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 15 

Abstract. The purpose of this article is to study the portability of a non-intrusive and free of any external / internal disturbance 16 
diagnosis tool devoted to the monitoring of the State of Health (SoH) of PEM Fuel Cell (PEMFC) stack. The tool is based on a 17 
thorough analysis of the stack voltage signal using a multifractal formalism and wavelet leaders. It offers well-suited signatures 18 
indicators on the SoH of the Fuel Cell. Some relevant descriptors extracted from these patterns (singularity features) are used in 19 
the frame of Machine Learning approaches to allow the PEMFC fault identification. The proposed diagnosis strategy is evaluated 20 
with two different PEMFC stacks. The first one is designed for automotive applications and the second one is dedicated to stationary 21 
use (micro combined heat and power - µCHP application). 22 

 23 

 24 

1. Introduction 25 

Fuel cells (FC) are considered as a promising alternative way 26 
for energy conversion [1]. To ensure their durability, reliability 27 
and safety, many fault diagnosis and fault tolerant control 28 
methods have been proposed. These methods can be classified 29 
into two groups: model-based methods [2-5] and data-driven 30 
methods [6-8]. The methods of the first group are very 31 
cumbersome and complex because they require an in-depth 32 
knowledge of the multi-physical mechanisms (thermal, 33 
electrical, electrochemical, and fluidic ones) which can occur 34 
in FC systems. They are based on numerous parameters 35 
governing its operation, and their values are difficult to 36 
estimate. Some model-based methods allows a deeper 37 
understanding of the FC physics but they might be not suitable 38 
to provide an accurate / quantitative description of the FC 39 
performances. Hence, the data-driven techniques attract more 40 
and more attention because of their simplicity regarding the 41 
implementation and the good performances obtained without 42 
profound system structure knowledge. They are supported by 43 
efficient signal processing methods as: Fourier transform [9], 44 
multi-resolution analysis [10, 11], singularity analysis [12, 13]. 45 
For fault identification and isolation tasks, some works use 46 
Electrochemical Impedance Spectra (EIS) as normal or faulty 47 
operation signatures to supply artificial intelligence algorithms 48 
(based for instance on fuzzy logic [14] or neural networks [15]) 49 
or conventional pattern recognition approaches (based on 50 

Support Vector Machines (SVM) [16], k-nearest neighbors 51 
(knn) [13] methods). 52 

This work aims at studying the portability of an innovative data 53 

driven approach dedicated to PEMFC diagnosis, named 54 

singularity analysis. This method consists in analyzing the 55 

pointwise singularities stamped in the stack voltage signal for 56 

various FC operating conditions. The singularity features are 57 

then summarized in the form of concave arcs estimated thanks 58 

to a set of mathematical equations, baptized multifractal 59 

formalism [17-19]. The advanced analysis tool, named Voltage 60 

Singularity Spectrum (VSS) is then obtained using a non-61 

intrusive manner and without affecting in any way the FC 62 

operation. Indeed, no external additional AC-solicitation has to 63 

be superimposed to the existing DC load current as it is the case 64 

in the usual EIS operation mode. 65 

This paper is organized as follow. Section 2 deals with the 66 
experimental work and environment conducted with two 67 
PEMFC stacks. In section 3, a brief mathematical foundation 68 
of the singularity measurement is given. In section 4, we show 69 
how it is possible to make the singularity spectrum combined 70 
with Machine Learning techniques as a PEMFC diagnosis tool. 71 
Then, the portability of the proposed tool is discussed. Main 72 
conclusions are given in Section 5. 73 



Paper Submitted to ICEREGA’17 

 

 

2. Experimental 1 

Synopsis of the investigated PEM Fuel Cells 2 

In our study, two PEMFC stacks are experimented to evaluate 3 
the portability of the proposed diagnosis tool. The first one is 4 
an 8 cells stack designed for automotive applications and 5 
manufactured by CEA (Alternative Energies and Atomic 6 
Energy Commission). The second one is a 12 cells stack 7 
dedicated to stationary application (micro combined heat and 8 
power - µCHP application). It is designed and marketed by 9 
Riesaer Brennstoffzellentechnik GmbH and Inhouse 10 
Engineering GmbH, Germany. 11 
The first stack (PEMFCAuto) is made of metallic gas distributor 12 
plates. The electrode active surface of a cell is equal to 220 13 
cm2. It is fed by air at cathode and pure hydrogen (H2) at anode. 14 
A summary of the FC nominal operating conditions is given in 15 
Table 1. The stack operates with a nominal current of 110 A. 16 
A picture of the stack is shown in Fig. 1(a).  17 
The second stack (PEMFCµCHP) is fed by air at cathode, and at 18 
anode by a fuel mixture (75 % of H2 and 25 % of carbone 19 
dioxide -CO2) simulating a reformat. It is made of graphite gas 20 
distributor plates. The electrode’s active surface is 196 cm2. 21 
The stack operates with a nominal current of 80 A. A picture 22 
of the stack is given in Fig. 1(b). A summary of the FC nominal 23 
operating parameters and other main characteristics are given 24 
in Table 2. 25 

Fig. 1. Pictures of the two investigated PEMFC stacks: 26 
a) 8 cell stack designed for automotives (PEMFCAuto), 27 

b) 12 cell stack designed for μCHP operation (PEMFCµCHP). 28 
 29 

Table 1. PEMFCAuto nominal operating conditions. 30 

Coolant flow: deionized water 2 l/min 

Anode stoichiometry rate (H2) 1.5 

Cathode stoichiometry rate (air) 2 

Absolute pressure for H2 and air inlets 150 kPa 

Max. anode - cathode pressure gap  30 kPa 

Temperature of the cooling circuit 80°C 

Anode and cathode relative humidity rate 50 % 

Nominal Current 110 A 

Table 2. The PEMFCµCHP nominal operating conditions. 31 

Coolant flow: deionized water 3 l/min 

Anode stoichiometry rate (H2 & CO2 mix) 1.3 

Cathode stoichiometry rate (air) 2 

Absolute pressure for H2 and air inlets 150 kPa 

Max. anode - cathode pressure gap 20 kPa 

Temperature of the cooling circuit 75°C 

Anode and cathode relative humidity rate 50 % 

Nominal Current 80 A 

 32 

Experimental process 33 

The above described PEMFCs were experimented with 34 
testbenches developed in the FC platform of Belfort, France. It 35 
includes mainly: 36 

• a complete gas conditioning sub-system including gas 37 
humidifiers at anode and cathode, 38 

• a test stand section dedicated to the control of the 39 
temperature inside the stack and including the FC primary 40 
water circuit. 41 

• an electric / electronic management sub-system, 42 

• an electronic load. 43 
 44 

The monitoring and the control of the FC testbenches 45 
parameters are done through National Instruments materials 46 
and a dedicated software. A Human-Machine Interface (HMI) 47 

was also developed in-lab using Labview
TM

. 48 

The purpose of the experimental protocol was to introduce 49 
different controlled health states into the PEMFC stacks by 50 
configuring various operating parameters. Two PEMFC health 51 
states were set: no stack failure state (when the FC is operating 52 
under normal parameters) and with stack failure state (when 53 
the FC is operating under abnormal / severe parameters). 54 
Different scenarios of FC system failure were associated to the 55 
changing of different setting physical parameters through the 56 
control-command interface of the testbenches, namely: 57 
cathode stoichiometry rate (FSC), anode stoichiometry rate 58 
(FSA), gas pressure (P), cooling circuit temperature (T) and 59 
relative humidity level (RH). 60 
The set of the tests performed, with the two stacks and 61 

according to the degrading operating parameters, is reported 62 

in Table 3.63 

 64 

Table 3. The set of FC operating conditions applied during the experimentation of the two stacks. The underlying parameter values 65 
correspond to the introducing faults. The notation ‘ND’ means that the FC experiment is not done. 66 

Parameters 

value 

Ref DFSC DFSA DP DT DH DCO 

(b) (a) 
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 Auto µCHP Auto µCHP Auto µCHP Auto µCHP Auto µCHP Auto µCHP Auto µCHP 

FSC 2 2 1.3 2.6 

1.6 

2 2 2 2 2 2 2 2 2 2 

FSA 1.5 1.3 1.5 1.3 1.3 1.5 

1.2 

1.5 1.3 1.5 1.3 1.5 1.3 1.5 1.3 

P (bar abs) 1.5 0.1 1.5 0.1 1.5 0.1 1.3 ND 1.5 0.1 1.5 0.1 1.5 0.1 

T (°C) 80 70 80 70 80 70 80 70 75 72 

65 

80 70 80 70 

RH (%) 50  50  50 50 50 50 50 50 50 50 ND 46 

54 

50  50  

Presence of CO 

(ppm) 

0 0 0 0 0 0 0 0 0 0 0 0 10 ND 

 1 

3. Singularity measurement 2 

Multifractals are the distribution of singularities, all lying on 3 
interwoven sets of varying fractal dimensions [20]. 4 
Multifractals arise in a variety of physical signals in the forms 5 
of self-similar sub-sets of samples, such as Multifractional 6 
Brownian Motion (MBM) signal [21], signals in turbulence 7 
[22], and temporal series in finance [23]. 8 

The singularity analysis, also named “multifractal analysis” 9 
allows the characterization of data by describing globally and 10 
geometrically the fluctuations of local regularity, usually 11 
measured by means of the Hölder exponent ℎ. 12 

It describes the time ( �) based fluctuations of the signal given 13 
by a function �(�). This is achieved by comparing the local 14 
variations of �(�) around fixed time position ��, against a local 15 
power law behavior: �(��) is said to belong to �	(��) with 16 

 ≥ 0 if there are a positive constant � and a polynomial 
, 17 

satisfying deg (
) < 
, such that ��(�) − 
��(�)� ≤ �|� −18 

��|	. 19 

The Hölder exponent is defined as the largest 
 such as: 20 
ℎ(��) = sup�
: � ∈ �	(��)�.  21 

In practice, when ℎ(��) takes a value which tends to zero, the 22 
signal exhibits a strong singularity at �� (Fig. 2). 23 

 24 

 25 

Fig. 2. Illustration of two pointwise regularity measures in the 26 
signal �(�) quantified by the Hölder exponent ℎ. 27 

 28 

The singularity strength regarding the variability of the 29 
regularity of �(�) vs. � is usually described through the so-30 
called singularity spectrum. Building a singularity spectrum 31 
consists in associating to each Hölder exponent ℎ the 32 
Hausdorff dimension  (ℎ) of the sets of points which exhibit 33 
the same value of ℎ: 34 

ℎ ⟼  (ℎ) 35 

 36 

An example of singularity spectrum is given in Fig. 3. 37 

 38 

 39 

Fig. 3. Example of a singularity spectrum  (ℎ). 40 

The numerical implementation of the mathematical formula 41 
can be achieved using the wavelet leaders multifractal 42 
formalism. Detailed descriptions of the theoretical and 43 
practical relevance, and benefits of the use of wavelet leaders 44 
for singularity analysis are depicted in [17-19]. 45 

 46 
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4. Voltage Singularity Spectrum as diagnosis tool 1 

 2 
In this work, we propose to study the portability of the new 3 
diagnosis tool based on the investigation of singularity 4 
measurements stamped in FC stack voltage signals. Indeed, 5 
measuring local singularities on voltage signals provides 6 
suitable information about the evolving dynamics of non-7 
stationary and non-linear processes involved in FC systems. 8 
We assess the generalization and the usefulness of the 9 
proposed VSS by establishing the diagnosis on two databases 10 
issued from the two investigated PEMFC stacks. 11 
 12 
For the stack PEMFCAuto, 10 scenarios are analyzed (normal 13 
and abnormal conditions including one fault or more complex 14 
situations with 2 or 3 faults occurred simultaneously). 15 
For the stack PEMFCµCHP, 9 operating conditions (normal and 16 

abnormal conditions) are studied. 17 

 18 
In this aim, we use 30 voltage profiles for each FC operating 19 
condition; each voltage profile covers 1000 voltage samples 20 
acquired at a frequency fa =11Hz (Fig. 4) using the monitoring 21 
data system of the FC experimental test bench. 22 
 23 
To perform the VSS, the analyzing wavelet is selected as 24 
Daubechies 3 (‘Db3’) function (with 3 vanishing moments, 25 
Fig. 4). 26 
 27 

 28 
Fig. 4. Stack voltage signal scanned by Daubechies wavelet 29 

(Db3) for VSS computing. 30 

 31 

An example of a set of 30 VSS is shown in Fig. 5.  32 

 33 

Fig. 5. Typical VSS computed on 30 profiles covering 1000 34 
stack voltage samples. 35 

Singularity features are then used to supply the Machine 36 
Learning approach, named k Nearest Neighbors (kNN). To 37 
improve the performance of the fault classification method, the 38 
Minimum Redundancy - Maximum Relevance (MRMR) 39 
technique [24] is used to select some relevance features 40 
offering the best classification rates. 41 
Actually, 20 VSS / class are used to generate the learning 42 
database and the 10 others serve as test data to evaluate the 43 
performances of the classifier. Each VSS contains 38 features 44 
(19 h data and 19 D(h) data). So, by applying the MRMR 45 
method on the full feature set (38 features) of the VSS, the good 46 
classification rate obtained using the top 6 selected features is 47 
about 89.4 % for the stack PEMFCAuto , separating 10 classes 48 
(10 FC operating conditions). 49 
For the second stack PEMFCµCHP, 9 classes are discriminated 50 
with a success of 95.5 %. 51 
 52 
The best results of the classification rates of the different 53 
operating conditions studied are embedded in confusion 54 
matrixes given by Tables 4 and 5, for the stacks PEMFCAuto 55 
and PEMFCµCHP respectively.  56 
  57 
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 1 
Table 4. Confusion matrix of the good classification rates obtained with MRMR and kNN from the VSS computed with the stack 2 
voltage signals of the PEMFCAuto. The studied FC operating conditions are: Ref: normal conditions - DFSC: cathode flow fault 3 
(slight air starvation) - DFSA: anode flow fault (slight H

2
 starvation) - DP: gas pressure fault (lower gas pressure) - DT: cooling 4 

circuit temperature fault (lower stack temperature) - DCO: carbon monoxide poisoning (H
2
+CO). 5 

Class C0 C1 C2 C3 C4 C5 C6 C7 C8 C9 

Ref 87.5 0 0 12.5 0 0 0 0 0 0 

DFSC 0 100 0 0 0 0 0 0 0 0 

DFSA 0 0 100 0 0 0 0 0 0 0 

DP 50 0 0 50 0 0 0 0 0 0 

DT 0 0 0 0 100 0 0 0 0 0 

DCO 0 0 0 0 0 100 0 0 0 0 

DFSC & DP 0 0 0 0 0 0 100 0 0 0 

DFSA & DP 0 0 0 0 0 0 0 71.43 28.57 0 

DFSC & DFSA 0 0 0 0 0 0 0 0 100 0 

DFSC & DFSA & DP 0 0 0 0 0 0 0 0 0 100 

With: �� ≡ #$%& , �( ≡  )*�+ , �, ≡  )*-+ , �. ≡  
& , �/ ≡  0& , �1 ≡  �2+ , �3 ≡  )�* &  
+ , 6 

 �5 ≡  )*- &  
+ , �6 ≡  )*� &  )*-+ , �7 ≡  )*� &  )*- &  
+ . 7 

 8 
 9 
Table 5. Confusion matrix of the good classification rates obtained with MRMR and kNN from the VSS computed with the stack 10 

voltage signals of the PEMFCµCHP. The studied FC operating conditions are: Ref : normal conditions - DFSC
↗
: cathode flow fault 11 

(air over-supply) - DFSC
↘
 : cathode flow fault (slight air starvation) - DFSA

↗
 : anode flow fault (H

2
 over-supply) - DFSA

↘ 
: 12 

anode flow fault (H
2
 starvation) - DT

↗
: cooling circuit temperature fault (higher temperature) - DT

↘ 
: cooling circuit temperature 13 

fault (lower stack temperature) - DRH
↗
: dew temperature fault (higher dew temperature) - DRH

↘
: dew temperature fault (lower 14 

dew temperature). 15 
 16 

Class C0 C1 C2 C3 C4 C5 C6 C7 C8 

Ref 100 0 0 0 0 0 0 0 0 

DFSC↗ 0 100 0 0 0 0 0 0 0 

DFSC↘ 0 0 100 0 0 0 0 0 0 

DFSA↗ 0 0 0 90 0 10 0 0 0 

DFSA↘ 0 0 0 0 90 0 0 0 10 

DT↗ 0 0 0 20 0 80 0 0 0 

DT↘ 0 0 0 0 0 0 100 0 0 

DRH↗ 0 0 0 0 0 0 0 100 0 

DRH↘ 0 0 0 0 0 0 0 0 100 

With: :; ≡ #$%& ,  :< ≡  )*�↗+ ,  := ≡  )*�↘+ ,  :> ≡ DFSA↗ + ,  :? ≡ DFSA↘ 
+ ,  :@ ≡ DT↗ +,  :A ≡ DT↘ 

+, :B ≡ DRH↗ + ,17 

                 :C ≡ DRH↘ 
+

. 18 

 19 
 20 
As we can see, the proposed diagnosis strategy identifies 21 
successfully several complex operating faults (i.e. slight 22 
deflections from the nominal operating conditions, and even 23 
combination of faults) for both PEMFCAuto and PEMFCµCHP. 24 
 25 

5. Conclusions 26 

In this study, VSS are computed on voltage signals acquired 27 
under different FC operating conditions (normal and abnormal, 28 

i.e. more or less severe, deviations from the normal conditions) 29 
with considering situations that combine 2 or 3 faults 30 
simultaneously. Two stacks are investigated: a PEMFCAuto 31 
stack that is designed for automotive applications and a 32 
PEMFCµCHP stack, dedicated to stationary ones.  33 

Singularity features extracted from the estimated VSS are 34 
classified using Machine Learning approach, named k-Nearest 35 
Neighbors (kNN). 36 
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The obtained classification results show that the proposed 1 

PEMFC diagnosis tool allows identifying simple operating 2 

faults and more complicated situations that contain several 3 

fault types. The diagnosis are realized on two different test 4 

stands, for different stack sizes, powers and technologies, with 5 

different targeted environments of power application. 6 

In this paper, we demonstrate that the singularity analysis of 7 

voltage signal offers a generic diagnosis tool for the PEMFC 8 

SoH monitoring. One key-point of the method is that the VSS 9 

can be estimated from the “free” evolution of the stack voltage 10 

and without affecting in any way the FC operation: no external 11 

additional solicitation is required to reveal the SoH patterns. 12 

 13 
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