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Abstract

Quantum oscillations amplitude of multiband metals, such as high Tc superconductors in the

normal state, heavy fermions or organic conductors are generally determined through Fourier anal-

ysis of the data even though the oscillatory part of the signal is field-dependent. It is demonstrated

that the amplitude of a given Fourier component can strongly depend on both the nature of the

windowing (either flat, Hahn or Blackman window) and, since oscillations are obtained within finite

field range, the window width. Consequences on the determination of the Fourier amplitude, hence

on the effective mass are examined in order to determine the conditions for reliable data analysis.
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I. INTRODUCTION

Quantum oscillations, the extrema of which are periodic in inverse magnetic field, are

known to provide valuable information for the study of Fermi surface of metals. In par-

ticular, in addition to their frequency which yields Fermi surface cross section, field and

temperature dependence of their amplitude allows for determination of the effective mass

and scattering rate1. Multiband metals such as heavy fermions2 or high-Tc superconducting

iron chalcogenides3–6 have complex Fermi surface due to numerous sheets crossing the Fermi

level, giving rise to many orbits in magnetic field, hence to complex quantum oscillation

spectra. Besides, in the case where magnetic breakdown (MB) between orbits occurs, as

it is the case of many organic metals7,8, additional orbits are further generated. In such

cases, data can be readily derived through Fourier analysis, allowing discrimination be-

tween the various frequencies. The point is that the amplitude of quantum oscillations is

field-dependent. Therefore, strictly speaking, they are not periodic in inverse field. More

specifically, at a fixed temperature T , a given Fourier component of the oscillatory part of

magnetization (de Haas-van Alphen oscillations) and conductivity (Shubnikov-de Haas os-

cillations) can be written as A(x) = A0(x) sin(2πf0x+φ) where x = 1/B, f0 is the frequency

and φ is, for normal metals, the Onsager phase. In the framework of the Lifshitz-Kosevich

and Falicov-Stachowiak models1, the amplitude is given by A0(x) ∝ RTRDRMB for a given

field direction (in which case the spin damping factor is a field- and temperature-independent

prefactor). For a two-dimensional orbit, the thermal, Dingle and MB damping factors are

given by RT = u0Tm
∗x/ sinh(u0Tm

∗x), RD = e−u0TDm∗x and RMB = e−ntB0x/2[1−e−B0x]nr/2,

respectively, where u0 = 2π2kBme(eh̄)
−1 = 14.694 T/K, m∗ is the effective mass and TD is

the Dingle temperature, (TD= h̄/2πkBτ , where τ is the relaxation time). nt and nr are the

number of tunneling and reflections the quasiparticles are facing during their travel along a

MB orbit with a MB gap B0. The question that arises is then to determine to what extent

reliable oscillation amplitudes can be derived from Fourier analysis of such field-dependent

data.

In the following, the organic metal θ-(ET)4ZnBr4(C6H4Cl2), the de Haas-van Alphen and

Shubnikov-de Haas oscillations of which were extensively studied in pulsed magnetic fields

of up to 55 T9 (see Fig. 1), is considered. As it is the case of many compounds based

on the bis(ethylenedithio)tetrathiafulvalene molecule (abbreviated as ET), this compound
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FIG. 1. Fourier analysis of de Haas-van Alphen oscillations of the organic metal θ-

(ET)4ZnBr4(C6H4Cl2), obtained with Blackman, Hahn and flat windows in the field range 40-56

T at 2K. Vertical lines are marks calculated with fα = 930 T and f0 = fβ = 4534 T. The insert

displays the Fermi surface in which the α and β orbits are indicated (data are from Ref.9).

illustrates the model Fermi surface proposed by Pippard to compute magnetic breakdown

amplitudes of multiband metals10. As reported in Fig. 1, its Fermi surface is composed of

one strongly two-dimensional closed orbit (α) and a pair of quasi-one dimensional sheets

giving rise in magnetic field to the MB orbit β. As a result, oscillation spectra are composed

of many frequencies which are linear combinations of the frequencies linked to the α and β

orbits. Amplitudes relevant to these combinations are strongly influenced by oscillations of

the chemical potential in magnetic field9,11. Nevertheless, this phenomenon has negligible

influence on the amplitude of the basic components α and β allowing relevant data analysis

on the basis of the above mentioned Lifshitz-Kosevich formalism.

Rather than bringing additional information on this compound, the aim of this paper

is to determine to what extent Fourier analysis is able to yield reliable values of physical

parameters of interest, in particular effective mass and scattering rate (through the Dingle

3



temperature). To this purpose, we will consider the β orbit, with frequency f0 = fβ = 4534

T, effective mass m∗ = mβ = 3.4 me and TD = 0.8 K (this latter parameter being dependent

on the considered crystal), which involves no reflections (nr = 0) and 4 tunnelings (nt = 4)

with MB field B0 = 26 T9. This component will serve as a basis to determine the influence

of the windowing (nature and width) on the Fourier amplitude evaluation.

II. METHODOLOGY

In the following we will consider dHvA oscillations relevant to the above mentioned β

orbit. Since measured magnetic torque τ is related to magnetization M as τ = M×B,

Fourier amplitude can be written:

A0(x) ∝
Tmβ

sinh(u0Tmβx)
exp[−(u0TDmβ + 2B0)x] (1)

At high enough values of u0Tm
∗x, A0(x) can be approximated as

A0(x) ≃ a0 exp(−λx) (2)

where a0 is a temperature-dependent prefactor (a0 ∝ T ) and λ = u0(T + TD)mβ + 2B0
12.

This approximation provides a single parameter characterizing the field dependence of the

amplitude: the largest λ, the steepest the field dependence. For θ-(ET)4ZnBr4(C6H4Cl2),

explored λ values are within 194 T at 2 K and 305 T at 4.2 K. Due to large Dingle tem-

perature, even larger values are obtained for the high-Tc superconductor FeSe for which λ

varies from 250 T at 1.6 K to 370 T at 4.2 K6.

Since the signal amplitude is field-dependent, windowing13–17 is mandatory in order to

determine Fourier amplitude at a given inverse field value x̄. The inverse field range ∆x

is within xm and xM (∆x = xM − xm) and centered on x̄ = (xm + xM)/2. In order to

explore the influence of windowing on the Fourier amplitude, flat, Hahn and Blackman

windows are considered in the following: w(x) = 1, w(x) = {1 + cos[2π(x− x̄)/∆x]}/2 and

w(x) = 0.42+0.5 cos[2π(x− x̄)/∆x]+0.08 cos[4π(x− x̄)/∆x], respectively, within the range

xm to xM and w(x) = 0 everywhere else. We can write more generally the window function as

w(x) =
∑p

n≥0 cn cos[2πn(x−x̄)/∆x], where p = 0, 1, 2 for a flat, Hahn and Blackman window

respectively, but can be generalized for higher values of p. Discrete Fourier transforms are

obtained as
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FIG. 2. Fourier amplitude AF (x̄) relevant to the β component of the organic metal θ-

(ET)4ZnBr4(C6H4Cl2) at (a) 4.2 K (λ = 305 T) and (b) 2.0 K (λ = 194 T), normalized to the

oscillation amplitude predicted by the Lifshitz-Kosevich formula A0(x̄) as a function of the inverse

field window ∆x for flat, Hahn and Blackman windows, at x̄ = 1/38 T and (c) for Blackman

window at various x̄ values. Solid symbols are deduced from experimental data reported in Ref.9.

F (f, x̄) =
2

∆x

∫ xM

xm

A0(x) sin(2πf0x+ φ)w(x) exp(−2iπfx)dx, (3)

Analytical solution of Eq. 3 is given in the Appendix (Eq. A.5) for f = f0. Modulus

of F (f0, x̄) yields the Fourier amplitude AF (x̄) = |F (f0, x̄)|/c0. For finite λ and f0 ≫ λ,

Eq. A.4 holds, yielding

AF (x̄) = A0(x̄)c
−1
0

sinh(λ∆x/2)

λ∆x/2

∑

n≥0

(−1)ncn
(λ∆x/2)2

(λ∆x/2)2 + π2n2
(4)

AF (x̄) can also be obtained by numerical resolution of Eq. 3 where A0(x̄) is either given

by Eq. 2 or by experimental data of Ref.9. Available frequencies are bounded by the Raleigh

frequency (fmin = 1/∆x) and by the Nyquist frequency (fmax = 1/2δx, for data sampled at

evenly spaced δx values). Accordingly, ∆x is kept above 1/f0 and δx is always small enough

to ensure that fmax is much higher than f0
18 in the following.
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FIG. 3. Inverse field window width (∆x) dependence of (a), (c) Fourier amplitude and (b), (d)

frequency for (a), (b) flat and (c), (d) Blackman window for various oscillation frequencies f0 and

λ = 305 T. The Onsager phase is φ = 0 and φ = π for solid and dashed lines, respectively. Black

solid line in (a) stands for Eq. 4.

III. RESULTS AND DISCUSSION

Fourier analysis displayed in Fig. 1 evidence that largest (smallest) secondary lobes and

smallest (largest) peak width are obtained for the flat (Blackman) window while the Hahn

window provides intermediate behaviour, as widely reported13–17.

Discrepancy between amplitude AF (x̄) deduced from Fourier analysis within a finite field

range 1/xmax to 1/xmin and the actual Fourier amplitude A0(x̄) given by Eq. 2 can be

evaluated through the ratio AF (x̄)/A0(x̄) which should be equal to 1. According to the

data in Fig. 2, a strong increase of this ratio is observed as ∆x increases. Furthermore, for

a given window width ∆x, it increases as λ increases e.g. by increasing the temperature

while, as the mean magnetic field (1/x̄) decreases, it grows staying on the same curve, as
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FIG. 4. (a) Mass plots relevant to the β component of the organic metal θ-(ET)4ZnBr4(C6H4Cl2),

with effective mass mβ = 3.44, deduced from Fourier analysis for x̄ = 1/32 T, in the temperature

range 1.5K - 4.5 K. Blue and red symbols are data obtained with Blackman and flat windows,

respectively. Solid squares and circles are data for ∆x = 0.00093 T−1 and 0.0265 T−1, respectively.

Solid lines are best fits to the Lifshitz-Kosevich formula. For large ∆x, both the Fourier amplitude

increases and the slope decreases yielding underestimated effective mass. Such fittings yield data

of Figs. 4(b) and (c) where effective mass is plotted vs. inverse field window width (∆x) and mean

inverse field value (x̄) for (b) Blackman and (c) flat window. At high field (i.e. small x̄) and large

field window width (∆x), strong underestimation of the effective mass is obtained.

reported in Fig. 2(c). The most dramatic effect is observed for the flat window, indicating

that smooth windowing is necessary to get amplitudes as reliable as possible since, more

specifically, AF (x̄)/A0(x̄) grows as sinh(λ∆x/2)/(λ∆x/2) in this case.

In line with Eq. 4, the ratio A(x̄)/A0(x̄) only depends on the product λ∆x for a given

window type. Hence, strictly speaking, Fourier analysis yields reliable amplitude for finite

∆x in the case of field-independent signal (λ= 0), only. Unfavorably, moderate oscillations of

the Fourier amplitude are however observed for small ∆x, in particular for the flat window.

It can be checked that these oscillations are periodic in ∆x, their frequency being just

f0, in agreement with Eq. A.5. This feature brings us to consider the influence of the

quantum oscillations frequency on the data. As reported in Fig. 3, Fourier amplitude AF (x̄)

is dominated by the monotonous term of Eq. A.5, yielding Eqs. A.4 and 4, in the case of large

enough frequency and ∆x. In contrast, large oscillations of both the Fourier amplitude and

the frequency of the Fourier peaks (which is no more equal to f0 in this case) are observed for

low frequencies, which are relevant for e.g. superconducting iron-based chalcogenides4,6. In

addition, whereas only the envelope of AF (x̄), i.e. A0(x̄), is relevant for the Fourier amplitude
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at high ∆x, Onsager phase-dependent data are observed in Fig. 3 for low frequencies. In

short, ∆x must be both small enough to avoid the amplitude overestimation predicted by

Eq. A.5 and large enough to avoid the undulations reported in Fig. 3 in this case. As a

consequence, reliable data can hardly been deduced from Fourier analysis of low frequency

quantum oscillations.

Since λ depends on temperature, the discrepancy between the actual and Fourier ampli-

tudes for large ∆x depends on temperature as well. This may lead to significant error on

the effective mass deduced from temperature dependence of the amplitude (so called mass

plot), as evidenced in Fig. 4(a), hence on the determination of the scattering rate through

Dingle plots, as well. As reported in Fig. 4(b) and (c), underestimation of mβ by about 30

percent is obtained for a flat window at x̄ = 1/32 T−1 for ∆x = 0.026 T−1 (i.e. in the field

range 23-56 T). About 50 percent would be reached at x̄ = 1/56 T−1 for the same ∆x value

(field range within 32 and 193 T). Smaller although significant errors are obtained for Hahn

(not shown) and Blackman windows, e.g. 15 and 13 percent, respectively, for x̄ = 1/32 T−1

and ∆x = 0.026 T−1.

IV. CONCLUSION

Amplitude of field-dependent quantum oscillations deduced from Fourier analysis is over-

estimated even though it is widely used, as reported in the literature. Most dramatic effects

are observed for steep field-dependent amplitudes determined using flat windows with large

width. Nevertheless, acceptable discrepancy with actual amplitude is obtained with Black-

man window of moderate width for high enough frequencies. In contrast, oscillations with

low frequencies such as observed in iron-based chalcogenides superconductors must be con-

sidered with care since ∆x must be both small enough to avoid overestimated amplitude and

large enough to avoid spurious effects observed coming close to the inverse of the Raleigh

frequency.

ACKNOWLEDGMENTS

Work in Toulouse was supported by the European Magnetic Field Laboratory (EMFL).

D. Vignolles, R.B. Lyubovskii, L. Drigo, G. V. Shilov, F. Duc, E. I. Zhilyaeva, R. N.

8



Lyubovskaya and E. Canadell, as co-authors of Ref.9 on which are based the data of Figs. 1

and 2, are acknowledged.

Appendix: Analytical expression of the Fourier transforms

In general we can write the window function w(x) =
∑p

n≥0 cn cos[2πn(x − x̄)/∆x] where

p = 0, 1, 2 for a flat, Hahn and Blackman window respectively, and the condition
∑p

n=0 cn =

1. These coefficients are given by {c0 = 1}F lat, {c0 = 0.5, c1 = 0.5}Hahn, and {c0 = 0.42, c1 =

0.5, c2 = 0.08}Blackman. Eqs. 2 and 3 lead to

F (f0, x̄) =
1

∆x

∑

n

cn
∑

ǫ=±1

∫ xM

xm

A0(x) sin(2πf0x+ φ)e−2iπf0x−2iπnǫ(x−x̄)/∆xdx (A.1)

for f = f0, xM = x̄ + ∆x/2, xm = x̄ − ∆x/2 and A0(x) = a0e
−λx. Writing F (f0, x̄) =

∑

n cn
∑

ǫ=±1 Fnǫ in Eq. A.1, we compute individually Fnǫ which leads after integration to

Fnǫ =
2a0e

2iπnǫx̄/∆x+iφ

i∆x

[

e−λnǫx̄
sinh(λnǫ∆x/2)

λnǫ
− e−Λnǫx̄

sinh(Λnǫ∆x/2)

Λnǫ

]

(A.2)

where we have defined λnǫ = λ + 2iπnǫ/∆x and Λnǫ = λ + 4iπf0 + 2iπnǫ/∆x. This

expression does not depend on φ up to a global sign, for the values φ = 0, π. Assuming

f0 ≫ λ, only the first term in bracket will contribute to Fnǫ. Since sinh(λnǫ∆x/2) =

(−1)n sinh(λ∆x/2), one obtains

Fnǫ ≃
2a0e

−λx̄+iφ

i∆x
(−1)n

sinh(λ∆x/2)

λ+ 2iπnǫ/∆x
(A.3)

After summing over ǫ, the Fourier transform finally is equal to

F (f0, x̄) ≃ −iA0(x̄)e
iφ sinh(λ∆x/2)

λ∆x/2

∑

n≥0

(−1)ncn
(λ∆x/2)2

(λ∆x/2)2 + π2n2
(A.4)

The exact formula is obtained by incorporating the contribution from the second term of

Eq. A.2, involving Λnǫ which induces oscillations as function of x̄ and ∆x, with frequency

f0:
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F (f0, x̄) = −iA0(x̄)e
iφ ∑

n≥0(−1)ncn
[

sinh(λ∆x/2)
λ∆x/2

(λ∆x/2)2

(λ∆x/2)2+π2n2 (A.5)

− e−4iπf0x̄ [cos(2πf0∆x) sinh(λ∆x/2) + i sin(2πf0∆x) cosh(λ∆x/2)] (λ+4iπf0)∆x/2
{(λ+4iπf0)∆x/2}2+π2n2

]

As ∆x goes to zero for finite λ in Eq. A.4, it yields the Fourier amplitude as |F (f0, x̄)| ≃

AF (x̄)c0. As a result, one defines AF (x̄) = |F (f0, x̄)|/c0, in order to normalize the function

with respect to A0(x̄) in this limit. While sinh(λ∆x/2)/(λ∆x/2) goes to 1 as ∆x goes to

zero, the other contributions in Eq. A.5, which involve oscillatory terms periodic in ∆x with

the frequency f0, grow simultaneously. They are responsible for the oscillatory behaviour

reported in Figs. 2 and 3. In particular, in this limit, if we take into account all the

contributions in Eq. A.5, one obtains

lim
∆x→0

F (f0, x̄) ≃ 2c0A0(x̄)e
iφ−2iπf0x̄ sin(2πf0x̄) (A.6)

Furthermore, as discussed in Section II, AF (x̄)/A0(x̄) only depends on λ at a given ∆x.
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Löhneysen, M.-T. Suzuki, R. Arita and S. Uji, Phys. Rev. B 90 144517 (2014)

4 M. D. Watson, T. K. Kim, A. A. Haghighirad, N. R. Davies, A. McCollam, A. Narayanan, S.

F. Blake, Y. L. Chen, S. Ghannadzadeh, A. J. Schofield, M. Hoesch, C. Meingast, T. Wolf and

A. I. Coldea, Phys. Rev. B 91 155106 (2015).

5 M. D. Watson, T. Yamashita, S. Kasahara, W. Knafo, M. Nardone, J. Béard, F. Hardy, A.
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