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Abstract—The demand for online fatigue crack growth 
prognosis has recently increased in industry in order to 
prevent severe unexpected failures in equipment operated in 
evolving conditions where static models may no longer 
perform well. To address this issue, a robust prognostic 
framework is presented in this paper to assess the reliability 
of deteriorating equipment due to fatigue crack growth. In 
this framework, a new model ensemble methodology that 
integrates multiple stochastic crack growth models based on 
the quadratic best-worst weighted voting (QBWWV) is 
proposed for predicting the remaining useful life (RUL) of 
equipment. To validate the effectiveness of the proposed 
framework, a case study concerning fatigue crack growth is 
demonstrated. The results indicate that the proposed 
prognostic framework outperforms single crack growth 
models in terms of prediction accuracy under evolving 
operating conditions.  

Keywords-Prognostics and Health Management (PHM), 
remaining useful life (RUL), recursive Bayesian, dynamic 
ensemble, fatigue crack growth.  

I.  INTRODUCTION  
With the fast-pace advancement of technology, 

industrial systems are being given opportunities to become 
more and more efficient, complex and faster [1]. For this, 
the development of reliability and health management 
strategies of components and systems is playing a vital role 
for industry. These strategies aim at early detecting the 
degradation of engineering components, diagnosing their 
faults, proactively predicting their future health state 
evolution and remaining useful life (RUL), based on the 
operational and historical failure information, enabling 
optimal maintenance decisions before the breakdown of the 
components. In general, the reliability of equipment 
frequently decreases due to gradual growing degradations, 
such as fatigue crack, delamination processes, corrosion, 
and eventually leading to failure. Among them, fatigue 
crack growth is one of the most common degradation, that 
drives the components and systems to critical failures in 
several major industries, including manufacturing [2], [3], 
automotive [4], [5], aerospace [6], [7], etc. To prevent such 
unanticipated failures, which can cause unexpected 
interruptions in production, the development of prognosis 
systems for addressing fatigue crack growth is crucial. 

One of the main concerns of fatigue crack propagation 
is assessing the rate of crack growth, which is often done 
with empirical models using condition monitoring data [8]–

[10]. This enables online reliability assessment, whereby 
the reliability of the equipment can be estimated time-
dependently based on the prognostic results and the prior 
assessment, with reduced uncertainty. In [8], a failure 
prognostic scheme for fatigue crack growth prediction was 
introduced, which employed a stochastic crack growth 
model and a Bayesian technique to dynamically update the 
degradation state of equipment from a sequence of 
monitored measurements. In the field of model-based 
prognostics, recursive Bayesian-based schemes have been 
extensively utilized due to the possibility of updating the 
posterior distribution of the degradation states as more data 
is collected during the course of time. In [9], a Bayesian-
based prognostic approach was presented to online-estimate 
the stress intensive range of the degradation model, at each 
load cycle until fracture. By exploiting a combination of a 
non-linear degradation model and a Bayesian variant, [10] 
proposed a comprehensive architecture for failure 
detection, isolation and prognosis for detecting abnormal 
symptoms and online predict the crack depth evolution of 
the UH-60 planetary carrier plate.   

However, the performance of model-based prognostic 
frameworks for fatigue crack growth greatly depends on the 
adopted physics-of-failure model. To address this issue, the 
demand of finding out an optimal modelling framework, 
especially for a specific degradation process under time-
varying operation conditions, is crucial. In recent decades, 
several studies on fatigue crack growth models have been 
extensively investigated and developed [11]–[15]. In [12], 
a comprehensive comparison of stochastic models for 
fatigue crack growth, including the Markov chain model, 
the Yang’s power law-based model, and a polynomial 
model, was carried out. The results showed that each 
degradation model has its condition and range of 
applicability, which means that each model is appropriate 
only to specific degradation processes. To the knowledge of 
the authors, there is no general consensus on a reliably 
unique prognostic model for fatigue crack growth under 
different degradation processes. Recently, hybrid and multi-
degradation models ensembles have attracted the attention 
of industrial practitioners and researcher due to higher 
accuracy and better generalization capability than 
individual degradation models [16], [17]. The basic idea 
behind these empirical frameworks is to exploit the 
diversity of different degradation models, which can offer 
complementary information about the degradation states to 
be estimated. For example, in an application of Lithium-ion 



battery prognostics, an interacting multiple model particle 
filter (IMMF) was presented to combine the estimations 
from three battery capacity degradation models [17]. The 
results experimentally showed that the ensemble method 
yields a better generalization performance over a single 
model in terms of smaller estimation errors and more 
precise predictions. 

In this paper, a prognostic framework based on a 
recursive Bayesian technique and a dynamic ensemble is 
proposed for assessing the reliability of deteriorating 
equipment due to fatigue crack growth. Diversity and 
accuracy are two key factors deciding the generalization 
performance of an ensemble framework. However, it is 
difficult constructing a good ensemble by balancing these 
two factors, because increasing diversity maybe at the cost 
of decreasing accuracy and vice versa. To address this issue, 
we introduce a new ensemble weight coefficient based on 
minimizing the historical prediction errors of each physical 
model in the ensemble and combining with the quadratic 
best-worst weighted voting (QBWWV) strategy. Finally, a 
case study concerning fatigue crack growth is carried out to 
demonstrate the improved performance of the proposed 
framework and the results are compared with those obtained 
by applying single degradation models. 

The rest of this paper is organized as follows. Section II 
introduces the degradation models for fatigue crack growth 
and details the proposed prognostic framework. Section III 
describes the illustrative case study of fatigue crack growth 
and shows the experimental results of the proposed 
framework. Finally, Section IV concludes the study.  
 

II. PROPOSED PROGNOSTIC FRAMEWORK  

A. Recursive Bayesian Technique for Degradation State 
Estimations 
Consider a state-space model given by: 

 ),( 11 --= tttt xfx w  (1) 

 ),( tttt vxgz = , (2) 

where tx and tz  denote the degradation state  and the 
measurement  at the inspection time t }{ NÎt , respectively; 

tf  is the state transition function and tg  is the 
measurement function; 1-tw  and tv  are independent 
identically distributed (i.i.d.) state noise and measurement 
noise sequences, respectively. This represents a first-order 
Markov process with independent degradation increments, 
where the current degradation state tx  depends only on the 
previous state 1-tx , and not on the states at previous times. 
The system state tx  at time t can be estimated by 
constructing its posterior probability density function (pdf), 

)|( :1tt zxp via the two following steps, namely prediction 
and update. 

In the prediction step, both the previous state estimation 
1-tx  and the state transition model tf  are employed to 

estimate the prior distribution of the current state tx  via the 
Chapman-Kolmogorov equation, as follows: 
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where )|( 1-tt xxp  is the conditional probability 
distribution defined by the state model in (1). In this work, 
the initial distribution )()|( 000 xpzxp =  is assumed to be 
available and is known as the prior. In the update step, as 
the new measurement tz  is collected, the posterior 
distribution )|( :1tt zxp  can be estimated by using Bayes’ 
theorem, as follows:  
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where )|( tt xzp  is the likelihood function defined by the 
measurement model in (2) and )|( 1:1 -tt zzp  is a 
normalizing constant, which is defined by: 

 ò -- = ttttttt dxxzpzxpzzp )|()|()|( 1:11:1  (5) 

B. Fatigue Crack Growth Models  
As mentioned above, diversity is an important aspect 

that needs to be considered in the design of an ensemble 
framework. The ideal situation occurs when an ensemble is 
composed of a set of models with uncorrelated errors, where 
diversity can be fully exploited. In this paper, four 
stochastic degradation models are selected for fatigue crack 
growth prediction, including Paris-Erdogan, polynomial, 
global function-based, and curve fitting function-based 
models. 

1) Paris-Erdogan model:The relation between the 

crack growth rate 
dN
dx  and the Irwin’s stress intensity 

factor KD [13] is defined as follows: 

 mKC
dN
dx )(D= , (6) 

where x  is the crack length, C  and m  are material 
constants, and N  is the number of fatigue load cycles. In 
this model, the stress intensity factor KD  is defined as 
follows [13]: 

 xK psD=D , (7) 



where sD  is the cyclic stress amplitude. 
To take into consideration the statistical variability of 

the crack growth rate in practice, a stochastic variant of the 
Paris-Erdogan model is introduced by injecting a process 
intrinsic stochasticity as follows [14]: 

 mKCe
dN
dx )(D= w , (8) 

where ),0(~ 2
wsw N  is an additional white Gaussian 

noise. For a sufficiently small tD , the Markov chain state-
space model of the degradation state x  in (8) can be 
discretized as follows: 

 tKCexx m
tt DD+= - )(1

w , (9) 

2) Polynomial model: In [12], [15], a polynomial 
function-based model was introduced for addressing the 
mismatch of power function-based crack growth models, 
i.e. Paris-Erdogan model, with the median crack growth 
curve, given by: 

   ),( 2
210 xpxppe

dN
dx

++= w  (10) 

where 2,...,0, =ipi  are polynomial constants. The 
polynomial model was also reported to yield the best fit in 
the linear least square stage of the degradation process [15], 
[16]. The Markov process representation for a polynomial 
function-based crack growth model can be defined as 
follows: 

 txpxppexx tt D+++= - )( 2
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3) Global function: Considering that the nature of 
structural fatigue crack growth is generally determined by 
multiple factors, such as material properties and equipment 
geometry, which always exhibit some degree of 
uncertainty on the degradation process, a global function 
was introduced by reformulating the stress intensity factor, 
given by [11]:  

 xxhK psD=D )( , (12) 

where )(xh  denotes the geometric factor of fatigue crack, 
defined as follows:  
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where 3,...,0, =iia  are geometric coefficients and w is 
the specimen width. The global function-based crack 
growth model can be further discretized as follows:  

 txxhCexx m
tt DD+= - ))((1 psw  (14) 

4) Curve fitting function: Still in [11], the authors 
presented another empirical crack growth model based on 
a curve fitting technique, which outperformed the 
conventional models, such as the power function and the 
polynomial function, in terms of higher prediction 
accuracy and lower computational cost. The curve fitting 
function-based model is given by: 
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where 1C , 2C , m denote the model constants.  
The discretized Markov process representation for the 

model can be defined as follows: 
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C. Dynamic-weighted Ensemble for Prediction 
In this section, a selective ensemble based on the 

QBWWV strategy is presented to dynamically find the best 
combination of multiple crack growth models with respect 
to their estimation performances. The proposed algorithm 
consists of the following three steps: 

1) Step 1: At the load cycle time t, the current 
degradation state given by each model is updated when new 
measurement is available by using the recursive Bayesian 
algorithm described in Section II.A. 

2) Step 2: The ensemble weight of each single model, 
at time t, is then updated based on the QBWWV and their 
estimation errors for the last cycles as follows:  
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where i
tw  and i

tj  are the dynamic weight and estimation 
error coefficient of the ith model at time t, respectively; 
max
tj and min

tj are the maximum and minimum error 
coefficients of all models at time t. In this scheme, the 
model with the highest estimation error will be removed 
from the ensemble. The estimation error coefficient i

tj  is 
defined as follows:  
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where d  is the time horizon (d  = 50 load cycles in the 
case study that follows) and i

kx̂  is the estimated 
degradation state of the ith model at time k . 

3) Step 3: Once the ensemble weights for all models at 
the current time t are updated, the estimated degradation 
state of the ensemble is computed as follows: 
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where 𝑥"  is the ensemble-predicted state at the load cycle t, 
𝑤"$ is the normalized weight for each single model and NM 
is the number of degradation models (NM = 4 in this study). 

  

III. RESULTS AND DISCUSSION 
The proposed prognostic framework is applied to a case 

study of fatigue crack growth, which has been carried out 
with an initial length x0 = 10-4 mm and a failure threshold at 
d* = 60 mm. The common Paris-Erdogan model in (9) is 
adopted for describing the evolution of the crack depth with 
a total number of fatigue crack load cycles, N = 2000 cycles. 
The parameters of the state equation (9) are C = 0.1 and m 
= 1.3, whereas the state and measurement noise variances 
are  𝜎&'  = 0.49 and 𝜎(' = 0.16, respectively [8]. Fig. 1 shows 
the simulated crack depth evolution, if no preventive 
maintenance is undertaken.   

When a new monitored measurement is available, the 
degradation state of each individual model is updated at the 
current load cycle, via the recursive Bayesian technique. 
Their ensemble weights are also updated based on the 
estimation errors for the last cycles, as shown in Fig. 2. The 
results show that the four crack growth models yield similar 
performances when the crack size is sufficiently small, 
resulting in equivalent weights during the first 1000 cycles. 
However, as the crack depth exponentially increases, the 
dynamic weights are varying and discriminate between 
different models due to the evolving operation conditions.  

The results of degradation state estimations and RUL 
predictions are shown in Figs. 3 and 4. As can be seen in 
Fig. 4, when the crack depth rapidly increases in the later 
1000 cycles, the proposed ensemble approach can achieve 
performance superior to the single models in predicting the 
health state evolution and the RUL of equipment. In 
addition, as more and more measurements are collected, the 
prediction of the proposed ensemble approach continues 
showing better performance, yielding the closest 
predictions to the ground-truth RUL. Table I shows that the 
proposed ensemble framework outperforms the individual 
crack growth models, yielding an estimation accuracy of 
0.1112 in terms of the mean square error (MSE), calculated 
between the true degradation state and the estimation of 
each crack growth model.   

 

 
Figure 1.  Simulated crack depth evolution.  

 
Figure 2.  Dynamic ensemble weights of the individual models.   

 

 
Figure 3.  Degradation state estimations based on the individual models 

and the proposed ensemble.   



 
Figure 4.  RUL predictions based on the individual models and the 

proposed ensemble.   

 
TABLE I. MSE RESULTS FOR DEGRADATION STATE ESTIMATIONS. 

 Paris-
Erdogan 

Polynomial Global 
function 

Curve-
fitting 

Proposed 
ensemble 

MSE 0.1171 0.1142 0.1149 0.1126 0.1112 
 

IV. CONCLUSIONS 
This paper proposes an online prognostic framework for 

predicting the degradation states and the RUL of 
deteriorating equipment due to fatigue crack growth. 
Although several degradation models have been 
investigated for fatigue crack growth prognosis in the 
literature, there is no general consensus on a reliably unique 
crack growth model for different degradation processes. To 
address this issue, a dynamic-weighted ensemble of 
multiple degradation models is presented. The key idea of 
the proposed approach is to utilize the QBWWV strategy 
and a dynamic weight vector, which is updated at each load 
cycle when the new measurements become available, for 
evaluating individual degradation models performance with 
respect to their estimation errors on previous cycles. 
Simulation results show that the proposed prognostic 
framework can yield a satisfactory performance under 
evolving operating conditions, and outperforms individual 
models for fatigue crack growth in terms of prediction 
accuracy.  
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