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ABSTRACT 

Motivation: High-throughput gene-expression profiling yields ge-

nomic signatures that allow the prediction of clinical conditions in-

cluding patient outcome. However, these signatures have limita-

tions, such as dependency on the training set, and worse, lack of 

generalization. 

Results: We propose a novel algorithm called ITI (Interactome-

Transcriptome Integration), to extract a genomic signature predicting 

distant metastasis in breast cancer by superimposition of large-scale 

protein-protein interaction data over a compendium of several gene-

expression data sets. Training on two different compendia showed 

that the estrogen receptor-specific signatures obtained are more 

stable (11-35% stability), can be generalized on independent data, 

and performs better than previously published methods (53-74% 

accuracy). 

Availability and Supplementary Information: The ITI algorithm 

source code and supplementary material from analysis are available 

under CeCILL from the ITI companion web site: 

http://bioinformatique.marseille.inserm.fr/iti. 

Contact: maxime.garcia@inserm.fr, ghislain.bidaut@inserm.fr 

1 INTRODUCTION  

The advent of post-genomic technologies provided the opportunity 

to potentially decipher the genomic origin of human diseases, in-

cluding cancer. Thus, gene expression analysis using DNA micro-

arrays allowed improving the classification and prognostication of 

several types of cancer, including breast cancer (Sørlie et al., 

2001), van de Vijver et al., 2002). This approach can also help 

predict the metastatic recurrence and outcome (Wang et al., 2005). 

In breast cancer (BC), the current prognostic features poorly reflect 

the heterogeneous clinical outcome. The consequence is that many 

patients (70-80%) receive unnecessary adjuvant systemic chemo-

therapy. Genomic tools could provide an opportunity to refine 

prognosis and improve treatment strategy and lay down foundation 

of personalized medicine in BC. 

Several studies have produced signatures linked to BC distant me-

tastasis (Sotiriou et al., 2006). The Mammaprint 70-gene signature 

(van de Vijver et al., 2002) classified BC patients in either good or 

poor-prognosis groups. Wang et al (Wang et al., 2005) reported a 

76-gene signature specific to Estrogen Receptor (ER) status (60 

genes for ER+ patients, and 16 for ER-). These two signatures 

have an overlap of only 3 genes, which raised concerns about their 

reliability. Michiels and colleagues (Michiels et al., 2005) reana-

lyzed the van de Vijver dataset and concluded that the signatures 

obtained in such studies are unstable and dependent on the patients 

training set. From a classification standpoint, any gene classifier 

can be a good one as long as it performs and generalizes well 

(Dobbin et al., 2008). However, from either a scientific or clinical 

standpoint, both the content and stability of signatures are of pri-

mary importance, so as to decipher their molecular basis, to rein-

force their robustness and widespread acceptance of their routine 

clinical use, and eventually to lead to new therapeutic targets. 

Reasons for inherent instability of gene-based signatures have been 

previously enumerated (Fan et al., 2006, Bertucci et al., 2006). 

Besides experimental variability, variation in patient sampling and 

microarray platform bias, other reasons explain the lack of stability 

of signatures (Ein-Dor et al., 2006). Reasons best explaining this 

instability are (i) the curse of dimensionality, and (ii) the biological 

nature of gene expression measurements. The curse of dimension-

ality is well known of statisticians and is due to the inherent micro-

array data topology (too few samples for too many variables). The 

biological nature of instability is the following. Microarrays meas-

ure messenger RNA transcript abundance. To the extent that per-

turbations linked to a particular phenotype are reflected by changes 

in messenger RNA transcript levels, microarrays may be useful for 

measuring perturbations linked to a particular phenotype. Genes, 

however, are not independent but their products act in concert 

through protein-protein interaction network(s). Our hypothesis is 

that phenotypes such as cancer result from isolated and subtle mo-

lecular perturbations (changes in gene expression and/or mutations 

for example) in driver genes that may provoke expression changes 

of greater amplitude in downstream genes (Chuang et al., 2007). 

Statistics for differential expression detect changes of greater am-

plitude and reveal only these downstream genes. Superimposing an 

interaction network to expression changes can detect driver genes 

associated with more subtle expression changes (Chuang et al., 

2007). Factors cited previously may be more problematic for 
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markers for subtle changes in differential expression but we expect 

their effect to be attenuated by combination of several datasets. 

Such genes, used as biomarkers, have proved to be more robust in 

predicting distant metastasis of breast tumors profiled on heteroge-

neous platforms than genes detected without network information. 

Several network-based approaches have been published for micro-

array analysis. They include generating condition-dependent net-

works on differential expression, where no prior information on 

interaction data is used, which somewhat limits the biological rele-

vance of the results (Gill et al., 2010). Co-clustering expression 

and graph data were proposed earlier by constructing a novel dis-

tance based on expression and network interactions (Hanisch et al., 

2002). Support vector machines (SVM) in combination with spec-

tral decomposition data denoising was proposed for analyzing 

transcriptional response in yeast (Rapaport et al., 2007). A net-

work-based method was proposed to detect differentially-

expressed subnetworks in existing Protein-Protein Interaction (PPI) 

data by local subnetwork aggregation (Chuang et al., 2007). Using 

a stricter statistical framework, an SVM variation for directly using 

interaction data within a classifier was applied to microarray clas-

sification (Zhu et al., 2009). 

These methods addressed the biological issues mentioned before. 

However, the data dimensionality issue was still not taken into 

account because training and testing were done on a single dataset 

with a relatively low number of samples. 

We propose here a multi-dataset re-implementation of the method 

proposed by Chuang et al. (2007) to integrate analysis of several 

gene expression datasets so as to extract subnetworks discriminat-

ing BC distant metastasis. We demonstrate the performance of our 

method, called Interactome-Transcriptome Integration (ITI) on a 

large compendium of publicly available data. To avoid potential 

bias in subnetwork selection, we performed a stratified ten-fold 

cross-validation and combined the obtained networks. Validation 

was then done on two independent BC gene expression datasets 

(Desmedt et al., 2008, van de Vijver et al., 2002). Using this ap-

proach, we significantly increased the classification performance 

as compared to three previously published signatures while lower-

ing the dependence of the signature on the training set. Independ-

ent classification on two studies by van de Vijver and coworkers 

(2002) and Wang and coworkers (2006) achieved 53 and 74% 

accuracy, respectively. We detail here our ITI algorithm and report 

statistical validation, patient classification results, as well as bio-

logical validation of the subnetworks thus defined. 

2 METHODS 

To detect protein complexes with subtle expression changes, we superim-

posed a large scale PPI map to a compendium of BC expression profiles. 

The strategy implemented in ITI consists in detecting interactome subsets 

(subnetworks) whose expression is significantly correlated with Distant 

Metastasis-Free Survival (DMFS) in several datasets simultaneously. These 

subnetworks are then validated subsequently by shuffling interaction data 

and gene expression data. To train and test the system, six public datasets 

were chosen according to the criteria section 2.2. Four analyses were per-

formed (two different validation datasets held out for independent testing 

for study 1 (Desmedt’s dataset) and study 2 (van de Vijver’s dataset) and 

separate analysis according to positive or negative ER tumor status) to 

assess the impact of training data on the detected subnetworks and to un-

derstand their generalization capability. For each study, a ten-fold cross-

validation was performed by carefully stratifying the training (90% of 

samples) and test sets. The aim of stratification was to properly balance 

each of the ten training sets to keep the same ER+/ER- and DMFS events 

proportions in each of the 10 iterations. 

2.1 Protein-Protein Interaction data integration 

The following interaction data sets were used: Human Protein Resource 

Database release 9 (HPRD Keshava Prasad et al., 2009), Molecular INTer-

action database (MINT, Ceol et al., 2010), INTAct (Aranda et al., 2010), 

Database of Interacting Proteins (DIP, Salwinski et al., 2004), and the 

human interactome generated in silico with the Cocite algorithm (Ramani 

et al., 2005). All data were downloaded the 8/9/2010, and parsed to remove 

self-interactions, duplicates and proteins marked as “unknown”. Self inter-

actions were removed from the files as they are not quantified by the algo-

rithm, and interaction maps were integrated by uniqueness of NCBI gene 

ID accession numbers. Annotations were homogenized within datasets for 

proper display within the system. Resulting interactions obtained by cross-

ing all interaction data totaled a number of 70530 single interactions among 

a total of 13202 proteins. 

2.2 Breast cancer compendium (BCC) 

The public datasets (see Table 1) were selected and included in a Breast 

Cancer Compendium (BCC) on the basis of the following criteria: early 

breast cancer, availability of clinical information related to metastasis 

(event information and delay between the BC diagnosis, and the relapse or 

the last follow-up) and immunohistochemical ER status (ER+, ER-) and 

absence of post-operative adjuvant chemotherapy. A total of 930 tumors 

were retained for analysis from the initial pool of 1561 tumors through 6 

datasets. Sampling size, platform types and ER status are detailed in Table 

1. DMFS status was censored if follow-up was less than 5 years for all 

datasets. 

Table 1. Datasets included in the breast cancer compendium. Two train-

ings (study 1 and 2) were performed using different combinations of train-

ing and testing data (on bold): On the study 1, Desmedt tumors were held 

out for independent testing, and training was done on the rest. Van de 

Vijver dataset was respectively held out for the study 2. 

 

Raw data sets were downloaded from National Center for Biotechnological 

Information (NCBI) Gene Expression Omnibus repository (Barrett et al., 

2009) when available, and normalized using the GCRMA method from 

Bioconductor1. The van de Vijver dataset was downloaded as supplemen-

tary material from the publication (van de Vijver et al., 2002). Datasets 

were collapsed from probe expression to gene expression as described in 

  
1 http://www.bioconductor.org/packages/release/bioc/html/gcrma.html 

Author(s) GEO Acces-

sion 

Platform Samples 

(FilteredIinitial) 

DMFS status 

(meta, non 

meta) 

ER-/ER+ 

Desmedt et al., 2008 GSE7390 HG-U133A 190/198 62/128 61/129 

Sabatier et al., 2011 GSE21653 HG-U133Plus2.0 31/255 9/22 11/20 

Loi et al., 2008 GSE6532 HG-U133A and B 101/327 27/74 29/72 

Schmidt et al., 2008 GSE11121 HG-U133A 182/200 46/ 136 37/145 

van de Vijver et al., 

2002 

N/A Agilent Hu-

manGenome 

150/295 56 /94 36/114 

Wang et al., 2005 GSE2034 HG-U133A 276/286 107/169 72/204 

Total : 6 distinct sets 6 publicly 

available 

4 distinct platforms 930/1561 307/623 246/684 
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Reyal et al. (2005). When multiple probesets were available for a gene, we 

used the probeset having the highest median signal. Following this, ‘nx_at’ 

marked probes were removed. HG-U133A and HG-U133B were integrated 

as a virtual combined platform. 

2.3 Dataset stratification, Imbricated ten-fold cross-

validation and independent testing 

To detect discriminative subnetwork while avoiding over-fitting, cross-

validation was performed by building training/testing sets while taking into 

account the clinical and molecular status of the tumors. Hence, stratifica-

tion was done to balance ER+/ER- and distant metastasis rate between 

training and testing sets, leading to ten randomly selected training sets. 

Preservation of both molecular and clinical status proportions in each da-

taset allowed increasing training and testing sets homogeneity and avoided 

molecular bias. 

For each test/train set, subnetworks were detected with the ITI algorithm 

(see section 2.4) and validated by gene expression and PPI shuffling (sec-

tion 2.5), yielding five subnetwork lists. The lists were combined into a 

single signature (section 2.6) whose discriminative power was tested on 

datasets held apart, as described section 2.7. 

2.4 Interactome Transcriptome Integration - Con-

structing subnetworks 

Each couple of training/testing set was searched for discriminative subnet-

works whose average expression was linked to distant metastasis using the 

ITI algorithm. The latter is derived from the algorithm of (Chuang et al., 

2007), with the added capability of detecting subnetworks on a compendi-

um (Figure 1). ITI was implemented as a pipeline developed with open 

source interpreters Perl and Bash and statistical validation was implement-

ed with Matlab Statistical Toolbox R2010b (The Mathworks (c) Natick, 

MA, USA). Subnetwork detection was parallelized and implemented on a 

Beowulf Cluster to reduce computing costs. Subnetworks visualization was 

obtained with the graph layout package GraphViz (AT&T Research, USA). 

To detect discriminative subnetworks, correlations between clinical status 

and gene expression were computed for each dataset. Then, the interactome 

was exhaustively explored for discriminative regions (see Figure 1) by 

individually considering each node as a potential seed and aggregate recur-

sively neighbors on the basis of a score measuring correlation of expression 

with DMFS status (see equation 1). Neighbors were aggregated until sub-

network score could not be improved above a certain threshold (improve-

ment score threshold = 0.03). Then, the following node in interactome was 

processed. Parallelization was done by subdividing interactome over avail-

able scores. Subnetworks overlapping by more that 50% with already de-

tected subnetworks were rejected. Overlap between subnetworks A and B 

was calculated by maximum inclusion score of subnetwork A in B and B in 

A. Inclusion score of A to B was measured by counting common genes 

included in subnetwork A to B and dividing by the total number of genes 

contained in subnetwork A. As an example, with a minimal threshold score 

th = 0.3, analysis led to a total of 2986 subnetworks for study 1(ER+) -01 

(run where the Desmedt dataset was held for independent testing, and sub-

networks were detected on training stratification 01 – see Figure 2). 

Each subnetwork was characterized by a score Ss,d (equation 1) on each 

dataset measuring absolute correlation between the averaged subnetwork 

gene expression and the clinical information for this dataset. A global score 

Ss, defined by equation 2, was computed by averaging individual scores 

over all datasets (not used for further computation). 

 

 

[1] 

 

 

[2] 

 

Ss is the global score of subnetwork s, computed on the dataset d from the 

compendium (groups of datasets DS of size NS), corr is the Pearson corre-

lation measured between the averaged gene expression e(g,d) for genes 

belonging to s with the binary vector cc containing labels linked to clinical 

conditions of patients in datasets d, weighted appropriately by the square 

root of the number nd of samples in dataset d divided by the maximum 

number of samples in all datasets in DS. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 1. Interactome-Transcriptome integration (ITI) algorithm. Two data 

types were fed to the algorithm, the 5 training breast cancer datasets and an 

interactome. Expression was simultaneously inspected on several datasets 

to aggregate discriminative subnetworks, i.e. discriminative regions in the 

interactome, as described section 2.4. 

2.5 Validating subnetworks - filtering 

To validate subnetworks statistically, two random distributions of score 

were drawn. The first random distribution assessed the significance of 

algorithm that extracts subnetworks. It was obtained by randomly selecting 

subnetworks, i.e. by randomly accepting whether a subset of the interac-

tome is a subnetwork without taking gene expression data into account.  

The second distribution assessed statistical significance of the biological 

link expression-protein-protein interaction. It was obtained by shuffling 

clinical conditions. To keep random subnetworks comparable to detected 

subnetworks, their distribution of size was forced to match that of the se-

lected subnetworks by Gaussian modeling. Next, the distributions of ran-

dom subnetwork scores were modeled by mixture of two Gaussian distribu-

tions. Once obtained, these distributions were used to fix scores thresholds 

independently over all datasets at significance levels of p-values, and fil-

tered statistically significant subnetworks. Shuffling random interactions to 

obtain a random interactome did not yield subnetworks at reasonable score 

levels, confirming the strong link between gene expression levels and pro-

tein-protein physical interaction(s). Finally, we kept only the subnetworks 

with a score higher than expected by chance both on subnetwork randomi-

zation (p<1.10-4 on 2 datasets) and shuffling of expression (p<1.10-4 on 2 

datasets). 

2.6 Constructing a common subnetwork signature for 

each training set 

Using this filter, 10 subnetworks sets for each training tumor subset were 

generated. Next, these sets were combined by examining subnetworks pair 

by pair across datasets and combining them if overlap was larger than 50%. 

Using this method, clusters of overlapping subnetworks were built. Finally, 

a subnetwork list was constructed from the list of subnetwork clusters by 
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keeping only subnetworks appearing at least twice. For a given cluster, 

only the subnetwork with the highest score was kept. Final subnetwork sets 

size are detailed Table 2. 

2.7 Tumor classification and distant metastasis pre-

diction of ER+ and ER- tumors on two independ-

ent datasets 

The subnetwork list obtained section 2.6 was used for independent classifi-

cation using two different settings, namely study 1 (in which Desmedt’s 

data was held out) and 2 (in which van de Vijver’s dataset was held out). In 

each setting, training was performed separately on tumors from all datasets 

except the held out dataset, yielding 5 SVM models. Classification on the 

validation sets was done by majority vote (weighted by sample size for 

each dataset) on the 5 SVM models. A complete organization chart is pre-

sented in Figure 2. 

To use subnetworks as unique SVM input variables, gene expression within 

a subnetwork was averaged over genes and used as a discriminative profile 

for both training and testing. Several SVM models were tested for increas-

ing number of subnetworks. A final subnetwork list was retained by max-

imizing accuracy. 

Classification results (accuracy, true and false positives) are reported in 

section 3, along with a comparison with previously published classifiers. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 2: Complete data workflow. Interactome is assembled from multiple 

sources (see section 2.1). Gene expression datasets forming our Breast 

Cancer Compendium (BCC) assembled section 2.2 are pooled to form a 

training dataset. Ten groups were then formed on a 10% leave-out basis 

(section 2.3). Subnetworks were detected on human interactome on each 

training set using ITI (section 2.4) and validated twice by shuffling interac-

tions and expression, as described section 2.5. Retained subnetworks were 

combined (section 2.6) to train a Support Vector Machine (section 2.7). 

Final set was then used as a set of markers for classifying independent data 

by majority vote on the 5 SVM models (section 2.7). 

2.8 ITI on-line resource - Gene Ontology category 

enrichment 

To detect pathways associated with BC distant metastasis, we computed 

enrichment of biological process gene ontology in each subnetwork detect-

ed by ITI using the ErmineJ program (Gillis et al., 2010) and the reference 

list of Biological Process from Gene Ontology (The Gene Ontology in 

2010: extensions and refinements, 2010). ErmineJ provided corrected p-

values for enrichment of ontological terms computed with hypergeometric 

distribution. These were systematically computed for all subnetworks to 

associate them to known molecular processes defined in the Gene Ontolo-

gy. 

The resulting data were organized in a dedicated on-line resource 

(http://bioinformatique.marseille.inserm.fr/iti). This resource describes 

subnetworks detected with ITI and gives a thorough description of the 

included genes. Subnetworks and gene lists are downloadable for further 

processing. Subnetworks p-values calculated according to random distribu-

tions described in section 2.5 were also included, along with combined 

Fisher scores (Hong et Breitling, 2008). Genes were annotated with direct 

NCBI EntrezGene links and links to other subnetworks are provided. To 

understand expression changes of genes included in subnetworks, color-

coded gene graphs are provided, with correlation expression/DMFS status 

superimposed on subnetworks. The correlation score is provided for all 

datasets separately. 

3 RESULTS 

3.1 Establishment of two discriminative subnetworks 

sets (ER+ and ER-) from a joined compendium of 

930 tumors 

Two separate signatures were generated for ER+ and ER- BC sub-

types for two studies. In study 1, Desmedt’s data (Desmedt et al., 

2008) was held out, and in study 2, van de Vijver’s data (van de 

Vijver et al., 2002) was held out, as described in section 2.3. Thus, 

four sets of subnetworks were assessed (see Table 2). 

 

Table 2. p-values thresholds and signature size for the four training config-

urations (study 1 = all BCC but Desmedt, study 2 = all BCC but van de 

Vijver). The optimal number of subnetworks for classification depends on 

the training set and is lower for ER+ tumors, which reflects a higher homo-

geneity. 

The optimal signature size retained in Table 2 is the one that max-

imizes the average accuracy on the 10 training sets for each analy-

sis. For the study 1, discriminative subnetworks had an average 

score of 0.49 (ER+) and 0.54 (ER-) confirming the high correlation 

of co-expression and proximity in the PPI network. Signature size 

was respectively of 6 (ER+) and 165 subnetworks (ER-). For the 

study 2, the ER+ signature yielded an optimal classification score 

on independent data for 14 subnetworks, and the ER- signature for 

122 subnetworks. They correspond to lists of 175 (Study 1, ER+), 

2310 (Study 1, ER-), 272 (Study 2, ER+), and 1481 (Study 2, ER-) 

genes, respectively, many genes being represented in several sub-

networks. These numbers are larger than what is reported for other 

signatures. This suggests that we detected a large panel of genes 

significantly linked to distant metastasis, realistically reflecting 

both the biological footprint of metastasis and the scale of pertur-

bations at the gene expression level. Redundancy of genes within 

subnetworks may be explained by the high connectivity of several 

hubs (for instance TP53), which makes them likely to be included 

in several subnetworks. 

 

 

Dataset 
p-value threshold – n 

datasets 

# subnet-

works 

# genes 

Study 1 (ER-) 1e-4 – 2 165 2310 

Study 1 (ER+) 1e-4 – 2 6 175 

Study 2 (ER-) 1e-4 – 2 122 1481 

Study 2 (ER+) 1e-4 – 2 14 272 
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Table 3. Benchmark classification results comparison for ITI and other signatures on the two test datasets of Desmedt (Dt) and van de Vijver (vdV), for ER+ 

and ER- tumors. The four subnetworks sets defined in Section 2.3 were used to measure ITI classification performance. The following code was used: N= 

number of tumors to classify, TN = True Negative, TP = True Positive, FP = False Positive, TP = True Positive, ACC = Accuracy, SV = Sensitivity, SP = 

Specificity, FPR = False Positive Rate. Subnetworks classification accuracy was superior to gene expression classification for metastasis prediction for 

Desmedt’s dataset and around the same level for van de Vijver’s dataset. 

 

 

3.2 Classification results on independent data shows 

superiority of subnetwork-based classification 

over independent gene signatures of the compen-

dium 

To assess the performance of signatures constructed with ITI, we 

compared them with previously established signatures. The 128 

probes Genomic Grade Index (GGI) (Sotiriou et al., 2006), the 

Mammaprint 70-gene signature (van de Vijver et al., 2002), and 

the 76-gene ER status-specific signature (Wang et al., 2005) were 

tested. Performance was measured on the same tumors (Desmedt 

and van de Vijver datasets), separately on ER+ and ER- tumors. 

The classification methods from the respective original publica-

tions were used for each signature. For van de Vijver’s signature, 

distances to mean centroïds from relapse and non-relapse groups 

are calculated (van de Vijver et al., 2002). For Wang’s signature, a 

relapse score is calculated for each patient by a linear combination 

of gene expression weighed by standardized Cox’s coefficients 

(Wang et al., 2005). Because the GGI and Mammaprint signatures 

are probe-specific, the tests were done with the probes present in 

the test dataset. Results and performance measurements are de-

tailed in Table 3. They show that ITI generalization performance is 

vastly superior to previously published signatures. The GGI classi-

fication showed the highest accuracy on the [47%-68%] range, the 

70-gene signature on the [41%-62%] range, and the 76-gene signa-

tures on the [37%-63%] range. 

ITI gave a better accuracy as compared to the Wang signature on 

Desmedt’s data (ER+); an accuracy of 74% (specificity of 92%) 

was obtained versus an accuracy of 60% (specificity of 56%) with 

the 76-gene signature. ITI gave superior results also on Desmedt’s 

ER- tumors with an accuracy of 54% (specificity of 65%) versus 

an accuracy of 38% (specificity of 41%) for the Wang signature. 

This held true for the Mammaprint 70-gene signature, which works 

mostly for van de Vijver patients. ITI showed an accuracy of 53% 

associated with a specificity of 90% on van de Vijver’s data (ER-) 

and an accuracy of 52% with a specificity of 65% on van de 

Vijver’s ER+ tumors. This performance is inferior to what was 

obtained on study 1 and may reflect a bias towards Affymetrix 

induced by the training compendium. The Mammaprint signature 

had a lower performance of 41% on ER+ and of 42% on ER- 

Desmedt tumors. Similarly, ITI showed performance superiority 

over the GGI for ER- patients. Overall, ITI was able to generalize 

better with a lower accuracy bound of 52%. 

On a different comparison basis, Chuang and coworkers (2007) 

achieved 48.8% accuracy on van de Vijver samples with training 

on Wang samples and 55.8% reciprocally. 

Specific contributions of the interaction data or gene expression 

data are not quantified, since they are not easily separable in the 

current setting. However, Chuang and coworkers (2007) already 

demonstrated that an expression approach increased signature ro-

bustness, and several studies showed that gene expression meta 

analysis also increased classification performance (Xu et al., 2005, 

Fishel et al., 2007). 

We performed a survival analysis between good and poor progno-

sis groups in study 1 (ER+) (Figure 3). Log-rank test gave a p-

value of 4.89x10-5, suggesting good separation between the two 

groups. This is higher than p-values obtained with other signatures 

(Wang signature gave p=4.11x10-3, and GGI gave p=1.34x10-3).  

The Mammaprint signature was not able to separate Desmedt’s 

patients in significant groups. Even though ITI was not specifically 

designed to obtain good log rank score, it was able to separate 

patients with higher survival and patients with lower survival ex-

pectancy. An alternative could have been to compute subnetwork 

score directly on genes log-rank p-values. 

 

 

 

Status ER- ER+ 

Dataset Desmedt van de Vijver Desmedt van de Vijver 

Signature GGI 70 g 76 g ITI(165) GGI 70 g 76 g ITI(122) GGI 70 g 76 g ITI(6) GGI 70 g 76 g ITI(14) 

N 61 61 61 61 36 36 36 36 129 129 129 129 114 114 114 114 

TN 6 0 14 22 3 2 12 17 63 28 53 86 57 39 50 49 

FP 28 34 20 12 16 17 7 2 31 66 41 8 18 36 25 26 

TP 23 27 9 11 14 17 8 2 21 25 25 9 20 32 22 10 

FN 4 0 18 16 3 0 9 15 14 10 10 26 19 7 17 29 

ACC 0.475 0.442 0.377 0.541 0.472 0.528 0.556 0.528 0.651 0.411 0.604 0.736 0.675 0.623 0.632 0.518 

SV 0.852 1 0.333 0.407 0.823 1 0.471 0.118 0.600 0.714 0.714 0.257 0.512 0.821 0.564 0.256 

SP 0.176 0 0.411 0.647 0.157 0.106 0.632 0.895 0.670 0.298 0.563 0.915 0.760 0.520 0.667 0.653 
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Fig. 3. Kaplan-Meyer estimator of good-prognosis (lower risk of distant 

metastasis) and poor-prognosis groups (higher risk of distant metastasis) 

survival rates as defined by ITI, Mammaprint, Wang’s signature and GGI 

for the ER+ Desmedt dataset. ITI gave the lowest p-value of 4.89.10-5 with 

a Log-rank test among all tested signatures. 

3.3 Signatures obtained with ITI show a stability of 

11.5-32.8% for different training sets 

Wang and van de Vijver signatures have only 3 genes in common, 

which represent less than 5% of all the genes in the two signatures. 

We compared the two signatures obtained with ITI for ER+ and 

ER- samples with the Desmedt and van de Vijver tumors. A total 

of 937 genes were found in common between the Desmedt and the 

van de Vijver signature for ER- samples, and 46 genes between the 

Desmedt and van de Vijver signatures for ER+ samples. This rep-

resents an overlap of respectively 32.8% (ER-) and 11.5% (ER+). 

These relatively low values reflect the fact that datasets and plat-

forms are biased. However, this is largely superior to the 3 com-

mon genes between the Wang and van de Vijver signatures. This 

overlap between subnetwork sets could probably be improved by 

using a larger training compendium. 

3.4 Biology of the discriminative subnetwork set is 

meaningful 

We examined the enriched annotations from the Gene Ontology 

biological process for the subnetworks obtained in study 1. Table 4 

shows several enriched GO terms for both ER+ and ER- signa-

tures. Ontology terms found in discriminative subnetworks are 

linked to regulatory processes disrupted in cancer (cell cycle, DNA 

damage checkpoint) and in metastasis (immune system, cell prolif-

eration, focal adhesion, cell migration and cytoskeleton organiza-

tion) in both ER+ and ER- tumors. 

As an example, we describe here a subnetwork significantly asso-

ciated with metastasis in study 1 (ER-) (subnetwork 6693, repre-

sented in Figure 4). Subnetwork 6693 contained genes with well 

known function in ER- BCs and metastasis, such as the tumor sup-

pressor gene (TSG) TP53 and the tyrosine kinase receptors ERBB2 

and EGFR.  

 

 

Fig. 4. Graphical representation of part of subnetwork 6693 (Study 1, ER-). 

This illustrates a discriminative subnetwork from the Sabatier and cowork-

ers dataset. Nodes and edges correspond to genes encoding proteins and 

protein-protein interactions, respectively. Yellow and blue nodes denote an 

over-expression and an under-expression, respectively, among patients with 

distant metastasis compared with the other ones. 

The subnetwork contained also several cell cycle kinases and regu-

lators (CDK2, CDKN1A, CDKN2A), NQO1, whose altered ex-

pression has been associated with various forms of cancer. PIN1 is 

present in the subnetwork, and was recently found to promote ag-

gressiveness in BC. Insulin receptor was also present; its deregu-

lated expression correlates with poor response to anti IGF-FR ther-

apy in triple negative BC. It also contained several well known 

oncogenes and genes not previously linked to cancer, but which 

may be acting as BC driver genes. 

Table 4. Enriched Gene Ontology annotations of ER+ and ER- subnet-

works. Several enriched ontologies for subnetworks extracted in study 1 

(ER-) and study 1 (ER+) studies are related to cancer. 

Gene Ontology GO Corrected p-value 

ER+   

mRNA cleavage GO:0006379 1,25E-08 

regulation of growth hormone 

secretion 

GO:0060123 2,18E-07 

positive regulation of cytoskele-

ton organization 

GO:0051495 

 

2,06E-04 

 

regulation of insulin secretion GO:0050796 

 

1,55E-05 

 

regulation of chemotaxis GO:0050920 

 

4,29E-07 

 

ER-   

natural killer cell mediated 

immunity 

GO:0002228 2,93E-06 

positive regulation of MAP 

kinase activity 

GO:0043406 

 

4,76E-10 

 

muscle cell development GO:0055001 

 

1,06E-11 

 

interphase of mitotic cell cycle GO:0051329 

 

4,08E-11 

 

Wnt receptor signalling path-

way through beta-catenin 

GO:0060070 

 

6,22E-10 
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4 DISCUSSION 

We conceived a network-based algorithm (Interactome-

Transcriptome Integration) to identify prognostic genomic signa-

tures generalizable over multiple and heterogeneous microarray 

datasets. This algorithm works in two steps: first it integrates data 

from a compendium of BC microarray datasets, and second it finds 

subnetworks, i.e. interacting gene complexes, whose expression 

discriminates two conditions of interest. Subnetworks are filtered 

by statistical validation. 

We applied the ITI algorithm to the particularly important but still 

unresolved question of finding markers for BC distant metastasis 

for which a large body of public data is available. 

Our approach illustrates the feasibility of integrating gene expres-

sion data compendia (930 BC tumor samples were integrated) and 

large scale PPI data; it represents a potential data mining tool for 

gene expression repositories. It features inclusion of prior data 

under the form of PPI interactions and clinical annotations. 

We produced two ER status-specific signatures that were validated 

on independent datasets held out from training. Repeating the ex-

periments for two datasets (Desmedt and van de Vijver) yielded 

higher classification performance than previously published classi-

fiers in both cases [74% for Desmedt (ER+) and 53% for van de 

Vijver (ER+)]. Our subnetwork-based signatures reflect the large 

biological footprint of metastasis and is consequently larger that 

previously published signatures. The classifier obtained with ITI 

subnetworks was less sensitive to platform bias than previously 

published classifiers, since performance obtained was similar on 

the two training compendia. It also showed high specificity, which 

is critical to make a decision on avoiding unnecessary adjuvant 

systemic treatment. 

The ITI algorithm is currently extended to incorporate other data 

types, including DNA copy number variation data [SNPs, Compar-

ative Genomic Hybridization arrays (CGH) and DNA methylation 

profiles]. ITI capability to handle the curse of dimensionality 

makes it suitable to detect biomarkers yielded by deep sequencing 

analysis. In next versions, PPI interaction type will also be taken 

into account at the interactome integration and subnetwork aggre-

gation steps. Also, classification performance is inherently tied to 

molecular subtypes and finer subtyping is necessary to render this 

technology suitable for clinical use. A significant increase in ER- 

classification was observed by separating early and lately relapsing 

patients (data not shown). Further clinical validation could be envi-

sioned through a phase-2 clinical trial with customized microarrays 

for adjuvant chemotherapy treatment decision making. 
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