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Constructing flat inputs for two-output systems * Florentina Nicolau † , Witold Respondek ‡ and Jean-Pierre Barbot † Abstract-In this paper, we study the problem of constructing flat inputs for two-output dynamical systems. The notion of flat inputs has been introduced by Waldherr and Zeitz in [START_REF] Waldherr | Conditions for the existence of a flat input[END_REF], [START_REF] Waldherr | Flat inputs in the mimo case[END_REF] and can be seen as dual to that of flat outputs. In the single-output case, a flat input can be constructed if and only if the original system together with its output is observable. In the multi-output case, the observability is not necessary for the existence of flat inputs. We start by discussing the case when the dynamical system together with the given output is observable and we present a generalization of the results of [START_REF] Waldherr | Flat inputs in the mimo case[END_REF] by relating them with the notion of minimal differential weight. Then, we give our main theorems. We consider the unobservable case for which we study the local and global problems. We completely describe the local case, discuss the issue of the minimal modification of the original system, and propose a solution for the global problem. Finally, we explain how our results can be applied to secure communication.

I. INTRODUCTION

Consider the following nonlinear observed dynamics:

Σ : ẋ = f (x), (1) 
where x is the state defined on R n (or more generally, on an n-dimensional manifold X), together with y = h(x) ∈ R 2 the measurements. The problem that we are studying in this paper is to find control vector fields g 1 and g 2 (or, equivalently, to place the actuators or the inputs) such that the control-affine system Σ c : ẋ = f (x)+g 1 (x)u 1 +g 2 (x)u 2 , associated to Σ, is flat with the original measurements (h 1 , h 2 ) being a flat output. The notion of flatness was introduced in control theory in the 1990's, by Fliess, Lévine, Martin and Rouchon [START_REF] Fliess | Sur les systemes non linéaires différentiellement plats[END_REF], [START_REF] Fliess | Flatness and defect of non-linear systems: introductory theory and examples[END_REF], see also [START_REF] Isidori | A sufficient condition for full linearization via dynamic state feedback[END_REF], [START_REF] Jakubczyk | Invariants of dynamic feedback and free systems[END_REF], [START_REF] Martin | Contribution à l'étude des systèmes différentiellement plats[END_REF], [START_REF] Pomet | A differential geometric setting for dynamic equivalence and dynamic linearization[END_REF], and has attracted a lot of attention because of its multiple applications in the problem of constructive controllability and motion planning (see, e.g., [START_REF] Martin | Flat systems, equivalence and trajectory generation[END_REF] and references therein). Flat systems form a class of control systems whose set of trajectories can be parametrized by m functions and their time-derivatives, m being the number of controls. More precisely, the control system Ξ : ẋ = F (x, u), where x ∈ R n and u ∈ R m , is flat if we can find m functions, ϕ i (x, u, . . . , u (l) ) such that x = γ(ϕ, . . . , ϕ (s-1) ) and u = δ(ϕ, . . . , ϕ (s) ),

for certain integers l and s, where ϕ = (ϕ 1 , . . . , ϕ m ) is called a flat output. Therefore the time-evolution of all state and control variables can be determined from that of flat outputs without integration and all trajectories of the system can be completely parameterized. If all functions ϕ i depend on the state only, then the system is called x-flat and this will always be the case in our study.

The construction of a flat output can be seen as a problem of sensor placement in order to achieve flatness of the resulting input-output system. Dual to this, one can consider the problem of an actuator placement (i.e., of finding control vector fields g 1 and g 2 ) in order to achieve the same property. This dual problem has been recently introduced by Waldherr and Zeitz [START_REF] Waldherr | Conditions for the existence of a flat input[END_REF], [START_REF] Waldherr | Flat inputs in the mimo case[END_REF] who call inputs u 1 and u 2 multiplying, respectively, g 1 and g 2 , as flat inputs (which are objects dual to flat outputs). One of the motivations to construct a flat input for a given output is that with such an input, the tracking problem for that output can be solved with no need to calculate the zero dynamics (see, e.g., [START_REF] Graichen | A new approach to inversion-based feedforward control design for nonlinear systems[END_REF]), but constructing flat inputs may be useful for other problems as well: in this paper, we explain how it can be applied to secure communication.

In the single-output case, a flat input can be constructed if and only if the system Σ together with its output h is observable and the control vector field associated to the flat input can be computed via a system of linear algebraic equations, see [START_REF] Waldherr | Conditions for the existence of a flat input[END_REF]. In the multi-output case, observability is not necessary for the construction of flat inputs. The observable case has been discussed in [START_REF] Waldherr | Flat inputs in the mimo case[END_REF] and the control vector fields (there are as many as the number of outputs) associated to the flat inputs can be determined in a similar way as for the SISO case. The goal of this paper is to treat the unobservable case. It is crucial to distinguish the observability (or unobservability) of controlled systems from observability of uncontrolled ones (recall that for nonlinear systems, the observability property depends on the control [START_REF] Gauthier | A simple observer for nonlinear systems with applications to bioreactors[END_REF], [START_REF] Hammouri | Observer synthesis for stateaffine systems[END_REF]). Here we deal with unobservable uncontrolled system that become at least locally weakly observable due to a suitable design of flat inputs. We are interested in local and global results. We give a complete solution for the local problem: we show that locally there always exist control vector fields g 1 and g 2 such that the control-affine system Σ c is flat with h being a flat output. The link between the observed (via the given outputs h i ) subsystem and the unobserved one is made with the help of flat inputs and some linking terms. We discuss how these linking terms can be chosen and address the problem of the minimal modification of the initial dynamical system Σ (the measure of modification being the number of equations that we have to change by adding inputs). Finally, following the local results, we present a solution for the global problem.

The paper is organized as follows. In Section II, we recall the definition of flatness and the notion of differential weight of a flat system. We discuss (from the point of view of minimal differential weight) the case when the dynamical system Σ together with a given output h is observable and present a generalization of the results of [START_REF] Waldherr | Flat inputs in the mimo case[END_REF]. In Section III, we give our main theorems. We consider the unobservable case for which we study the local and global problems. We completely describe the local case, discuss the issue of the minimal modification of Σ and, finally, propose a solution for the global problem. We explain how our results can be applied to secure communication in Section IV and provide proofs in Section V.

II. DEFINITIONS AND PROBLEM STATEMENT

Consider the nonlinear control systems Ξ : ẋ = F (x, u), where x ∈ X and u ∈ U , with X (resp., U ) an open subset of R n (resp., of R m ), or more generally, an n-dimensional manifold X and an m-dimensional manifold U, respectively. Fix an integer l ≥ -1 and denote U l = U × R ml and u l = (u, u, . . . , u (l) ). For l = -1, the set U -1 is empty and u -1 in an empty sequence.

Definition 1: The system Ξ : ẋ = F (x, u) is flat at (x 0 , ūl 0 ) ∈ X × U l , for l ≥ -1, if there exist a neighborhood O l of (x 0 , ūl 0 ) and m smooth functions ϕ i = ϕ i (x, u, u, . . . , u (l) ), 1 ≤ i ≤ m, defined in O l , having the following property: there exist an integer s and smooth functions γ i , 1 ≤ i ≤ n, and δ j , 1 ≤ j ≤ m, such that

x i = γ i (ϕ, φ, . . . , ϕ (s-1)
) and u j = δ j (ϕ, φ, . . . , ϕ (s) )

for any C l+s -control u(t) and corresponding trajectory x(t) that satisfy (x(t), u(t), . . . , u (l) (t)) ∈ O l , where ϕ = (ϕ 1 , . . . , ϕ m ) and is called a flat output.

If all functions ϕ i depend on the state only, then the system is called x-flat and this will be the case for all systems considered in the paper.

The minimal number of derivatives of components of a flat output, needed to express x and u, will be called the differential weight of that flat output and is formalized as follows. By definition, for any flat output ϕ of Ξ there exist integers s 1 , . . . , s m such that

x = γ(ϕ 1 , φ1 , . . . , ϕ (s1) 1 , . . . , ϕ m , φm , . . . , ϕ (sm) m ) u = δ(ϕ 1 , φ1 , . . . , ϕ (s1) 1 , . . . , ϕ m , φm , . . . , ϕ (sm) m ).
(3) Moreover, we can choose (s 1 , . . . , s m ), γ and δ such that (see [START_REF] Respondek | Symmetries and minimal flat outputs of nonlinear control systems[END_REF]) if for any other m-tuple (s 1 , . . . , sm ) and functions γ and δ, we have

x = γ(ϕ 1 , φ1 , . . . , ϕ (s1) 1 , . . . , ϕ m , φm , . . . , ϕ (sm) m ) u = δ(ϕ 1 , φ1 , . . . , ϕ (s1) 1 , . . . , ϕ m , φm , . . . , ϕ (sm) m ), then s i ≤ si , for 1 ≤ i ≤ m. We will call m i=1 (s i + 1) = m+ m i=1 s i the differential weight of ϕ. A flat output of Ξ is called minimal if its differential
weight is the lowest among all flat outputs of Ξ. We define the differential weight of a flat system to be equal to the differential weight of a minimal flat output. The differential weight of Ξ is at least n + m, since we have to express n states and m independent controls and in order to do that, we need at least n + m derivatives (taking into account also those of order zero).

Flatness is a property of the state-space dynamics ẋ = F (x, u) of a control system. It can also be described as a property of the input-output map for a dummy output y. In fact, x-flatness is equivalent to the existence of an R mvalued dummy output y = ϕ(x) that renders the system ẋ = F (x, u) observable and left-invertible [START_REF] Respondek | Right and left invertibility of nonlinear control systems[END_REF]. Indeed, expressing the state as x = γ(ϕ, φ, . . . , ϕ (s-1) ) and the control as u = δ(ϕ, φ, . . . , ϕ (s) ) corresponds, respectively, to observability and left invertibility.

Let us now consider the dynamical system Σ, given by ( 1), together with an output y = h(x) ∈ R 2 . In order to emphasize the fact that the system is observed 1 we will use the notation (Σ, h). The problem that we are studying in this paper is to construct control vector fields g 1 and g 2 (whose inputs u 1 and u 2 are called flat inputs) such that the controlaffine system Σ c associated to Σ, and given by

Σ c : ẋ = f (x) + g 1 (x)u 1 + g 2 (x)u 2 ,
is x-flat with respect to the the original output (h 1 , h 2 ). In that case, we will say that the pair (Σ c , h) is x-flat.

As we have already noticed flatness is closely related to observability. Thus, for the problem of constructing flat inputs, it is natural to start by checking observability of Σ with respect to h, see [START_REF] Hermann | Nonlinear controllability and observability[END_REF], [START_REF] Krener | Nonlinear observers with linearizable error dynamics[END_REF]. We denote by H(x) the codistribution H(x) = span {dL j f h i (x), j ≥ 0, 1 ≤ i ≤ 2} associated to the output h. We will actually distinguish the observable and unobservable case. We will need the notion of observability quasi-indices: Definition 2:

The observed system (Σ, h) is said to have observability quasi-indices (ρ 1 , ρ 2 ) at x 0 ∈ R n if ρ i ≥ 1, for 1 ≤ i ≤ 2, ρ 1 + ρ 2 = n and span {dL j f h i (x 0 ), 0 ≤ j ≤ ρ i -1, 1 ≤ i ≤ 2} = R n .
Of course, if (Σ, h) has observability quasi-indices, then it is observable. A related concept is that of observability indices, see [START_REF] Krener | Nonlinear observers with linearizable error dynamics[END_REF], which are the largest (in the lexicographic ordering) quasi-indices such that ρ 1 ≤ ρ 2 . Contrary to the observability indices (which are unique), the observability quasi-indices (ρ 1 , ρ 2 ) are no longer unique and we do not assume any order relation between them. Since observability quasi-indices may depend on a point, we say that quasi-

indices (ρ 1 , ρ 2 ) are uniform in a subset X of R n if (ρ 1 , ρ 2 ) form quasi-indices at any x ∈ X .
The following theorem states that the observed system (Σ, h) can be made flat of differential weight n + 2 (which is the minimal possible) if and only if it admits observability quasi-indices and moreover, gives a system of algebraic equations (whose coefficients are calculated in terms of the Lie derivatives of the outputs) to be solved in order to construct flat inputs.

Theorem 1: Consider the observed system (Σ, h) around x 0 ∈ R n and assume that rk H(x 0 ) = n. The following conditions are equivalent: (O1) There exist observability quasi-indices (ρ 1 , ρ 2 ) at x 0 ;

(O2) There exist g 1 and g 2 such that the system (Σ c , h) is

x-flat at x 0 of differential weight n + 2, with h being a minimal flat output; Moreover, under (O1), g 1 and g 2 are given by (i) The distribution G = span {g 1 , g 2 } satisfies

G ⊥ = span {dL j f h i , 0 ≤ j ≤ ρ i -2, 1 ≤ i ≤ 2}, or, equivalently, by (ii) The decoupling matrix (L gj L ρi-1 f h i (x 0 )), for 1 ≤ i, j ≤ 2, of (Σ c , h), is of full rank (equal to 2). If (ρ 1 , ρ 2 )
are uniform quasi-indices on X (in particular, on X = R n ), then the vector fields g 1 and g 2 exist globally on X , on which are given by (ii), and they yield the global system Σ c on X that is locally flat around any x ∈ X with the help of the globally defined flat output

(ϕ 1 , ϕ 2 ) = (h 1 , h 2 ).
Remark 1: Theorem 1 generalizes the result of [START_REF] Waldherr | Flat inputs in the mimo case[END_REF] according to which if a system has observability quasi-indices (ρ 1 , ρ 2 ) and the vector fields g 1 and g 2 satisfy (ii), then the control system (Σ c , h) is flat. We also prove such g i 's (and only such) lead to a flat system of minimal weight.

The above conditions are local and valid around a nominal point x 0 that can be equilibrium or not. If quasi-indices are uniform on R n , then the control vector fields g 1 and g 2 exist globally and the control system is x-flat on R n with a flat output being globally defined as

ϕ i = h i , 1 ≤ i ≤ 2, nev- ertheless representation (3) is, in general, local only. In par- ticular, the map (x, u) →(h 1 , ḣ1 , . . . , h (s1) 1 , h 2 , ḣ2 , . . . , h (s2) 
2 ) need not be globally injective. Notice that there can be many observability quasi-indices and different observability quasiindices (ρ 1 , ρ 2 ) lead to different control vector fields g 1 and g 2 and thus to different flat control systems (Σ c , h).

In particular, to any choice of observability quasi-indices (ρ 1 , ρ 2 ), there correspond flat inputs u 1 , u 2 giving (3) with s i = ρ i . An interesting remark is that in some practical applications, it may be interesting to use more derivatives of a particular output component to decrease the number of derivatives of another (more sensitive) component. Notice also that for each pair (ρ 1 , ρ 2 ), the resulting control system is static feedback linearizable with (h 1 , h 2 ) playing the role of the linearizing output. It is well known that systems linearizable via invertible static feedback are flat and their description (3) uses the minimal possible, which is n + 2, number of time-derivatives of the components of the flat output (see [START_REF] Nicolau | Flatness of multi-input control-affine systems linearizable via one-fold prolongation[END_REF] where that property is discussed). So, according to Theorem 1, if the pair (Σ, h) is observable, then there always exist g 1 and g 2 such that the associated control system Σ c is flat with h being a flat output and, moreover, g 1 and g 2 can be chosen such that Σ c is static feedback linearizable (see [START_REF] Jakubczyk | On linearization of control systems[END_REF], [START_REF] Hunt | Linear equivalents of nonlinear time varying systems[END_REF] for the latter property) and can be calculated via a system of algebraic equations. The goal of this paper is thus to solve the problem of finding flat inputs for the unobservable two-output case. In that case the corresponding flat control system will not be static feedback linearizable, its differential weight is thus greater than n+2 and measures actually the smallest possible dimension of a precompensator linearizing dynamically the system.

Similarly to the definition of observability quasi-indices, we introduce the notion of unobservability quasi-indices: Definition 3:

The observed system (Σ, h) is said to have unobservability quasi-indices (ρ 1 , ρ 2 ) if dim span {dL j f h i (x), 0 ≤ j ≤ ρ i -1, 1 ≤ i ≤ 2} = dim span {dL j f h i (x), j ≥ 0, 1 ≤ i ≤ 2} = ρ 1 +ρ 2 = k < n, for all x ∈ R n .
According to the above definition, if the system (Σ, h) has unobservability quasi-indices, then it is unobservable and, in addition, the associated codistribution H(x) = span {dL j f h i (x), j ≥ 0, 1 ≤ i ≤ 2} is of constant rank, equal to k, for all x ∈ R n . This means that only k directions can be observed (and this is valid around any point). The above definition is more restrictive than the lack of observability at a point: we require the system to be nowhere observable on R n and, moreover, its observability defect to be constant.

Assumption 1: From now on, unless stated otherwise, we assume that all ranks involved are constant in a neighborhood of a given x 0 ∈ R n .

Without the above assumption (which we will apply to the ranks of certain observability codistributions), the results of this paper are actually valid on an open and dense subset of R n .

III. MAIN RESULTS

Throughout, we assume that the system (Σ, h) is not observable at x 0 , the point around which we work, and that it has unobservability quasi-indices (ρ 1 , ρ 2 ). By introducing the coordinates w j i = L j-1 f h i , for 1 ≤ j ≤ ρ i , 1 ≤ i ≤ 2, the system Σ can be transformed into the following observedunobserved form

ẇj i = w j+1 i , 1 ≤ j ≤ ρ i -1, ẇρi i = a i (w), 1 ≤ i ≤ 2, (4) 
ż = b(w, z) (5) 
with dim w = k < n and dim w + dim z = n, where z consists of any coordinates completing w to a coordinate system, and (h 1 , h 2 ) = (w 1 , w 2 ). The w-coordinates of the above form are the states observed with the help of the output h and its time derivatives and there are k of them (the rank of the codistribution H). The z-coordinates correspond to the unobserved directions, there are n -k (which is the observability defect) of them and they complete w to a coordinate system. We denote by a (resp., by b) the drift associated to the observed (resp., unobserved) subsystem.

A. Local results

The main result of the paper is given by the following theorem according to which even in the unobservable case, we can always, locally, construct control vector fields g 1 and g 2 such that the associated control system (Σ c , h) is x-flat with flat output ϕ = h. Theorem 2 below also states that the associated flat control system is of differential weight at least n + m + (n -k), where n -k ≥ 1 is the observability defect (and, in particular, it is never static feedback linearizable). The nature of the nominal point around which we work (equilibrium or not) plays an important role in our study. For each case, a normal form for the control system Σ c is presented.

Theorem 2: Consider the observed system (Σ, h) around x 0 ∈ R n and assume that rk H(x) = k < n, in a neighborhood of x 0 . We have: (U1) If there exist g 1 and g 2 such that (Σ c , h) is x-flat at (x 0 , ūl 0 ) ∈ R n ×R 2(l+1) , for a certain l ≥ -1, then the differential weight of Σ c is at least n + m + (n -k); (U2) If f (x 0 ) = 0, then there locally exists a change of z-coordinates that transforms the unobserved subsystem (5) into

żq = 0, 1 ≤ q ≤ n -k -1, żn-k = 1, (6) 
and for this form, we can always locally construct g 1 and g 2 such that

(Σ c , h) is x-flat at (x 0 , u 0 ) ∈ R n ×R 2 of differential weight n + m + (n -k),
and is given by:

N F 1        ẇj 1 = w j+1 1 ẇj 2 = w j+1 2 ẇρ1 1 = a 1 (w) + u 1 ẇρ2 2 = a 2 (w) + z 1 u 1 żq = z q+1 u 1 , żn-k = 1 + u 2 , where 1 ≤ j ≤ ρ s -1, for 1 ≤ s ≤ 2, 1 ≤ q ≤ n-k-1, and (h 1 , h 2 ) = (w 1 1 , w 1 
2 ). (U3) There locally exists (independently of whether f (x 0 ) = 0 or f (x 0 ) = 0) a change of z-coordinates that transforms the unobserved subsystem (5) into

żq i = żq+1 i , 1 ≤ q ≤ µ i -1, żµi i = b i (w, zi ), 1 ≤ i ≤ , (7) 
where µ i ≥ 1, for 1 ≤ i ≤ , i=1 µ i = n -k, and zi denotes zi = (z 1 1 , . . . , z µ1 1 , . . . , z 1 i , . . . , z µi i ), and for this form, we can always locally construct g 1 and g 2 such that (Σ c , h) is x-flat at (x 0 , u 0 ) ∈ R n × R 2 , and is given by:

N F 2            ẇj 1 = w j+1 1 ẇj 2 = w j+1 2 ẇρ1 1 = a 1 (w) + u 1 ẇρ2 2 = a 2 (w) + z 1 1 u 1 żq i = żq+1 i żµi i = b i (w, zi ) + z 1 i+1 u 1 żµ = b (w, z) + u 2 , where 1 ≤ j ≤ ρ s -1, for 1 ≤ s ≤ 2, 1 ≤ q ≤ µ i -1, for 1 ≤ i ≤ -1, and (h 1 , h 2 ) = (w 1 1 , w 1 
2 ). Since a flat system is observable (with respect to its flat output and for any inputs), we have to render the original system (Σ, h) observable with the help of the control vector fields and, in order to do that, we need to add extra linking terms between the wand the z-subsystems. For the case f (x 0 ) = 0, corresponding to the normal form N F 1, only one linking term is needed and the variable z 1 plays the role of that linking term. The link between the observed variables w and the unobserved variables z is made with the help of the control vector field g 1 only. The remaining input (flatness implies that there are necessarily two inputs, which is the number of outputs) appear at the last level of the z-chain. Since the z-chain is of length n -k, the input u 1 needs to be differentiated (n -k) times in order to express all states and the remaining control u 2 as a function of h and its timederivatives, so the differential weight is n + m + (n -k).

If f (x 0 ) = 0, then the drift corresponding to the zvariables, hat we denote by b in [START_REF] Gauthier | A simple observer for nonlinear systems with applications to bioreactors[END_REF], can be rectified (even if originally the non vanishing component of f is in the w-part): indeed, in well chosen z-coordinates, we have b(w, z) = ∂ ∂z n-k . It follows that, if x 0 is not an equilibrium point, the drift after rectification plays no role in choosing the linking term (that can be any) and, moreover, it has no impact on the triangular structure of the z-part, which is completely determined by g 1 . Notice that the vector fields g 1 , g 2 depend on the unobserved (with respect to the original output h) states only and they are designed to be in the chained form. This particular form guarantees that the differential weight of Σ c is minimal and equal to n + m + (n -k). It is clear that N F 1 is not linearizable via invertible static feedback, however, N F 1 becomes static feedback linearizable after pre-integrating n -k times the first control u 1 (thus after the application of a dynamical precompensator of dimension n -k). In order to compute the z-coordinates for the normal form N F 1, we have to solve the partial differential equation L f ψ(x) = 0. Among n -1 first integrals of f obtained this way, we chose (any) n -k -1 of them (independent modulo H) : these are the variables z j , for 1 ≤ j ≤ n -k -1. For z n-k , we have to solve again a partial differential equation:

L f ψ(x) = 1.
If x 0 is an equilibrium point of f , the drift can no longer be rectified and we need to respect its own triangular structure. In that case the system can be transformed into N F 2. This normal form actually works around any x 0 , equilibrium or not, and in order to compute the z coordinates we do not have to compute any partial differential equation. For N F 2, the linking terms are z 1 1 , z 1 2 , . . . , z 1 . In fact, we choose an arbitrary function ψ 1 1 defining the first linking term z 1 1 , we keep differentiating it, and when we loose observability again (the derivative of order µ 1 of z 1 1 depends on w and z q 1 , for 1 ≤ q ≤ µ 1 , only), we link it with the remaining still unobservable system via the control u 1 and another (arbitrarily chosen) linking term ψ 1 2 = z 1 2 . We repeat this process until all states are observable. The integer µ 1 can be interpreted as the unbservability quasi-index of ψ 1 1 = z 1 1 (observability being considered modulo span {dw j i , 1 ≤ j ≤ ρ i , 1 ≤ i ≤ 2}). Notice that linking terms are far from being unique and their choice may be important.

As for the previous case, the control vector fields g 1 and g 2 depend on z only. Moreover, u 1 appears only in the equations for ẇρ1

1 , ẇρ2 2 and żµi i , 1 ≤ i ≤ -1, and u 2 only in the equation for żµ (the number of modified equations is + 2).

If the system (Σ, h) is observable at a given x 0 , then for the corresponding flat control system (Σ c , h), even if ϕ i = h i yield a local flatness only, representing the state and the control with the help of ϕ i = h i and their derivatives is global with respect to u, so we never face singularities in the control space. This is no longer the case if (Σ, h) is unobservable, and both N F 1 and N F 2 exhibit singularities in the control space. For both normal forms, the system ceases to be flat with h as a flat output at u 1 = 0 (which is a singular control for flatness). If we want to avoid singularities in the control space, we can construct another control system as follows: in the equations for w ρ2 2 and z, replace u 1 by exp(u 1 ) (and keep u 1 unchanged for w ρ1 1 ). We obtain:

ẇρ1 1 = a 1 (w) + u 1 , ẇρ2 2 = a 2 (w) + z 1 1 exp(u 1 ), żµi i = b i (w, z i ) + z 1 i+1 exp(u 1 ), for 1 ≤ i ≤ -1.
We have thus constructed a new control system Σ c that does no longer display singularities in the control space (representing the control u, with the help of the components ϕ i = h i and their derivatives, is global), but the system is nonlinear with respect to u (which is the price for avoiding singularities).

Summing up, locally (and under the constant rank assumption), we can always construct control vector fields g 1 , g 2 such that the associated control system (Σ c , h) is flat of differential weight at least n + m + (n -k), thus, locally, the problem of constructing flat inputs is completely solved.

B. Choice of the linking terms and minimal modification of Σ

In some cases, it may be important to modify the initial dynamical system in a minimal way (the measure of modification being the number of equations for which we add an input). An interesting question arises: how to choose the linking terms in order to obtain a minimally modified system? We answer this question below.

It is clear that in our construction, for both normal forms, the w-subsystem is minimally modified because the control is added only in one equation per w-chain (which is the minimal w-modification, since we cannot achieve flatness by modifying only one w-equation). So the best we can hope for is that only three equations involve the control (we necessarily have one per w-chain involving u 1 and another for the z chain that has to be affected by u 2 ) and this is always the case if n -k = 1. If we want to modify the original system Σ in that minimal way, then we necessarily have to construct the associated flat control system using the procedure of the normal form N F 2. Indeed, for N F 1 (unless n -k = 1), the z-subsystem is maximally modified since the control appears in each equation.

If we want to get N F 2 with a minimal modification of the z-equations also in the case n -k > 1, we can use only one linking term z 1 = ψ(w, z) and the ideal one would be such that (dψ

∧ dL f ψ ∧ . . . ∧ dL n-k-1 f ψ)(w 0 , z 0 ) = 0 mod span {L j-1 f h i , 1 ≤ i ≤ 2, j ≥ 1}.
In that case, we would obtain N F 2 with µ 1 = n -k, only the last equation of the z-chain would be modified by adding u 2 , and the vector fields g 1 and g 2 would distort three equations only. Thus the existence and construction of a minimal modification is equivalent to the existence of such a function ψ, which around an equilibrium x 0 of f reduces, actually, to a linear problem. Define a linear change of coordinates (w, z) T = P x, where P is any constant invertible matrix, such that span {dw 1 , . . . , dw k } = H(x 0 ). Represent the system in (w, z)-coordinates ẇ = f 1 (w, z), ż = f 2 (w, z). Put (w 0 , z 0 ) T = P (x 0 ) and if x 0 is an equilibrium, that is f (x 0 ) = 0, then define A = ∂f 2 ∂z (w 0 , z 0 ). Proposition 1: The following conditions are equivalent: (i) There exist g 1 , g 2 such that (Σ c , h) is x-flat and only three equations of Σ are modified by g 1 and g 2 ; (ii) There exists ψ(w, z) such that (dψ

∧ dL f ψ ∧ . . . ∧ dL n-k-1 f ψ)(w 0 , z 0 ) = 0 mod span {L j-1 f h i , 1 ≤ i ≤ 2, j ≥ 1}.
Moreover, if f (x 0 ) = 0, then (i) and (ii) are equivalent to the following (iii) There exits C ∈ (R n-k ) * such that C, CA, . . . , CA n-k-1 are independent, in which case a solution of (ii) is ψ(w, z) = Cz.

Given a matrix A, it is not always possible to achieve observability with the help of one output. In that case, we choose ψ such that the linear approximation is maximally observable.

C. Global results and minimal modification of Σ

Theorem 2 is local and valid around a nominal point x 0 (equilibrium or not) and guarantees a local construction of the vector fields g 1 and g 2 . Similarly to the observable case, under some hypothesis, g 1 and g 2 may exist globally on R n and the control system may be x-flat on R n with the flat output being globally defined as ϕ i = h i , 1 ≤ i ≤ 2, (but, as explained after stating Theorem 1, with representation (3) which is, in general, local). The following theorem gives conditions allowing the global construction of g 1 and g 2 .

Theorem 3: Consider the observed system (Σ, h) and assume rk H(x) = k < n, for all x ∈ R n . If there exists a map ψ : R n → R such that dL j f ψ(x), for 0 ≤ j ≤ n -k -1, are everywhere independent modulo H(x), then there exist g 1 and g 2 , defined globally on R n such that (Σ c , h) is locally x-flat around (x 0 , u 0 ) ∈ R n × R 2 , where x 0 ∈ R n may be any and u 0 is such that u 10 = 0, and is given by:

N F min        ẇj 1 = w j+1 1 ẇj 2 = w j+1 2 ẇρ1 1 = a 1 (w) + u 1 ẇρ2 2 = a 2 (w) + z 1 u 1 żq = żq+1 żn-k = b(w, z) + u 2 , where 1 ≤ j ≤ ρ s -1, for 1 ≤ s ≤ 2, 1 ≤ q ≤ n -k -1, (h 1 , h 2 ) = (w 1 1 , w 1 
2 ) and z 1 = ψ(x). Moreover, the vector fields g 1 and g 2 , have together the minimal possible, which is three, number of nonzero components.

Recall that when defining the unobservability quasiindices we supposed that the rank of the codistribution H is constant everywhere. It is clear that under that assumption and the conditions of Theorem 3, the functions

w j i = L j-1 f h i , for 1 ≤ i ≤ 2, 1 ≤ j ≤ ρ i , and z q = L q-1 f ψ(x), 1 ≤ q ≤ n -k,
are defined globally and form around any x 0 a local system of coordinates. N F min is minimally modified (it has only three nonzero components of g i 's) and, like for N F 1 and N F 2, the differential weight equals n + m + (n -k).

Global results are very useful for applications to secure communication (that partially motivates this work), for which we want to preserve some global properties of the system. Chaotic models are often used for constructing secure communication systems and the chaotic behavior need to be globally preserved (in fact, it is enough to assume that the chaotic properties are valid on the attraction basin of the strange attractor), see the next section where we explain in more detail how our results can be applied to secure data transmission.

IV. APPLICATION TO SECURE COMMUNICATION

We speak about secure communication when two entities are communicating and do not want a third party to listen in. Therefore they need to communicate in a way not susceptible to interception and the contents of the transmitted message have to be protected from being accessed by unauthorized users. Since the work of [START_REF] Pecora | Synchronization in chaotic systems[END_REF], it is known that the problem of secure communication can be investigated with the help of synchronization of chaotic systems. It is important to distinguish the unidirectional synchronization and the bidirectional one. For secure data transmission the unidirectional synchronization is considered and the problem is equivalent to that of an observer design (see, e.g., [START_REF] Nijmeijer | An observer looks at synchronization[END_REF]). The idea is to use the output of a particular dynamical chaotic system (that masks the message) to drive the response of a, in general, identical system (that recovers the message) so that they oscillate in a synchronized manner.

We will next highlight the interest of our approach for the chaotic data secure transmission (see also [START_REF] Barbot | An algebraic framework for the design of nonlinear observers with unknown inputs[END_REF] for a related approach). The general problem can be summarized as follow. We suppose that two messages u 1 (t) and u 2 (t) have to be sent to the receiver. We use a transmitter, composed of two independent chaotic systems, a Chua circuit (x c , y c , z c ) and a Rössler circuit (x r , y r , z r ) of the form:

(Ch) :                ẋc = p(-x c + y c -r(x c )) ẏc = x c -y c + z c żc = -qy c ẋr = -y r -z r ẏr = x r + ay r żr = b + z r (x r -c),
where the output (h 1 , h 2 ) = (y c , x c ) is the masked information transmitted via the communication multiplexed channel, the parameters a, b, c, p and q are constant and the function r(x c ) is equal to

m 1 x c , if |x c | ≤ 1, respectively, to m 0 (x c -sign(x c )) + m 1 sign(x c ), if |x c | > 1,
where m 0 and m 1 are constant. In order to transmit messages u 1 (t) and u 2 (t), we add to (Ch) two control vector fields g 1 and g 2 whose controls are, respectively, u 1 and u 2 (that is, messages to be sent):

(Ch c ) : ẋ = f (x)+u 1 g 1 (x)+u 2 g 2 (x), y i = h i (x), 1 ≤ i ≤ 2,
where g 1 and g 2 are chosen in such a way that (Ch c ) is flat with ϕ = (h 1 , h 2 ) being a flat output, and f is the righthand side of (Ch). The chaotic behavior (depending on the values of the constant parameters) is crucial and has to be preserved by the modifications applied on the system.

It is clear that with the given output (y c , x c ) only the Chua variables can be observed and in the observed-unobserved form (4)-( 5), using the new w-coordinates (which are valid everywhere) w 1 1 = y c , w 2 1 = L f y c , w 1 2 = x c , the Chua circuit is equivalently given by: ẇ1

1 = w 2 1 , ẇ2 1 = p(-w 1 2 + w 1 1 -r(w 1 2 )) -qw 1 1 -w 2 1 and ẇ1 2 = p(-w 1 2 + w 1 1 -r(w 1 2 )
). Notice that, here, the unobserved subsystem, described by the Rössler circuit, is completely independent of the observed one. Define the linking term z 1 = ψ(w, x r , y r , z r ) as ψ = y r and compute its successive time-derivatives. We get L f ψ = x r +ay r and L 2 f ψ = -(y r +z r )+a(x r +ay r ). It is clear that dψ, dL f ψ and dL 2 f ψ are independent everywhere, so z j = L j-1 f ψ, 1 ≤ j ≤ 3, (together with the w-coordinates) define a global change of coordinates. According to our results, we can globally construct control vector fields g 1 and g 2 such that the corresponding control system is flat with (w 1 1 , w 1 2 ) = (y c , x c ) being a flat output. The following control system is obtained:

(Ch c ) :                    ẇ1 1 = w 2 1 ẇ2 1 = p(-w 1 2 + w 1 1 -r(w 1 2 )) -qw 1 1 -w 2 1 + k 1 u 1 ẇ1 2 = p(-w 1 2 + w 1 1 -r(w 1 2 )) + k 2 z 1 e u1 ż1 = z 2 ż2 = z 3 ż3 = -b -z 2 -az 3 -(z 3 -z 1 + az 2 )× (z 2 -az 1 ) + k 3 u 2 .
In order to avoid possible singularities in the control space, we rather work with exp(u 1 ) instead of u 1 (see the comments at the end of Section III-A, where we discuss flatness singularities in the control space). Notice also that control gains k 1 , k 2 and k 3 are used: they play an important role in preserving the chaotic behavior of each subsystem. The controlled system in the original coordinates is:

(Ch e ) :                ẋc = p(-x c + y c -r(x c )) + k 2 y r e u1 ẏc = x c -y c + z c żc = -qy c -k 2 y r e u1 + k 1 u 1 ẋr = -y r -z r ẏr = x r + ay r żr = b + z r (x r -c) -k 3 u 2 .
The receiver knows the complete dynamics of the flat control system ẋ = f (x) + u 1 g 1 (x) + u 2 g 2 (x) as well as the transmitted output (y 1 (t), y 2 (t)) and therefore using the flatness property, the original message u = (u 1 (t), u 2 (t)) can be recovered at the receipt as functions of the received output and its successive time derivatives: u(t) = δ(y, ẏ, . . . , y (s) ).

There are several observations that can be made at this point. Notice that, at first sight, only left invertibility (which is a less strong property than flatness) is needed. But, if we only require left invertibility of (Ch c ) or, equivalently, of (Ch e ), then the zero dynamics have to be known exactly by both the transmitter and the receiver (not only its structure, but also the initialization). Another interesting question is why the unobserved part z is needed. The unobserved subsystem plays an important role for increasing the safety. Indeed, consider the system in (w, z)-coordinates, the message u 1 has a degree of security significantly lower than that of u 2 . The z-part can be seen as a second level of security. This motivates even more the use of the quasi-indices: in order to decode u 1 , we may need only one output (if a 1 depends on w j 1 only) but we never need the linking term z 1 , however, we always need it for decoding u 2 .

A. Simulations

Figures 1 and 2 correspond to the solutions of the control system (Ch e ) and show that the chaotic behavior is preserved after modifying the original dynamical chaotic system (Ch) by adding the inputs. Figures 3 and4 show that the inputs (which correspond to the confidential messages) u 1 and u 2 are respectively recovered. The parameters for the simulations come from [START_REF] Chen | From Chaos to Order[END_REF] and are given by a = 0.15, b = 0.20, c = 10, d = 20, e = 50, f = 40, p = 10, q = 14.87, m 0 = -0.68, m 1 = -1.27, with initial conditions x c (0) = y c (0) = z c (0) = -0.1, x r (0) = y r (0) = z r (0) = 1 and control gains k 1 = k 2 = k 3 = 0.1. The input u 1 is equal to sin(10πt) and u 2 equals 3 sin(16πt). A simple Euler scheme with a step of 10 -4 s is used.

V. PROOFS A. Proof of Theorem 2 Proof of (U1). Consider the system Σ : ẋ = f (x), around x 0 , together with its output h = (h 1 (x), h 2 (x)) and suppose that there exist g 1 , g 2 such that the associated control system Σ c : ẋ = f (x) + u 1 g 1 (x) + u 2 g 2 (x) is xflat at (x 0 , ūl 0 ) with ϕ = (h 1 , h 2 ) a minimal flat output, defined in a neighborhood X of x 0 . Let µ 1 and µ 2 denote the relative degrees of h 1 and h 2 , that is, h = L f +gu L µ1-1 f h 1 = ũ1 , where gu = u 1 g 1 + u 2 g 2 . With the component h 1 of the flat output we can no longer produce any new state or control, therefore, all the remaining states and the second control have to be expressed with the help of h (µ2+j) 2 , j ≥ 0, which depends explicitly on ũ(j)

1 = h (µ1+j) 1
, so at each step we add one new derivative of ũ1 (and therefore of the component h 1 ). In the best case, due to each differentiation we compute one new state, the remaining control being expressed at the last step. The differential weight of h is thus n + m + (n -(µ 1 + µ 2 )) ≥ n + m + (n -k). It follows that the differential weight of the system is the minimal possible (equal to n + m + (n -k)) when the relative degrees µ 1 and µ 2 are such that µ 1 + µ 2 = k, and, in that case, they actually form a pair of unobservability quasi-indices ρ i = µ i .

Proof of (U2). Suppose that f (x 0 ) = 0 and bring Σ into the observed-unobserved form (4)- [START_REF] Gauthier | A simple observer for nonlinear systems with applications to bioreactors[END_REF]. Since f (x 0 ) = 0, it follows that there exist local z-coordinates (that we continue to denote by z) completing w to a coordinate system in which the drift b of the unobserved subsystem is rectified, i.e., b = ∂ ∂z n-k , and the unobserved subsystem (5) takes the form [START_REF] Graichen | A new approach to inversion-based feedforward control design for nonlinear systems[END_REF]. Keeping in mind that the components of a flat output and their successive time-derivatives are independent, we need to connect the observed subsystem and the unobserved one. To this end, we can introduce a control vector field g 1 of

Fig. 1 .

 1 Fig. 1. Chua xc,yc, zc phase plot.

Fig. 2 .

 2 Fig. 2. Rössler xr, yr, zr phase plot.

  the lowest time-derivatives depending explicitly on u. Since the components of a flat output and their successive timederivatives are independent, it follows that we necessarily

Fig. 3 .

 3 Fig. 3. u 1 in red and estimated u 1 in blue coincide.

Fig. 4 . 2 =

 42 Fig. 4. u 2 in red and estimated u 2 in blue coincide.

When we say that a dynamical system Σ is observed, this does not mean that Σ is necessarily observable with respect to the output h.
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+ n-k q=1 g q (w, z) ∂ ∂z q , where g ρ2 2 (w, z) has to depend explicitly on z. For the components of g 1 we will take the simplest possible choices: hence we put g ρ2 2 = z 1 . Again, at each differentiation, we have to be able to express a new z-state and since the drift of the z-part is constant, to compute z q+1 from żq , we necessarily have to use the control vector field g 1 (through its component g q ). Therefore, we put g q = z q+1 . With that construction of g 1 , the remaining control necessarily appears at the last differentiation of h 2 , which gives the vector field

Proof of (U3). Consider the dynamical system (Σ, h) around x 0 (which can be an equilibrium or not) and transform it locally into the observed-unobserved form ( 4)- [START_REF] Gauthier | A simple observer for nonlinear systems with applications to bioreactors[END_REF]. Consider any function

always exists, since dim z ≥ 1). Two cases have to be distinguished: the first case corresponds to the fact that the pair (b,

, where b is the drift of the unobservable part, and, the second one corresponds to non-observable (b, ψ 1 1 ). First, assume that (b, ψ 1 1 ) is observable. We denote by µ 1 the observability quasi-index of

The unobserved subsystem becomes:

. Now, in order to construct a flat control system, we have to link the observed (with respect to the initial output h) w-subsystem and the unobserved one. We thus put

. The corresponding control system is in the form N F 2, with = 1 and (h 1 , h 2 ) = (w 1 1 , w 1 2 ), which is clearly x-flat with (h 1 , h 2 ) being a minimal flat output of differential weight n + m + µ 1 = n + m + (n -k).

Let us now consider the case when (b, ψ 1 1 ) is nonobservable. Compute the unobservability quasi-index µ 1 (modulo H(x)) of the function ψ 1 1 and introduce, as above, the new coordinates z q 1 = L q-1 f ψ 1 1 , and 1 ≤ q ≤ µ 1 . The first µ 1 equations of (5) become:

), where zi = (z 1 1 , . . . , z µ1 1 , . . . , z 1 i , . . . , z µ1 i ). Now, take any function ψ 1 2 verifying dψ 1 2 (x 0 ) = 0 mod H(x) + span {dz q 1 , 1 ≤ q ≤ µ 1 }, compute the corresponding unobservability (or observability) quasi-index µ 2 (observability being now considered modulo H(x) + span {dz q 1 , 1 ≤ q ≤ µ 1 }), and introduce z q

). Repeat this process until all states are observed and denote by the number of functions ψ 1 i needed to achieve observability. At this point the unobserved subsystem ( 5) is transformed into [START_REF] Hammouri | Observer synthesis for stateaffine systems[END_REF]. As for the above case, in order to construct a flat control system, we have to link all subsystems. In order to go from a subsystem to anotherthe next one in a simplest possible way, we use only one control and at each step we are able to express a new z-state. In this respect, we put

and g 2 = ∂ ∂z µ , and obtain the normal form N F 2, with (h 1 , h 2 ) = (w 1 1 , w 1 2 ), which is clearly x-flat with (h 1 , h 2 ) being a minimal flat output of differential weight n + m + (n -k).

B. Proof of Theorem 3

The proof follows exactly the same arguments as those of item (U3) of Theorem 2 in the case (b, ψ 1 1 ) observable.