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Abstract. Tensor decompositions are still in the process of study and
development. In this paper, we point out a problem existing in nonnega-
tive tensor decompositions, stemming from the representation of decom-
posable tensors by outer products of vectors, and propose approaches
to solve it. In fact, a scaling indeterminacy appears whereas it is not
inherent in the decomposition, and the choice of scaling factors has an
impact during the execution of iterative algorithms and should not be
overlooked. Computer experiments support the interest in the greedy
algorithm proposed, in the case of the CP decomposition.

1 Introduction

Tensors of order d are represented by data arrays with d indices, (d = 2 for
matrices). They provide unique features as they are a suitable data structure for
representing multimodal or multisource data, in which each diversity is repre-
sented by one of the ways of the tensor. One of the most interesting applications
of tensors is the Canonical Polyadic (CP) decomposition defined below, which
aims at representing a tensor as a sum of decomposable rank one tensors, reveal-
ing relationships among its d ways.

CP decomposition. In this paper, we shall focus our attention on the CP decom-
position of third order tensors. To begin with, a tensor D is decomposable if it
can be expressed as the outer product of vectors, i.e.: Dijk = aibjck, which will
be denoted compactly as D = a⊗ b⊗ c, where ⊗ is the outer (tensor) product.
Next, every real tensor T of order d = 3 and dimensions I × J ×K, admits a
CP Decomposition of the following form:

T =

R∑
r=1

λr D(r), (1)

where D(r)
def
= a(r)⊗ b(r)⊗ c(r), a(r), b(r) and c(r) being real vectors, which

can be stored in the so-called factor matrices, A, B and C respectively, of size
I ×R, J ×R, and K ×R respectively, and λr are real positive scalars. The CP
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decomposition reveals tensor rank when R is minimal, which will be assumed
from now on; for instance, tensors D(r) are of rank 1. Note that another writing

of (1) in terms of factor matrices is Tijk =
∑R

r=1 λrAirBjrCkr. In addition,
because of the presence of λr, the columns of factor matrices may be normalized
to 1.

At this stage, it is important to stress that there is no scaling ambiguity in the
CP decomposition (1), contrary to what is sometimes claimed in the literature.
Only the representation of tensors D(r) by triplets of vectors is subject to this
indeterminacy. In fact, by definition, tensors are precisely equivalence classes
with respect to scaling [1–4]: the triplets (a, b, c) and (αa, βb, γc) represent the
same tensor provided that αβγ = 1.

The rank R of the CP decomposition (1) is of particular interest in appli-
cations since it is related to the intrinsic dimensionality of multilinear data.
Furthermore, the CP decomposition, contrary to other tensor decompositions,
e.g., Tucker’s or High-Order Singular Value Decomposition (HOSVD), enjoys
uniqueness if the rank is not too large [5–7]. Uniqueness is of utmost importance
since it eventually allows physical interpretation of relationships among the ways
of a tensor.

2 Motivation

Nonnegativity. When the observation tensor T contains only real nonnegative
entries, it is suitable to impose decomposable tensors D(r) to also be nonneg-
ative. By doing this, we define a nonnegative rank, R+, which may be larger
than R. This is actually already true for matrices (tensors of order 2). In fact,
Herbert E. Robbins exhibited a simple example of a 5× 5 matrix having rank 3
but nonnegative rank 4; see [8, 4] for its expression. It is thus necessary to define
the nonnegative CP decomposition of a nonnegative tensor as:

T =

R+∑
r=1

λr a(r)⊗ b(r)⊗ c(r), (2)

where ai(r) ∈ R+, bj(r) ∈ R+ and ck(r) ∈ R+, ∀(i, j, k, r).
There are many applications where nonnegativity is relevant, as to provide

better interpretable results when dealing with variables related to physical quan-
tities such as luminance in images, spectra or chemical concentrations [9, 10].
There exist many algorithms aiming at computing the CP decomposition of
nonnegative tensors [9, 11]. However, due to measurement noise or modeling er-
rors, the tensor to decompose may not be nonnegative or may have a too large
rank, hence requiring to be approximated. It turns out that, given any real tensor
T of rank R, it is fortunately always possible to find a best nonnegative approx-
imation of T of given nonnegative rank R+. This problem is indeed well-posed
[12, 13] (which would not be the case in R instead of R+).
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Projection onto the nonnegative orthant: In the nonnegative CP decomposition
(2), all quantities are nonnegative. For instance, vector a(r) belongs to the non-
negative orthant (R+)I . In iterative algorithms, this constraint is ensured at each
iteration by projecting a computed value onto the nonnegative orthant. This is
where the problem shows up. In fact, projecting D(r) or its building vectors
{a(r), b(r), c(r)} do not yield the same result. Since this observation is already
true for matrices, a simple example will be most convincing.

Example. Take the matrix M below, of rank 1. Now its projection M+ has
rank 2. So it is preferred to project its supporting vectors {a, b} instead. The
obtained vectors are {a+, b+} and yield a matrix of nonnegative rank equal
to 1:

M =

(
4 −2
−2 1

)
=

(
2
−1

)
⊗
(

2
−1

)
= a⊗b, M+ =

(
4 0
0 1

)
, a+⊗b+ =

(
4 0
0 0

)
.

The problem is that vectors {a, b} are not uniquely defined. We could have
taken {−a,−b} without changing M . Should we do that, we obtain instead:

M =

(
4 −2
−2 1

)
=

(
−2

1

)
⊗
(
−2

1

)
= a⊗b, M+ =

(
4 0
0 1

)
, a+⊗b+ =

(
0 0
0 1

)
.

We see that the projected matrix of nonnegative rank 1 is not the same.

This issue comes from the fact that no care has been taken of the scaling

indeterminacies (which reduce to sign indeterminacies thanks to the use of

factors λr) inherent in the representation of a rank-1 tensor by a triplet of

vectors.

Algorithms resorting to projection include Alternating Nonnegative Least
Squares (ANLS) [9], Projected and Compressed ANLS (ProCo) [14], or Alternat-
ing Direction Method of Multipliers (ADMM) [11], among others. Hard thresh-
olding is the procedure in which it is the easiest to illustrate the occurring of the
problem.

Algorithm 1 Alternating Nonnegative Least Squares (ANLS)

Require: T , B = B[0], C = C[0]
t = 0;
while stopping criterion is not met, do
t = t+ 1
compute A from B[t− 1] and C[t− 1]; A[t]← A+

compute B from C[t− 1] and A[t]; B[t]← B+

compute C from A[t] and B[t]; C[t]← C+

normalize columns: A[t]← A[t]Λ−1
A ; B[t]← B[t]Λ−1

B ; C[t]← C[t]ΛAΛB ;
end while
normalize columns: C[t]← C[t]Λ−1

return A[t], B[t], C[t], Λ
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ANLS. One algorithm that has been widely used to compute CP decomposi-
tion (1) is the Alternating Least Squares (ALS) algorithm. ALS minimizes with
respect to matrices A, B, C in an alternating fashion, the loss:

Φ =
∑
ijk

[Tijk −
R∑

r=1

λr Air Bjr Ckr]2. (3)

Factor matrices are updated in turns during each iteration until a certain con-
dition is attained (e.g. the number of iterations or a certain threshold on the
reconstruction error). When a nonnegative decomposition is sought, each factor
matrix can be projected onto the nonnegative orthant right after its calculation;
this is the ANLS algorithm [9, p.47]. The pseudo-code is given in Alg.1.

3 Proposed approach

We illustrate the problem with hard thresholding (cf. Section 4), but our solution
could also reveal useful in soft thresholding as well. The problem is worse when
all entries in a column vector are set to zero; this prevents its normalization (as it
would lead to a division by zero) or imposes an erroneous reduction of the rank
(due to the arbitrary removal of the null columns). The solution we describe
overcomes these two difficulties most of the time, up to negligible extraneous
computation load. We propose to implement this in a procedure to be executed
before projection. The concept goes as follows. Because of normalization, the
scaling indeterminacy reduces merely to signs. In fact, in every decomposable
tensor D(r), we have two variables, ε, η ∈ {−1,+1}, which are to be used as
sign flippers for the columns a(r), b(r) and c(r) that are together involved in an
outer product term, without changing the result of the outer product given by:

a(r)⊗ b(r)⊗ c(r) = (εηa(r))⊗ (εb(r))⊗ (ηc(r)), ∀(ε, η) ∈ {−1,+1}. (4)

This formula covers all 4 combinations of sign flipping of vectors, without af-
fecting the result of the original outer product. Now denote by a′(r) = ε η a(r),
b′(r) = ε b(r), and c′(r) = η c(r), and:

a−(r) = a′(r) where a′(r) < 0, and 0 elsewhere (5)

b−(r) = b′(r) where b′(r) < 0, and 0 elsewhere (6)

c−(r) = c′(r) where c′(r) < 0, and 0 elsewhere. (7)

Vectors a+(r), b+(r) and c+(r) are defined in a similar manner, with positive
entries. In particular, a+(r) + a−(r) = a′(r).

Given a triplet of vectors, (a, b, c), there are 4 possibilities to construct a non-

negative decomposable tensor D[`] by just flipping their signs without changing
the value of (a ⊗ b ⊗ c) and by setting to zero negative values in each vector
(refer to Table.1).
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(ε,η) (+,+) (−,−) (+,−) (−,+)

` 1 2 3 4

D[`] D[1] = D[2] = D[3] = D[4] =
a+ ⊗ b+ ⊗ c+ a+ ⊗ b− ⊗ c− a− ⊗ b+ ⊗ c− a− ⊗ b− ⊗ c+

Table 1. The 4 possibilities created by sign flipping.

where for the sake of convenience, a+ stands for vector a[`](r)+, and similarly
for a−, b+, b−, c+ and c−.

We are interested to know which combination would yield the minimal num-
ber of resets. Ultimately, we are concerned about (i) avoiding to set a whole
vector to zero, which would lead to decrease the rank. This goal can mean “set
as few entries to zero as possible”. And we also aim at (ii) minimizing the dis-
tance between the original tensor and its nonnegative approximation.

We explored several criteria. The first is to minimize Φ0 = ‖T −
∑

r D
[`](r)‖2.

This criterion is very costly to optimize, due to the large number of combinations.
In fact, for every r, there are 4 possibilities to assign (ε, η), and this assignment
can be different for each r. This would result in 4R possibilities to explore. This is
why we propose two greedy algorithms searching for the optimal solution D[`](r)
independently for every r. One possibility is to minimize w.r.t. ` the following
product for every r independently, and for the L2 norm:

Φ1(`, r) = ‖D(r)−D[`](r)‖22. (8)

Let us express this criterion for ` = 1, without loss of generality. We have for
any fixed r (that we drop for the sake of convenience):

Φ1(1, r) = ‖D(r)‖22 + ‖D[1](r)‖22 − 2
∑
ijk

aia
+
i bjb

+
j ckc

+
k . (9)

The last term can be rewritten as 2 (aTa+)(bTb+)(cTc+). Next, it is also equal
to 2‖a+‖2 ‖b+‖2 ‖c+‖2, since a+ and a− are orthogonal and a = a+−a−. This
suggests another criterion to minimize w.r.t. `:

Φ2(`, r) = ‖a−‖ · ‖b−‖ · ‖c−‖ (10)

Criteria Φ1 and Φ2 are easy to optimize w.r.t. (ε, η), i.e w.r.t. `, and need neg-
ligible extraneous computation load.

4 A Toy Example

Consider the factor matrices:

A =

0.8025 0.1914
0.0089 0.9106
0.5966 0.3662

 , B =

[
0.0088 0.7495

1 0.6620

]
, C =


0 0
0 1
0 0

0.7071 0
0.7071 0

 .
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Algorithm 2 Minimization of Φ1 w.r.t. to ε and η for fixed r

Require: a(r), b(r), c(r)
initialize ε(`), η(`) for each possible D[`]; (according to Table.1)

normalize: a← a(r)
‖a(r)‖ ; b←

b(r)
‖b(r)‖ ; c←

c(r)
‖c(r)‖ ;

` = 0;
while ` ≤ 4, do
` = `+ 1;
a′ ← ε(`) η(`)a; b′ ← ε(`) b; c′ ← η(`) c;
compute a+, b+, and c+;
Φ1(`)← ‖D −D[`]‖22;

end while
Find `o = argmin` Φ1(`);
a(r)← ε(`o) η(`o)a(r); b(r)← ε(`o) b(r); c(r)← η(`o) c(r);
return a(r), b(r), c(r);

Algorithm 3 Modified ANLS

Require: T , B = B[0], C = C[0]
t = 0;
while stopping criterion is not met, do
t = t+ 1
compute A from B[t− 1] and C[t− 1]; A[t]
compute B from C[t− 1] and A[t]; B[t]
compute C from A[t] and B[t]; C[t]
r = 0;
while r < R do

update a(r), b(r), and c(r) using Alg.2;
r = r + 1;

end while
A[t]← A+; B[t]← B+; C[t]← C+;
replace null columns in A, B or C by random values using e.g. absolute value of
standard Gaussian distribution; (see Sect.5)
normalize columns: A[t]← A[t]Λ−1

A ; B[t]← B[t]Λ−1
B ; C[t]← C[t]ΛAΛB ;

end while
normalize columns: C[t]← C[t]Λ−1

return A[t], B[t], C[t], Λ

When computing the CP Decomposition with Alg.1, after one update of A, one
of its columns became negative, and hence one of its columns got discarded,
and the rank was decreased by 1. Note that, for the sake of conciseness, during
the loop of updates only the columns of A and B are normalized and their
norms multiply C; after the loop ends, C is normalized and its column norms
(containing that of A and B) form the values of Λ (cf. Alg.1).

Algorithm 1: Standard ALS

A :

0.2311 −0.0464
0.1891 −0.0627
0.2178 −0.0498

→
0.2311 0

0.1891 0
0.2178 0

→
0.6252 Undefined

0.5118 Undefined
0.5893 Undefined

→
0.6252

0.5118
0.5893
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B :

[
0.2962 0
1.0561 0

]
→
[
0.2962 0
1.0561 0

]
→
[
0.2701 Undefined
0.9628 Undefined

]
→
[
0.2701
0.9628

]

C :


0 0

0.4978 0
0 0

1.3779 0
1.3779 0

→


0 0
0.4978 0

0 0
1.3779 0
1.3779 0

→


0 0
0.2018 0

0 0
0.5585 0
0.5585 0

→


0
0.2018

0
0.5585
0.5585


At the end the output of standard ANLS results in:

A =

0.8004
0.0249
0.5990

 ;B =

[
0.0165
0.9999

]
;C =


0

0.0835
0

0.7046
0.7046


Algorithm 2: Modified ANLS (using Φ1)

A :

0.2311 −0.0464
0.1891 −0.0627
0.2178 −0.0498

→
0.2311 0.0464

0.1891 0.0627
0.2178 0.0498

→
0.6252 0.5015

0.5118 0.6772
0.5893 0.5384


B :

[
0.3420 0.4425
1.1203 0.6211

]
→
[
0.3420 0.4425
1.1203 0.6211

]
→
[
0.2919 0.5802
0.9564 0.8145

]

C :


0 0

−0.4978 −7.6392
0 0

2.9691 11.1635
2.9691 11.1635

→


0 0
0 7.6392
0 0

2.9691 0
2.9691 0

→


0 0
0 0.5392
0 0

1.2853 0
1.2853 0


At the end the output of Modified ANLS results in:

A =

0.8025 0.1914
0.0089 0.9106
0.5966 0.3662

 ;B =

[
0.0088 0.7495

1 0.6620

]
;C =


0 0
0 1
0 0

0.7071 0
0.7071 0



5 Computer results

500 realizations of 10× 5 matrices {A,B,C} are drawn. The rank of the tensor
that is tested is hence R = 5. Entries of factor matrices are the absolute value
of i.i.d. drawn from a standard Gaussian distribution. On each realization, both
ANLS and a modified version based on the minimization of Φ1 are run.

As can be seen in Fig. 1, 107 realizations out of 500 are unsuccessful with
ANLS, that is, 107 realizations generate one fully negative column in a factor
matrix which is then zeroed due to hard thresholding. This eventually leads to
a decrease of the rank down to 4 and hence to a large reconstruction error (close
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Fig. 1. Histograms of the error, in log10 scale, obtained after 500 iterations. Top: ANLS.
Middle: ANLS modified with Φ1. Bottom: ANLS modified with Φ1 and with column
reinitialization.

to 10−1). Among those 107 pathological cases, our simple function described by
Alg.2 could cope with 92 of them without a significant increase in complexity.
However, 15 realizations remain unsolved, because they correspond to either one
of two particular cases: (i) either one column, say a(ro), is fully negative, and
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the two others, namely b(ro) and c(ro) are fully positive, or (ii) all the three
columns are fully negative.

Fig. 2. The average error obtained after 500 iterations, as a function of the number
of iterations in ANLS (blue crosses), ANLS modified with Φ1 (red circles), and ANLS
modified with Φ1 and with column reinitialization (yellow triangles).

In order to cope with the latter cases, a straightforward improvement was
brought in Alg. 3, by drawing a fresh column vector (also the absolute value of
i.i.d drawn from a standard Gaussian distribution) to replace null vectors when
generated in the unsolved pathological cases, before normalizing the columns.
The results can be seen in Fig.1 (bottom) and Fig.2, where all 15 cases were
solved and the rank was preserved.

6 Concluding remarks

In this paper, we have emphasized the fact that rank-1 tensors should not be
treated as a collection of vectors without care, and showed an illustration in
the case of ANLS using hard thresholding. In the latter case, two modifications
have been proposed to fix the problem. In future works, we plan to investigate
applications to other algorithms such as ADMM, and/or using soft thresholding.
The influence of noise would also deserve to be further addressed.
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