)), except
maybe those written by Ai(p) itself (Case (1)), are constant forever. So, if after R
rounds, Ai(p) is disabled, then it is disabled forever. Otherwise, after R rounds, Ai(p)
is continuously enabled until being executed; and, within at most one additional round,
Ai(p) is executed since A is locally mutually exclusive. After the execution of Ai(p),
Ai(p) is disabled forever since Ai is correct-alone. Hence, after R + 1 rounds, Ai(p) is
disabled forever, and we are done.
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Since for every family Ai and every process p, H(Ai) ≤ H and M(Ai, p) ≤ H, we have
R(Ai, p) ≤ (H + 1).(H + 1), hence the lemma holds.

From Theorem 2 and Definition 1, follows.

Corollary 2. Let A be a distributed algorithm for a network G endowed with a spanning
forest and SP a predicate over the configurations of A. If A follows an acyclic strategy, is
locally mutually exclusive, and every terminal configuration of A satisfies SP , then

• A is silent and self-stabilizing for SP in G under the distributed unfair daemon, and

• its stabilization time is at most (H + 1).(H + 1) rounds,

where H the height of the graph of actions’ causality GC of A and H is the height of the
spanning forest in G.

By definition, H < k, the bound exhibited by the previous lemma is in O(k.H) where
k is the number of families of the algorithm. Actually, the local mutual exclusion of the
algorithm is usually implemented by enforcing priorities on families as in the transformer
presented below. Hence, in practical cases, H = k − 1, as shown in Lemma 8.

6.2 A Transformer

We have shown in Subsection 5.2 that there are algorithms that follow an acyclic strategy but
are not locally mutually exclusive which stabilize in Ω(n) rounds in the worst case. So, we
formalize now a generic method to give the mutually exclusive property to such algorithms,
allowing then to obtain a complexity in O(H) rounds. Notice that the method does not
degrade the move complexity.

Let A be any distributed algorithm for a network G endowed with a spanning forest that
follows an acyclic strategy. Let k be the number of families of A. In the following, for every
process p and every family Ai, we identify the guard and the statement of Action Ai(p) by
Gi(p) and Si(p), respectively.

Let /A be any strict total order on families of A compatible with ≺A, i.e., /A is a binary
relation on families of A that satisfies the following three conditions:

Strict Order: /A is irreflexive and transitive;5

Total: for every two families Ai, Aj, we have either Ai /A Aj, Aj /A Ai, or i = j; and

Compatibility: for every two families Ai, Aj, if Ai ≺A Aj, then Ai /A Aj.

Let T(A) be the following algorithm:

• T(A) and A have the same set of variables.

5Notice that irreflexivity and transitivity implies asymmetry.
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• Every process p ∈ V holds the following k actions. For every i ∈ {1, ..., k},

AT
i (p) :: GT

i (p) 7−→ ST
i (p)

where GT
i (p) =

(∧
Aj/AAi

¬Gj(p)
)
∧Gi(p) and ST

i (p) = Si(p).

Gi(p) (resp. the set {Gj(p) : Aj /A Ai}) is called the positive part (resp. negative
part) of GT

i (p).

Notice that, by definition, ≺A is irreflexive and the graph of actions’ causality induced by ≺A
is acyclic. Hence, there always exists a strict total order compatible with ≺A, i.e., the above
transformation is always possible for any algorithm A which follows an acyclic strategy.

Remark 5. T(A) is well-formed and AT
1, ..., A

T
k is the families’ partition of T(A), where

AT
i = {AT

i (p) : p ∈ V }, for every i ∈ {1, ..., k}.

By construction, we have :

Remark 6. For every i, j ∈ {1, ..., k} such that i 6= j, and every process p, the positive part
of GT

j(p) belongs to the negative part in GT
i (p) if and only if Aj /A Ai.

Lemma 4. T(A) is locally mutually exclusive.

Proof. Let AT
i and AT

j be two different families of T(A). Then, either Ai /A Aj or Aj /A Ai

(/A is a strict total order). Without the loss of generality, assume Ai /A Aj. Let p be any
process and γ be any configuration. The positive part of GT

i (p) belongs to the negative part
of GT

j(p) (see Remark 6), and consequently, AT
i (p) and AT

j(p) cannot be both enabled in γ.
Hence, AT

i and AT
j are locally mutually exclusive, which in turns implies that T(A) is locally

mutually exclusive.

Lemma 5. For every i, j ∈ {1, ..., k}, if AT
j ≺T(A) A

T
i , then Aj /A Ai.

Proof. Let AT
i and AT

j be two families such that AT
j ≺T(A) AT

i . Then, i 6= j and there
exist two processes p and q such that q ∈ p.Γ ∪ {p} and Write(AT

j(p)) ∩ G-Read(AT
i (q)) 6=

∅. Then, Write(AT
j(p)) = Write(Aj(p)), and either Write(Aj(p)) ∩ G-Read(Ai(q)) 6= ∅, or

Write(Aj(p)) ∩ G-Read(Ak(q)) 6= ∅ where Gk(q) belongs to the negative part of GT
i (q). In

the former case, we have Aj ≺A Ai, which implies that Aj /AAi (/A is compatible with ≺A).
In the latter case, Aj ≺A Ak (by definition) and Ak /A Ai (by Remark 6). Since, Aj ≺A Ak

implies Aj /A Ak (/A is compatible with ≺A), by transitivity we have Aj /A Ai. Hence, for
every i, j ∈ {1, ..., k}, AT

j ≺T(A) A
T
i implies Aj /A Ai, and we are done.

Lemma 6. T(A) follows an acyclic strategy.

Proof. Let AT
i be a family of T(A). The lemma is immediate from the following three claims.

Claim I: AT
i is correct-alone.

Proof of the claim: Since A follows an acyclic strategy, Ai is correct-alone. Moreover,
for every process p, we have ST

i (p) = Si(p) and ¬Gi(p) ⇒ ¬GT
i (p). Hence, AT

i is also
correct-alone.
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Claim II: AT
i is either bottom-up or top-down.

Proof of the claim: Since A follows an acyclic strategy, Ai is either bottom-up or top-
down. Assume Ai is bottom-up. By construction, for every process q, ST

i (q) = Si(q),
which implies that Write(AT

i (q)) = Write(Ai(q)). Let q.v ∈ G-Read(AT
i (p)).

• Assume q.v ∈ G-Read(Ai(p)). Then q.v ∈ Write(Ai(q)) ⇒ q ∈ p.children ∪ {p}
(since Ai is bottom-up), i.e., q.v ∈Write(AT

i (q))⇒ q ∈ p.children ∪ {p}.
• Assume now that q.v /∈ G-Read(Ai(p)). Then q.v ∈ G-Read(Aj(p)) such that
Gj(p) belongs to the negative part of GT

i (p), i.e., Aj /A Ai (Remark 6). Assume,
by the contradiction, that q.v ∈ Write(AT

i (q)). Then q.v ∈ Write(Ai(q)), and
since p ∈ q.Γ ∪ {q} (indeed, q.v ∈ G-Read(Aj(p))), we have Ai ≺A Aj. Now, as
/A is compatible with ≺A, we have Ai /A Aj. Hence, Aj /A Ai and Ai /A Aj, a
contradiction. Thus, q.v /∈Write(AT

i (q)) which implies that q.v ∈Write(AT
i (q))⇒

q ∈ p.children ∪ {p} holds in this case.

Hence, AT
i is bottom-up.

Following a similar reasoning, if Ai is top-down, we can show AT
i is top-down too.

Claim III: The graph of actions’ causality of T(A) is acyclic.

Proof of the claim: By Lemma 5, for every i, j ∈ {1, ..., k}, AT
j ≺T(A) A

T
i ⇒ Aj /A Ai.

Now, /A is a strict total order. So, the graph of actions’ causality of T(A) is acyclic.

Lemma 7. Every execution of T(A) is an execution of A.

Proof. The lemma is immediate from the following three claims.

Claim I: A and T(A) have the same set of configurations.

Proof of the claim: By definition.

Claim II: Every step of T(A) is a step of A.

Proof of the claim: Gi(p) is the guard of Ai(p) and the positive part of GT
i (p). So, GT

i (p)
implies Gi(p), i.e., if AT

i (p) is enabled, then Ai(p) is enabled. Since ST
i (p) = Si(p), we

are done.

Claim III: Let γ be any configuration. γ is terminal w.r.t. T(A) if and only if γ is terminal
w.r.t. A.

Proof of the claim: γ is terminal w.r.t. T(A) if and only if∧
p∈V

∧
i∈{1,...,k}

¬GT
i (p) =

∧
p∈V

∧
i∈{1,...,k}

¬
(( ∧

Aj/AAi

¬Gj(p)
)
∧Gi(p)

)
=
∧
p∈V

∧
i∈{1,...,k}

(( ∨
Aj/AAi

Gj(p)
)
∨ ¬Gi(p)

)
=
∧
p∈V

∧
i∈{1,...,k}

¬Gi(p)

Now,
∧

p∈V
∧

i∈{1,...,k} ¬Gi(p) if and only if γ is terminal w.r.t. A.
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Theorem 3. Let A be a distributed algorithm for a network G endowed with a spanning
forest, SP a predicate over the configurations of A. If A follows an acyclic strategy, and is
silent and self-stabilizing for SP in G under the distributed unfair daemon, then

(1) T(A) is silent and self-stabilizing for SP in G under the distributed unfair daemon,

(2) its stabilization time is at most (H + 1).(H + 1) rounds, and

(3) its stabilization time in moves is less than or equal to the one of A.

where H the height of the graph of actions’ causality GC of A and H is the height of the
spanning forest in G.

Proof. (1) and (3) are consequences of Lemma 7 and Corollary 2. (2) follows from Lemmas
4, 6, and Theorem 2.

Using the above theorem, our toy example T E stabilizes in at most 2(H + 1) rounds,
keeping a move complexity in Θ(H.n2) in the worst case (recall that the worst-case execution
of T E proposed in Subsection 5.1 is also a possible execution of T(T E)).

The next lemma shows that in usual cases, the height H of graph of actions’ causality of
T(A) satisfies H = k − 1, where k is the number of families of A.

Lemma 8. If for every i ∈ {1, ..., k} and every p ∈ V , Gi(p) 6≡ false, then

for every x, y ∈ {1, ..., k}, AT
x ≺T(A) A

T
y if and only if Ax /A Ay.

Consequently, the height H of graph of actions’ causality of T(A) satisfies H = k− 1 (indeed
/A is a strict total order).

Proof. Let x, y ∈ {1, ..., k}. By Lemma 5, AT
x ≺T(A) A

T
y ⇒ Ax /A Ay. Assume now that

Ax /A Ay. By irreflexivity, x 6= y. Let p be any process. Since Ax is correct-alone and
Gx(p) 6≡ false, Write(Ax(p))∩G-Read(Ax(p)) 6= ∅. Now, Gx(p) belongs to the negative part
of AT

y (Remark 6) and Write(AT
x(p)) = Write(Ax(p)). So, Write(AT

x(p))∩G-Read(AT
y(p)) 6= ∅.

Hence, AT
x ≺T(A) A

T
y, and we are done.

7 Related Work and Applications

In this section, we review some existing works from the literature and show how to apply our
generic results on them. Those works propose silent self-stabilizing algorithms for directed
trees or network where a directed spanning tree is available. These algorithms are, or can
be easily translated into, well-formed algorithms that follow an acyclic strategy. Hence,
their correctness and time complexities (in moves and rounds) are directly deduced from our
results.
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A Distributed Algorithm for Minimum Distance-k Domination in Trees [9]. This
paper proposes three algorithms for directed trees. Each algorithm is given with its proof of
correctness and round complexity, however move complexity is not considered. Our results
allow to obtain the same round complexities, and additionally provide move complexities.

The first algorithm converges to a legitimate terminal configuration where a minimum
distance-k dominating set is defined. This algorithm can be trivially translated in our model
as an algorithm with a single variable and a single action at each process p,

A1(p) :: p.L 6= L(p) 7−→ p.L← L(p)

We do not explain here the algorithm, for the role of variable L and its computation using
L(p), please refer to the original paper [9]. Now, from the definition of L in [9], we know that
L(p) depends on q.L for q ∈ p.children; hence the family A1 is bottom-up and correct-alone.
Thus, we can deduce from our results that the translation of this algorithm in our model is
silent and self-stabilizing with a stabilization time in O(H) rounds (Theorem 2) and O(n2)
moves (Theorem 1) where H is the height of the tree and n is the number of processes.

The second algorithm is an extension of the first one since it computes both a minimum
distance-k dominating set and a maximum distance-2k independent set. This algorithm is
made of two families of actions A1 and A2: for every node p,

A1(p) :: p.L 6= L(p) 7−→ p.L← L(p)

A2(p) :: p.fading 6= fading(p) 7−→ p.fading ← fading(p)

We already know that A1 is bottom-up and correct-alone. Then, from the definitions given
in [9], we can easily deduce that A2 is top-down and correct-alone since fading(p) depends
on p.parent.fading and q.L with q ∈ p.children, which is not written by the family A2.
Hence, the graph of actions’ causality is

A1 −→ A2

Thus, we obtain a stabilization time of O(H) rounds (as in [9]), but additionally we obtain
a move complexity in O(n2.H).

The third algorithm computes minimum connected distance-k dominating sets using five
families of actions A1, ..., A5:

A1(p) :: p.L 6= L(p) 7−→ p.L← L(p)

A2(p) :: p.level 6= level(p) 7−→ p.level← level(p)

A3(p) :: p.cds 6= cds′(p) 7−→ p.cds← cds′(p)

A4(p) :: p.cds ∧ p.distl 6= distl(p) 7−→ p.distl ← distl(p)

A5(p) :: p.minc 6= minc(p) 7−→ p.minc← minc(p)

From [9]:

• L(p) depends on q.L for q ∈ p.children,
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• level(p) depends on p.parent.level,

• we note cds′(p) = if p.L = k then true else cds(p) and cds(p) depends on q.cds
for q ∈ p.children,

• distl(p) depends on q.L and q.cds for q ∈ p.children, and p.parent.distl,

• minc(p) depends on p.level, q.cds and q.minc for q ∈ p.children.

Hence A1, A3, A5 are bottom-up and correct-alone and A2, A4 are top-down and correct-
alone. The graph of actions’ causality is acyclic since A1 ≺ A3, A1 ≺ A4, A2 ≺ A5, A3 ≺ A4,
and A3 ≺ A5; and its height is H = 2. Thus, conformly to [9], we obtain a round complexity
in O(H). Moreover, Theorem 1 provides a move complexity in O(∆2.n4) (with ∆ the degree
of the tree).

Self-stabilizing Tree Ranking [35]. In this paper, the authors propose a silent self-
stabilizing algorithm that works on a directed tree and computes various rankings of the
processes following several kind of tree traversals such as pre-order or breadth-first traversal,
assuming a central unfair daemon. They assume that each node knows a predefined order
on its children so that the traversal ordering is deterministic.

Following our method, the proposed algorithm is made of six families of actions.

• A1 computes D, the number of proper descendants of the process, it also copies the
number of proper descendants of each of children of the process. This family is bottom-
up and correct-alone.

• A2 computes L, the level of the node. This family is top-down and correct-alone.

• A3 computes PRE, the preorder rank of the node. The value of PRE depends on values
computed by A1, so A3 is top-down and correct-alone. A3 also computes LABEL,
which is an intermediate labelling used for breadth-first ranking, LABEL directly
depends on the values of L and PRE of the process.

• A4 computes POST and RPOST , the postorder and preorder ranks of the process.
The values of POST and RPOST depend on values computed by A1, so A4 is top-down
and correct-alone.

• A5 computes DLIST (an intermediate list of nodes for breadth-first ranking) in a
bottom-up and correct-alone manner, since the value of DLIST depends on LABEL
at the node and DLIST at the children of the process.

• A6 computes RLIST (the list of all nodes in the breadth-first order) and BFR the
breadth-first rank of the process. A6 is top-down and correct-alone since the values
written by A6 depend on RLIST at the process and its parent as well as DLIST and
LABEL at the process.
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In [35], the authors divide the algorithm in two phases: in phase 1, actions A1 and A2 are
executed and converge and then, after global termination of phase 1, phase 2 begins with
the other actions from A3 to A6. But our results apply: there is no need to separate those
two phases and the full algorithm is silent and self-stabilizing under an unfair distributed
daemon. Note that the fact that after termination, we have correct tree rankings is proven
in the original paper. Moreover, note that we extend this result since it has been proven
for a central unfair daemon only. For round complexity, we obtain O(H) rounds, like in the
original paper. For move complexity, we obtain O(∆3.n5) moves using an unfair distributed
daemon, while the authors obtain O(n2) moves using an unfair central daemon and assuming
the computation is divided in two separated phases. Note that the overhead we obtain is
not surprising since centrality and phase separation remove any interleaving.

Improved Self-Stabilizing Algorithms for L(2, 1)-Labeling Tree Networks [8].
In [8], the authors propose two silent self-stabilizing algorithms for computing a particular
labelling in directed trees. Although more simple, their solutions follows the same ideas as in
[35]: each algorithm contains a single family of actions which is correct-alone and top-down.
We obtain the same bounds as in [35], namely the two algorithms are silent self-stabilizing
under a distributed unfair daemon and converge within O(n.H) moves and O(H) rounds.

An O(n2) Self-Stabilizing Algorithm for Computing Bridge-Connected Compo-
nents [36] In [36], an algorithm is proposed to compute bridge-connected components in
a network endowed with a depth-first spanning tree. The algorithm is proven to be silent
self-stabilizing under an unfair distributed daemon. However, as in [35], it is separated into
two phases, the first phase has to be finished, globally, before the second phase begins. The
first phase corresponds to one family of actions (that computes variable S) which are correct-
alone and bottom-up, while the second phase corresponds to a second family of actions (to
compute variable BCC) which is correct-alone and top-down. Our results show the cor-
rectness of the algorithm without enforcing those phases, with a stabilization time in O(n3)
moves and O(H) rounds, respectively. Note that the original paper does not provide the
round complexity and obtains O(n2) moves in case the two phases are executed in sequence
without any interleaving.

A Note on Self-Stabilizing Articulation Point Detection [37]. This paper proposes
a silent self-stabilizing solution for articulation point detection in a network endowed with
a depth-first spanning tree. The algorithm is exactly the first phase of [36], i.e., a single
family of correct-alone and bottom-up actions. It converges in at most O(n2) moves and
O(H) rounds under an unfair distributed daemon.

A Self-Stabilizing Algorithm for Finding Articulation Points [38]. The silent al-
gorithm given in [38] finds articulation points in a network endowed with a breadth-first
spanning tree, assuming a central unfair daemon. The algorithm computes for each node p
the variable p.e which contains every non-tree edges incident on p and some non-tree edges
incident on descendants of p once a terminal configuration has been reached. Precisely, a
non-tree edge (p, q) is propagated up in the tree starting from p and q until the first common
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ancestor of p and q. Based on p.e, the node p can decide whether or not it is an articu-
lation point. The algorithm can be translated in our model as a single family of actions
which is correct-alone and bottom-up. From our results, it follows that this algorithm is
actually silent and self-stabilizing even assuming a distributed unfair daemon. Moreover, its
stabilization time is in O(n2) moves and O(H) rounds, respectively.

A Self-Stabilizing Algorithm for Bridge Finding [39]. The algorithm in [39] com-
putes bridges in a network endowed with a breadth-first spanning tree, assuming a distributed
unfair daemon. As in [38], the algorithm computes a variable p.s at each node p using a sin-
gle family which is correct-alone and bottom-up. The correctness of this algorithm assuming
a distributed unfair daemon is direct from our results. Moreover, we obtain a stabilization
time in O(n2) moves and O(H) rounds, respectively.

A Silent Self-stabilizing Algorithm for Finding Cut-nodes and Bridges [40]. The
algorithm in [40] computes cut-nodes and bridges on connected graph endowed with a depth-
first spanning tree. It is silent and self-stabilizing under a distributed unfair distributed
daemon and converges within O(n2) moves and O(H) rounds, respectively. Indeed, the
algorithm contains a single family of actions which is correct-alone and bottom-up.

8 Conclusion

We have presented a general scheme to prove and analyze silent self-stabilizing algorithms
running on networks endowed with a sense of direction describing a spanning forest. Our
results allow to easily (i.e. quasi-syntactically) deduce upper bounds on move and round
complexities of such algorithms. We have shown, using a toy example, that our method allow
to easily obtain tight complexity bounds, precisely a stabilization time which is asymptoti-
cally optimal in rounds and polynomial in moves. Finally, we reviewed a number of existing
silent self-stabilizing solutions from the literature [9, 35, 8, 36, 37, 38, 40] where our method
applies. In some of them, we were able to provide more general results than those proven in
the original papers. Namely, some algorithms are proven using a strong daemon, whereas our
work extends to the most general daemon assumption, i.e., the distributed unfair daemon.
Moreover, many papers only focus on one kind of time complexity measure, whereas our
results systematically provide round as well as move complexities.

In many of those related works, the assumption about the existence of a directed (span-
ning) tree in the network has to be considered as an intermediate assumption, since this
structure has to be built by an underlying algorithm. Now, there are several silent self-
stabilizing spanning tree constructions that are efficient in both rounds and moves, e.g;, [32].
Thus, both algorithms, i.e., the one that builds the tree and the one that computes on
this tree, have to be carefully composed to obtain a general composite algorithm where,
the stabilization time is keeped both asymptotically optimal in rounds and polynomial in
moves.
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