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Abstract

Cooperation between firms can never improve the technical effi-
ciency of any coalition of firms. This standard result of the pro-
ductivity measurement literaturc is based on the directional distance
function computed on finn groups. Directional distance functions ave
usually defined on the standard sum of input/output vectors. In this
paper, the aggregation of iuput/output vectors is generalized thanks
to an isomorphism in order to capiure three resulfs: the coopera-
tion iuproves technical efficiency ; the cooperation reduces technical
efficiency ; and finally the cooperation between Arms yields no varia-
tion of technical efficiency, i.¢., the distance function is quasi linear.
The improvement of technical efficiency is shown to be compatible
with semilattice technologies. In this case, the firms merge according
to their inputs only because constraints are imposed on outputs, and
conversely, they may merge according to the outputs they can preduce
because some limitations are imposed on the use of inpues.
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1 Introduction

The cooperation between firms can never improve the technical efficiency of
any given coalition (industry). This impossibility has become a standard
result in the productivity measureiment literature, see Briec, Dervaux and
Leleu (2003) or Fare, Grosskopf and Zelenyuk (2008). The firm game is
the gransferable utility game (TU-game) that exhibits this impossibility (see
Brie¢ and Mussard, 2014), in other words; the core interior of the firm game
is empty. The result is based on the directional distance functions applied
to the technology of the industry, which relies on the standard sum of sets
(technologies of the firms), see e.g. Fire, Grosskopf and Li (1992) and Li and
Ng (1995). Li and Ng {1995) point out that the standard sum of sets can yicld
different results, in particular, it depends on the convexity of the technology
set. Liand Ng's (1995) result follows the one due to Fersund and Hjalmarsson
(1979) in which inputs/outputs are simply averaged thanks to an arithmetic
mean. Li and Ng (1995) show that this particular aggregation provides a
had representation of the technical efficiency of the industry. In other words,
the choice of the aggregation process, for aggregating input/outputs vectors
or equivalently aggregating technologies of firms, has a crucial impact on the
productivity measures. Since then, this question has been pending for a long
time, and from the best of our knowledge, no attempt has been made to
overcome this problem of aggregation, so that the standard swn is always
uscd in the efficiency literature to analyze the cooperation between firms.

In cooperative games, Lozano (2012) show that firm groups may take
henelit from cooperation when they share data about inputs and outputs.
The firms have also the possibility to merge in a so-called production games
(Lozano, 2013). In firm gemes, Briec and Mussard (2014) show that any
given firm cealition may always improve its allocative efficiency if the in-
put/output vectors arc simply aggregated with the standard sum. However,
the impossibility outlines before is always met, i.e., the inefficiency of the
industry is always greater than the sum of the incfficiencies of each firm. In
other words, the techmical bius that represents the difference between the
two aforementioned incfficiencies, is always positive. Coalitions of firms are
satd to be sub-eflicient because their cooperation increases the technical inef-
ficiency of the group. As a conseqguence, the core of the firm game is empty:
no firm can improve its technical cfficiency by joining any given coalition.

In Data Envelopment Analysis (DEA), Post (2001) suggests a concave
transformation of the input/output vectors in order to limit the number
of observations to be non atfainable, that is, input/output combinations
heing outside the envelopment of the data that characterizes the production
technology. This point is crucial because decisions are taken on the basis of
samples. If the sample size is low and if an important quantity of data is
not exploitable by the current mathematical techniques, then it is difficult



to propose accurate indicators for taking decisions. We aim at extending
Post’s (2001) suggestion about data transformation in a cooperative game
framework, without taking recourse to DEA. The interesting feature relying
on the change of variables of input/output vectors is the derivation of a
flexible aggregation process, an aggregetor from now on, that captures cither
improvement or decline of technical cfficiency of firm coalitions.

The ageregation of teclinologies is generalized thanks to an aggregator,
precisely a ®-aggregator, inspired from Ben-Tal (1977) who studied the al-
gebraic properties of the aggregation process @ underlying the generalized
mean introduced by Hardy, Littlewood and Pélya (1934) and characterized
by Aczél (1966) and Eichorn {1979). The aggregation bias, i.e. the difference
between the inefficiency of the firm coalition and the sum of each firm’s inef-
ficiency, takes different forms with respect to the nature of the isomorphism
d. (i) The aggregation bias is null: there is no vartation of technical efficiency
inherent to the cooperation. We retrieve the well-known result due to Briec
et al. (2003) and Fire et al. {2008) as a special case: the directional distance
function is (quasi) linear. (ii) The bias is positive, so that the cooperation
between firms is impossible. (iii) The bias is negative: the aggregate ineffi-
ciency of any given coalition of firms decreases with cooperation. The core
of the firm game may be non void in this case. For that purpose, we begin
with a general (non specified) distance function and a general aggregation
process in order to understand the implications of a null bias when inputs
and outputs are transformed by a general isomorphism ®. The conclusion
is clear, the distance function is quasi linear, i.e. there is no gain/loss for
a firm to join a coalition. Consequently, the employ of a ®-aggregator is
robust [or the measurement of group (technical) efficiency for any given dis-
tance functions. Also, postulating the homogeneity property of the distance
function - such as the well-known directional distance function, introduced
by Chambers, Chung and Fére {1996, 1998) - the ®@-aggregator is found to
be the generalized mean.

On the basis of the generalized mean aggregator, two limit cases - in
the neighborhood of infinity - are introduced. The first one enables Kholi’s
(1983) technology to be characterized for a group of firms. It is a particular B-
convex technology, introduced by Brice and Horvath (2008). This coalitional
technology is shown to be consistent with the traditional assumptions of the
literature. It is a compact upper semilattice respecting a free disposal as-
sumption. The second one is a particular B~ -convex technology introduced
by Brieec and Liang (2011). It is a compact lower semilattice also relevant
with a free disposal assumption. It is shown that those two aggregated tech-
nology sets enable the paradox of the positive technical bias to be solved.
Indeed, the negative bias is obtained Dy specifying two firm games, the in-
put fixed firm game and the output fixed firm game. The input fixed firm
game postulates that the cooperation between firms is related to the use of



inputs only, because some constrains of production are imposed on the indus-
trial sector in order to limit the number of outputs (pollution limitations).
On the contrary, the output fixed firm games is defined on the possibility
to improve the amount of outputs when the firms are limited by a given
amount of inputs (resource limitations). Those results are derived thanks to
the dircetional distance function applied on the aggregated data. The input
[output] firm game defined on upper semilattice technologies yields a nega-
tive [positive] bias. On the contrary, the output [input] firm game defined
on lower semilattice technologies vields a negative [positive] bias. Finally,
if the aggregation bias is supposed to be submodular, then the core of the
game is always non empty, 7.e., the joint cooperation improves the technical
efficiency {negative bias).

The outline of the paper is as follows. Section 2 sets the notations. Section
3 defines the firm game and the directional distance function. Section 4
is devoted to the characterization of the aggregated technology when the
data are transformed by an isomorphism ¢ lo Ben-Tal (1977). Then, the
results about the exact aggregation are exposed for the directional distance
function. Section 5 explores the negative bias supported by the directional
distance function. Section 6 introduces semilatsice technologies, where it is
shown that coalitions of firns may increase their technical efficiency either by
putting in common their inputs or their outputs (input/output firm games).
Section 7 closes the article.

2 Setup

The set of firms (players) is K = {1,...,|K|}, where |K] = #{K}. The
subsets of the grand coalition X are denoted by S. A transferable utility
game, i.e. a TU-game, is a pair (K,v), where v is defined as v : 2% = R,
such that (@) := 0, with Ry the non-negative part of the real line and Ry,
its positive part (with R and R7, its n-dimensional representation}. The
set of all maps v is denoted I', such that »(S) provides the worth of coalition
S. A valued solution o{(v) is the pay-off vector of the TU-game (K, v) that
is a |K|-dimensional real vector that represents what the firms could take
benefit from cooperation. The valued solution of the TU-game is assumed
to satisfy the standard axioms.

Linearity: @{cqv; + agve) = ayp(vr) + azp(s), for all maps v1,ve € I' and
oy, e € R

Symumetry: for any given pay-off vector ¢ = (@Q1,.., @k, .-, Pky), then
(1) = @y (v) for all permutations, where a permutation is given by
v(r(8)) =v(S) forall SC K and v € T

Efficiency: Y qoxor(v) =v(K), forall v € T



Let v € RT and y € RY be the input and output vectors, respectively.
The technology T of the firms satisfies the following basic assumptions:

(T1): (0,.0m) €T, (Op,y) € T = y =0, i, no free tunch;

(T2): the set A{x) = {{v,y) € T:w <z} of dominating observations is
hounded ¥ € R7Y, d.e., infinite outputs cannot be obtalned from a
finite input vector;

(T3): T is closed;

(Td): Vz=(x,y) e T, (z,—y) € (u,—v) = (u,v) €T, t.e., fewer outputs
can always be produced with more inputs, and inversely;

(T5): V8 = 0, if (a,y) € T then {8z, By) € T, i.e. the technology satisfies
constant returns to scale.

Given a production set one can define an input correspondence L : R} —
Lt o
2%+ and an output correspondence P : R} — 2RY such that:

T={(r,y) e R we Ly} = {{z,y) eRI™ 1y e Pl)}.  (21)

The literature on technology aggregation (see e.g. Li and Ng, 1995) de-
fines the technology of the grand coalition as a standard sum of input and
output vectors. Let {(z*,y*) € REM™ be the input-ontput vectors of firm &
whose technology is T*. Following this specification, the technology of any
given coalition S is the standard sum of the technologies T% of each firm
ke S

T¢ = ZT‘Q = {(Z;‘f:k,Zyk) (a*yF) e TRk € S}. {2.2)
kes kesS RES

In the remainder of the paper, 0, {0,] is the n-dimensional [m-dimensional]
vector of zeros, 1, the n-dimensional vector of ones, N the set of (strictly)
positive integers, and finally > (<) denotes inequalitics over scalars and Z
{£) over vectors.

3 Directional Distance Functions and Firm
Game

The directional distance function introduced by Chambers, Chung and Fére
3 g
(1996, 1998)! Dy : R x R — R, involving a simultancous input and

1Gee alse Chambers and Fére (1998) and Chambers (2002} for more details on direc-
tional distance functions.



output variation in the direction of a pre-assigned vector g = (gi. 9o} € R
is defined as:

Dr(x,yg) =sup {§ € R: (x — Sgi,y + 8g0) € T} {3.1)
5

In the sequel, the directional distance is such that Dr(z,y; g} > 0, di.e., the
cases of infeasibilities for which (z,y) € T are not reported. For a group
of {K| firms with technology T* the technical aggregation bias is defined as
follows {see Briec, Dervaux and Leleu, 2003):

AB(K; ) = Dr (Z(-B"'ey");g) =3 Dee{a* b5 9)- (3.2)

ke kel

It provides the loss of technical efficiency due to the cooperation between the
firms of group K. The aggregation bias may be nil, in this casc the exact
aggregation condition is:

Dy (z(r’“’:y");g) = Dz, 9% 9). (33)

[T kEK

Under the assumptions (T1)-(T4), the exact aggregation is possible when-
ever:
(i} the technologies 7% arc identical and the input sct is one-dimensional:
(i) the firms use the same technique and (T5)-(T6) hold.
Actually, those results {see Bricc ef al., 2003) arc merely dependent on the
structure of the aggregation process, .e. the standard sum used to describe
the aggregated technology of the group of firms. Indeed, the standard sum
is used in a cooperative game, the so-called firm game, in order to aggregate
inputs and outputs.

Definition 3.1 A firm game is a collection {K,v{8) : & C K} such that:

(x,y): 28 5 R VS € 25 S #£ 0, where (x,y)(8) = Z

with v 2 2% — RE™ 5 Ry, 0(8) 1= Dps o (x,¥)(S5),
and {x,y) (@) :=0, v (B):=0 by convention.

res (;nk, yk) e TS,

The game 1(S) provides the value of the directional distance function Dyps(-)
related to any given frm coalition § with technology T:

v(S) = Dys (Z (2%, %) ;g) , forall S C K. (3.4)

EES

On this basis, the technical aggregation bias is non negative. As suggested
by Post (2001}, it scems that the way the inputs/outputs are aggregated has
serious implications on the efficiency measures. Precisely, the measurement
of technical efficiency and its bias depend on particular aggregators.

6



4 Technology Aggregators: characterization

The literature on firm groups outlines an impossibility according to the di-
rectional distance function: the collaboration between firms cannot improve
the technical efficiency of the group. This impossibility was proven indepen-
dently by Briec, Dervaux and Leleu (2003) and Fére, Grosskopf and Zelenyuk
(2008). Their result may be rewritten by choosing a general distance function
denoted fs : RE™ x RYM s R, The game v/(S) is the distance function
for any given coalition &, such that v/{8) = fs for all § € K. Following this
notation, setting f the directional distance function, their result is:

vl () =D v ({k}) = AB(K;9) 2 0, (4.1)

ek

where the distance f gauges technical efficiency (the distance between one
point and the frontier of the technology). The distance of the group is, for
any given type of technology, always greater than the sum of the individual
distances. The same conclusion holds for all possible coalitions & € K if f is
also chosen to be the directional distance function (see Briec and Mussard,
2014):

W(8) =D wi({k}) = AB(S;9) 2 0. (4.2)

ResS

This result reports a sub-efficiency related to the cooperation between firms.
Tt is inhcrent to the standard additive form of the aggregation ol vectors.
However, following Ben-Tal (1977}, Eichorn {1979) or Blackorby and Russell
(1999), there exist many other forms of aggregation. For instance, Blackorhy
et al, (1981) characterize an lsomorphism widely employed in welfare eco-
nomics, specially for welfare, incquality and poverty indices. In the following
lines, the proposed isomorphism is directly inspived from Ben-Tal (1977) and
Blackorby et al. (1981) who studied the algebraic properties of the aggregator
underlying the generalized sum (mean).

4.1 Generalized Sum
Let d be a positive integer and let ¢ @ X' — R9 be a bijective map, where
X is an arbitrary set. From Ben-Tal (1977) we consider on X the algebraic
‘l, o - 1
operators + and " defined for all 2,y € X and for all o € R by:
i) b
r4+y=0"" () + () and « Pa=07" (o D(x)). (4.3)
¢
The ®-sum, denoted 3, of {xy,-+ &4} € R" is defined by?

]

3w =0 ( S @(;EE)). (4.4)
ield]

ild}

2For ease of exposition, for all d € N, {d] := {1....,d}.

7



The subset X endowed with these algebraic operators has some proper-
ties very similar to those of a vector space. Indeed, let E be an arbitrary
nonempty set and lot ¢ 1 F — R be an isomorphism. One can define over
E the operations defined YA, g € £ by:

o] ;
M= (g + o)) and  ATp=¢TH{s(A)G(p).  (45)
From Ben-Tal {1877) the set ¢(R) endowed with the algebraic operators

-?- and ? is a scalar field. A vector space can then be constructed as the
Cartesian product of an isomorphic transtormation of the scalar field R, that
is B¢, in the case where the bijective map © is defined for all « € R¢ and all
r € X = £ by

D(x) = (dla), ..., ¢lxq)) and pty) = (gf)'l(u.l), . ,(f)_l(ud)) . (4.8)

It follows that E = ¢~ H{R) is endowed with a total order defined by:
05 1
NS = () < ou). (4.7)

. g, . . @ &
Obviously (B4, +, %) is a vector space where the algebraic operators + and -
are those defined above. It is then clear that if B = {u,...,vq} is a basis
of RY then B? := & YB) = {&(v)),.... P (vy)} is a basis of the vector

., P
space (E4.+,9).

4.2 Characterization of the aggregator

We first begin our investigations with a gencral (non specified) multidimen-
sional aggregator. It is a map that transforms the data, ie., a function
whose images are monotonic transformations of inputs and outputs. Let @
be a general aggregator (isomorphism) such that ®-': R¢ — E? with

de N o
> =0 (Z q)(zk)) . (4.8)

kes ked
In the following, we say that € is a canonical ¢-isomorphism if there exists
a real valued bijective map ¢ : Fy —> R, such that for all z € R‘fr:

D(z2) 1= (@lz1).- - () (4.9)

By definition, the ®-sum of the production technologies is:

> ® »
ZTF": {(Z;rk.Zyk) (2, 7) ETk,J’\TGS}. (4.10)
kes EES kes

In this respect, the technology of the coalition S is defined as follows.

8



Definition 4.1 — Coalitional Technology (CT) The aggregated tech-
nologies TS, for all S € K such that |8| > 1, are defined as follows:

o
75 =y T

kesS

Note that whenever |S| = 1, T = T%. The distance function fs of coali-
tion S C K yields the distance hetween one point and the frontier of the

technology 7% :
T th
Sy = fs (ZJJ"‘:Z@;’“) . (4.11)

keSS kes
The distance function exists hecause seme firms merge in order to improve
their technical efficiency, the so-called firm game.
Definition 4.2 A firm game defined on the algebraic operators i and © is
a collection {K,v/(S) : S € K.®} such thal the coalitional technology s
defined as follows:
(x,y): 2 — ™ for all S € ol such that |S] = 1, where

s Oy
(%, ¥} (5) = (Z Z i ) q,, unth,

~ keSS kES
ookl BT R v (8) = fFo(xy), and
(x.¥) (@) := Opyrm, 2/(0) = f¥ o (x.y) (#) = 0 by convention.

The technical aggregation bias of any given coalition is then modeled thanks
to the frm game. A negative [posilive] bias is a sublsuper]|additive game
defined on the basis of the general aggregation process ®. A negative [pos-
itive] bias represents an improvement, [decline] of technical efficiency due to
the cooperation between firms. The technical aggregation bias (@-bias for
short) of a canonical isomorphism @ defined with respect to a real valued
isormorphism ¢ is defined as, for all S € K such that S| = 2:

@ ® B
ABG(S) = fs (Z .r:k,z y"’) - Z G s {4.12)

kesS RES kes

Definition 4.3 — ®-sub[super]additivity (SUBg[SUPg]} ~ Let R,S C K
such that RNS =0, Let & : EYT™ — RIY™ be o canonical ¢-isomorphism.
A firm game {K,v7(S): 8 CK,®} is defined to be sublsuper]additive if:

ABSUR) < [2]0 <= oJ(SUR) < [2] o/(8) T/ (R).

The technical aggregation bias is equivalently rewritten as, for all & © £
such that |S] > 2:

AByp(S) =/ Z'zr ({E}). (4.13)

9



We first examine the existence of an aggregator when the $-bias is nall.
The first result shows that the transformation of the data, generated by any
given aggregator @, yields a linear distance function defined up to the map
1. This is a generalization of the untransformed case in which the distance
function is linear, see Briec et al. {2003) and Fére et al. (2008).

Proposition 4.1 Let & : ET" — RTM™ be a canonical ¢-isomorphism.
Under (T1)-(T4) and (CT), for all firm games {K,v/(8) : § € K, @}, the
following implication holds:

[ABs($) =0, VS K] = [V(§) =07 (D, e 2+ el

Proof
Let ABy(S) = 0, such that & : EF™™ —s RTP™ with its one-dimensional
representation ¢ : Ry — I, For all § € K such that |§] > 2:

& @
ABo(S) =0 <= fs (Z(w’ﬂy“)) =[G

kes keSS
Thus,
fs [d (Z ¢>(;r’=,y‘“))] =0 (fo) [ffe(ff:’”\y“‘J]) :
hES kes

Let us denote the vector 25 1= (2, y*) € B™™ such that «* := $(2*), thus:
+ 1

¢ (,fs [@" (g u"‘)D = %ZS o [fulM)] -

Set ¢ o fs =: ¢ps and ¢ o f, =: ¢y, for all &k € {1,...,|S|}. As 2% = &~ 1(h),

we got:

hES kes

We recognize the well-known Pexider’s equation of solution {(sce Aczél, 1966,
p.141}):

ds 0@ (Z “k) - (Z‘“k) + > ok

kes keSs kes
Gro @ ) =c-uF + ¢y,

where the vector ¢ € E{™™ and the constants ¢, € E; are set to be non-
negative in order to get well-defined distance functions (being non-negative),
The solution can be rewritten in a general setting as:

bo ful#) = c- B(H) + . VE € {L,...,IS]},

10



and,

¢
¢ofs (Z:;") =c- Y DM+ a, VSCK.

Les iz kes
Thus,
P
UJF(S) = fg (Z z"') = ¢! (c . Z(IJ (z""') -+ Z ck) , VS CK.
kes k&S kes
2]

The result proves that the transformation of the data thanks to the d-
aggregator cnables the standard interprétation to be retrieved as a particular
case. that is, the distance function is linear (up to the map ¢~'}, as shown
by Briec et al. (2003) and Fire ef al. (2008) with the standard sum of sets.

Now, we impose more structure to the distance funetion in order to char-
acterize the ®-aggregator. The homogencity of degree one is known to be
well suited for the measure of technical efficiency, see Chambers, Chung and
Fare (1996, 1998)%: fu(Ae", M%) = Afi{a®,¢F) for all X > 0. We show that
if the technical ®-bias is null, then @ is found to be guasi-linear.*

Proposition 4.2 Under the assumptions (T1)-(T4) and (CT), for all firm
games {K,v/(8): 8§ C K, D} such that fS is homogeneous of degree one, if
$ ; ETF — R s o ¢-canonical isomorphism, then the following are
cquivalent:

(i) ABs(S) = 0.

(i) v/ (8} = (Lpes - (£5)7)
Proof:
[(i) == (ii)]. From Proposition 4.1, when the ®-bias is null, setting ¢ :=
(bh e bn-’rm)a we get:

v/ (S)=¢7! (Z c B+ Y ck) = ¢! (Z > beplzf) + > ck) :

kes kes hes =1 kes

4l

, for some T # 0.

If the distance function is homogeneous of degree one, then the [unction
&7 (X res ST be(Axf) + D pes k) inherits the homogeneity property of
»f (of degree one). Hence, for A > 0, the following relation holds,

o (3 St + ) = (S S woutr+ ).

keSS =1 kel keSS £=1 RES

3See also Chambers and Fiire (1998) and Chambers (2002}

4The homogeneity of degree one ol the distance function is somelimes associated with
the constant returns to scale hypothesis {('I'5}. This is the case for instance for the direc-
Lional distance function.

11



if and only if 3, ecx = 0 and #~1 is homogeneous of degree 7 % 0. Then,
¢HAL) = 9T A) =1 Tk,

and,
d~ M) = N~ () =: ﬁ.gc,b"'(t).
Thus, )
1) = T2 =kt Ry £0, T #£0,
A%

with x > 0 in order to get a non-negative distance function. If the distance
function v/ (S) is supposed to be homogeneous of degree one, then the dis-
tance function is a mean of order 7 #£ 0 and the aggregator ¢ is a power
function.

[(ii) = (1)]. Since ®(x) = (aT,....27,,,) for 7 # 0, we deduce from the
functional form of v/ (&) that for all k € S and s > O

W ({k1) = ke - 2,
and the implication follows. &

[ sum, the transformation ol the data, thanks to the isomorphisms ¢,
enables the usual aggregation bias to be linked with the quasi-linearity of
some homogeneous distance [unctions fs. A similar result based on the
directional distance Function was formerly found by Briec et al. (2003) in
the ease where the data are not transformed, 4.e., @ would be reduced to the
identity map in our framework. In this case, the core of the firm game would
be represented by onc point. Indeed, the core of the firm game is:

cg:{weﬂWE:%gwwmwcx}ﬂ{zy%_uK% (4.14)

keS kel

Proposition 4.3 Under the assumptions (T1)-(T4), (CT) and (SUBy), for
all firm games {K,v/(8): § C K. ®} such that ® = Idpe, the following are
equivalent:

(i) ABa(S) = 0.
(il) Co = {o/({1}),. .., o/ {IK|})}, Co =1

Proof:

(i) = (ii)]: Let ¢ := v/({k}). Notc that ABs(S) = 0 implies that
S es @i = v(8) for all § € K. The vector = (¢4, .. . @rxi) is an imputa-
tion since it respects wy < uf({l.} and Y o0k = U(IC) As a consequence,
since @y = v/ {{k}), then y is the core. The core Cg is then reduced to one

point and so Ce = 0.
[(ii) == (1)) If the pay-off point {o/{{1}),...,v"({IK|})}} is the core, then
by definition, Eq.(4.14), we get that 3, . ¢ ¥x < 'uf(S) for all § C XK. Since

12



o/ ({E}) = wr, then 5, o v/ ({k}) < v/(S), for all § C K. By subadditivity,
we get Y ,cs v {{k}) > 2/(5), and so AB(S) =0forall SCK. =

Finally, we have seen thal the use of an aggregator @ being a power
function, in order to deal with heterogencous firms, allows well-defined ho-
mogeneous distance functions fs to be derived when the aggregation bias
ABg is null. As a consequence, it is of interest to test whether the aggrega-
for is compatible with the celebrated directional distance function to gauge
technical efliciency.

5 Biases of the Directional Distance Function

We show in this section, with numerical examples, that the aggregator is
cnough flexible to capture different technical biases (positive, negative and
null) with the directional distance function. Before, we specify the power
function characterized in the previous section, and we subsequently define the
resulting aggregator (the generalized mean) and the aggregated directional
distance function.

5.1 Power Functions

For all o €10, 40|, let ¢, : R — R be the map defined by:

M A0
Pald) = { A0, (5-1)

For all & # 0, the reciprocal map is ¢! = ¢ 1. It is first quite straightforward
to state that: (i) ¢, is defined over R{,;u(‘if_) ¢ 15 continuous over Ry;
(ii1) @o is bijective over Ry. Throughout the section, for any vector x =
(r....,24) € RE we use the following notations:

¢ (&) = (q_bﬂ(:z:l),...,-cbn(;cd)) = (%..., &) = 2™ {(5.2)

It is then natural to introduce the following algebraic operation over R

vty =07 (@, () + Rly)  and AV w =070 (¢a(NB(x)) . (53)

In this case (@e (R}, +. ) is & scalar field since ¢o(R) = R.

Let us focus on the case a €] — 00, 0[. The map  — 2% is not defined at
point x = 0. Thus, it is not possible to construct a bijective endomorphisin
on R. However, it is possible to construct an operation preserving at least
associativity. For all a0 €] — 00,0} we cousider the function ¢, defined by:

A iFA>0
da{A) =< —(AD" itA<O (5.4)
400 HA=40
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In such a case M = ¢,(R) = R\ {0} U {+oo}. Moreover, let us construct the
application @, : RY — M4, defined by @o(w1, ..., 2q) = (9al21), - . ., Palza))-

For all a < 0, let us consider the algebraic operators T and ¢ defined by:
z ¥ y =B, (Do) + Baly)) and A~z = 0, (@A) Pala)).  (55)

In such a case (R, -T—a) is not a scalar field because there i3 not a neutral
clement. Notice that (R, flr-, %} admits 0 as an absorbing element. It is easy
to check that for all A € R, 0 —T— A = 0. This comes from the fact that for
all p € M, p+ o0 = o0 € M. Thus (R“',i,(}) is not a ®d,-vector space.
However, the addition i ig well defined over BY and it is trivial to check
that associativity holds. For the purpose of the paper, the fact that M does

not contain a ncutral element is not a problem since we consider operations
defined on RZ. If @ = 0, we denote ¢p : B, — R the map defined by:

w={"0 4320 (5.6)

The reciprocal map is:

_ exp{A) i AelR
%o lw:{ Io( ) it A= —oco. (5.7)

It is then possible to construct an algebraic operator sumning the elements

. . . 0o . .
of R%. 11is a neutral element of (R, +,-) and co is an absorbing element.

5.2 The generalized mean

When the distance function is homogeneous of degree one, the aggregator ¢
is the generalized mean investigated by Ben-Tal (1977), Eichorn (1979) and
Blackorhy ¢t al. (1981). Then, the aggregation process [ound in the previous
gection is defined as follows. Let ¢, : R — M be the injective map defined
for all t > 0 by ¢o(t) = ¢ TForall (#;,..., %) € Ri, an one-dimensional
aggregator is given by:

d’f.\’ o (_i‘ )
o (Zke[f’] (te) ) Ya >0 (5.8)
kelf er{gl tr a=0
If o < O, then:
¢f] o % . )
Z o (zkelf] () ) if mingty > 0 (5.9)
ket 0 it mingf; = 0.
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Note that the well-known arithmetic mean is obtained when e = 1. On the
other hand, using L’hospital rule yields the geometric mean:

%
Jim > tn=]]t (5.10}
kefr] kel

In order to aggregate technologics (input/output vectors), we take re-
course to a multidimensional map, the so-called $,-aggregator.

Definition 5.1 — ®,-Aggregation — Let &, : R? — M9 be an injective
mayp defined by:

Polzt,- s za) = (Palz1)s - Palza)).
For all collections Z = 12¥ - k € 8} € RS, a Oy-aggregator is given by:

Py By e

E ko § I E L
z h— ( Zl prrog hd) -

kes k8 hkES

The definition of the coalitional technology (CT) yields, under the @,-
aggregator, the following aggregated technology for all § € K and [S] = 1:

it
=y T* (5.11)
hes
It enables different cases to be captured. When o = 0, a multi-output Cobb-
Douglas technology is designed. When « = 1, we retrieve the well-known
aggregation over sets, studied in Li and Ng (1995), Brice et al. (2003), Fére
et al. {2008), Briec and Mussard (2014).

It has been shown in the previous sections that the distance function
is a good candidate to measure technical efficiency for a group of firms
with respect to the general aggregator ®. The directional distance func-
tion introduced by Chambers, Chung and Fare (1996, 1998} is homogeneous
of degree one. With respect to the ®,-aggregator, it is given by Drps :
oMY x 7 (AMMH) — Ry involving a simultaneous input and out-
put variation in the direction of a pre-assigned vector g = (g;. g,) € R} X R
Following the firm game, Definition 4.2 and the ®,-aggregator, the direc-
tional distance function is expresscd as,

Py P
ua(8) D;s(z D g) (5.12)

k&S kesS
and the aggregation bias by,

AB(S8) = 0a(S) — i%({k}), VS C K, IS = 2. (5.13)

kes



By generalizing the technologies thanks to the ®, aggregator, the resulting
aggregated technology is enough flexible to cover positive aggregation bias
as well as negative ones. A negative bias indicates that some firm coalitions
improve their techuical efficiency, whereas this result has been found to be
impossible under the standard sum of the firms’ technologies.

5.3 Negative technical bias: examples

We show that the transformation of the data thanks to ®, enables the tech-
nical bias inherent to the directional distance function to be designed as
negative (positive), i.e., the improvement {decline) of technical efficiency of
the firm group is due to the cooperation between firms.

Example 5.1 Suppose that K = {1,2} and thal TF = {(a,7) € RY : y* —
(z1)* — (22)* < 0} for k = 1,2. Assume moreover that for k=1, 2 we have
(z, 1) = (2,1,1) and (2g,10) = (1,2,1). In the following, it is shown that
TV = T2, 4t is possible to find some « such that AB,(S;g) :% 0.

For all « > 0, let us consider the isomorphism ¢, R — R defined by,

oA i AZ0
(fba(’\) - {_(_)\)u ?}( )\< D

and its inverse 15 defined by,
_ AF i A0
] .\ —_ . sl
b (V) {—(—;\)a if A< 0.

We have by definition:

IZ Tk = ((T‘}“ n (T?-‘)“)%‘.
k=1,

Set T® = T = T?. By construction T® is quasi lincar and satisfies a constani
returns to scale assumption. We obtain from Briec, Dervaux et Leleu (2003):

Lit T

S Th=T"

k=12

Setting g = (1,1,0), we have Dro(2.1,1;1,1,0) = 1 and Dy(1,2,1;1,1,0) =
1. It follows thai:

L
1]

Bl=

Z Dy («®,4F1,1,0) = ((DTn(z.l,l;1,1,0))“+(DT0(1,2,1;1,1,0))‘*) = 2a,

=12
Moreover,

qr,
S0 () = ((@r1E, (1008, (110)7) = (14297, (142993, 28,
k=12
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The input set is by definition LO(25) = {{xy, 22) € B2 @ ()% + (22)% > 2
It follows thai:

Pa L ] 1
DT:;;( 3 (;I:k,yk);l,l.(]) :D,n.;;((wz“)s,(l )%, 93:1,1, 0) = (14+2%)5—1.

=12
Thus, ] 1

AB, = ({1 +2%% - 1 - 2=,
o Ifa =1, we have
AB,=3-1-2=0,

o Ifa=1/2, we have

ABy= (14 V2 —1-2" = (14 v2)° —

o [for =2, we have

AB, = V5 —1—v2<0.

It is also possible to show that, when « = 0, that the technical bias is
either positive or negative,

Example 5.2 Let zy = Wy and S a coulition of two firms, k = 1,_., such
that TS = T, Set a = 0, we show in the following that ABy(S; g) =0. We
get, for o = 0

ABy(S59) = Dys (H g !’}) ~ Dgi (z1;9) - Drg (z2:9) -

k=12

Since Ty = Ty, it comes that

By definition, Dps(-) > 0. If Dz (223 4) % 1 then ABy(S;¢) g 0.

Those examples sliow, for some values of «, that the cooperation between
firms provides either an improvement of technical efficiency (negative bias),
a constant technical efficiency (null bias) or finally a decrease of technical
efficiency {positive bias). In what follows, the values of o are defined at the
neighborhood of infinity in order to capture negative biases associated with
semilattice technology sets.

6 Input/output fixed firm games: limit cases
We introduce input/output firm games in order to exhibit the conditions
allowing for negative biases to be conceived. Those games rely on semilattice
technologies. Solutions inside the core are characterized, so that the core is

partitioned witl respect to either negative biases or positive ones.
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6.1 Aggregated technologies

The negative bias represents the improvement of technical efficiency for any
given coalition of firms. The demoustration of its existence is made with the
directional distance function either output oriented or input oriented. We
investigate aggregate technologies that are either defined on the maximum
available input-output combination or on the minimum one, respectively. In
the maxinium case, any coalition of firms takes benefit fromn cooperation since
its technical efficiency is improved, in other terms, the game is subadditive
(SUBg), defined from now onwards (SUBg, ) - see Definitions 4.3 and 5.1.

For that purpose, the ¢.-aggregator is defined for particular values of a.
First note that for all u € RY:

P I{Il_iljl Ug Hfa=—x
POETER ST (6.1
max vy if @ =o0.
teld) feid)
(P"ﬂ’

Nolice that by construction ), we = ¢ ( > q‘)ﬂ(ug.)) when o ¢ {—o0, 00}
In such a case, Blackorby et al. {1981) axiomafically characterize this aggre-
gator®. This notation is justified by the fact that:

d’u'
Mg e Efe[d] up =minu, if o= —00
ba (6.2)
Mg e Z{’eld] Uy = INAX e if o = o0.
Le(d]
Notice also that in the case where o = —co, if there is some £ with w, = 0,
‘I{’(x
then ¢,(ue) = +oo and it follows that Zfeidl Uy = ?éfé} ue = (L

Definition 6.1 — Semilattice Aggregators — For all collections Z = {2*
ke Sy e RY an upper semilatlice-aggregator is given by:

k Lk ‘ 1 5 _ 1 181
2* = \/ = (ma;{{z“...,zgl N, max{zh,. .20 )
A lower-semslatiice aggregator is given by

-~

Z 7 = /\ 2 = (min{zl, ..., 2"}, .., min{z), ... L2,

he&s ke&

in the sequel, we define the notions of semilattice with respect to the
usual partial order defined over R}y,

511 is a generalized quasi-linear lunction that respects continuily, monotonicily, sepa-
rability and symmetry.
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Definition 6.2 — Semilattices — A subset A of R*™*™ is an upper semilat-
tice if for all z,2’ € A we have zV 2" € A. A subset B of R™™ is a lower
semilattice if for all z,2' € B we have z A 2" € B,

Example 6.1 Let us recell the notion of B-conver (B~ !-convex) sets. A
B-conver hull of a set A = {::11 .. ‘Z|5|} C R g

BA) = { \/ fuse, 2pax =1, 30}

keS

The B~ -convex hull of a set A is given by:

B '(A) = Sz, min s =1, 5203,
(4) {/\ Tk a«.ﬁ}...,qsl "" }

kes

The B-conver and B™!-conver technologics are given by:

TS ={lo,y) e BT o> k\e/q-tk:r:k,y < k\e/stky;,-,:;gg =1, >0},

Toim = {(-’L‘,y) eRPir 2 N serny <\ sepeminse =1, s> U}-
kes kes
B-conver technologies belong to the class of Kohli technologies analyzed by
Kohli (1983). These technologies cahibit outpul complementurity in the pro-
duction. Inverse B-conuver technologies are related to Leontief production
functions because they #mply input complementarily of production factors.
They are, however, defined in o multi-output contexl. Let us remark that the
free disposal assumption can be represented thanks to the free disposal cone
K =R < (=R}). In this respect any technology respecting the free disposal
assummption may be rewritten as: T = (A + K)NRT™. As a conscquence,
B-conver and B! -convex technologies are also given by:
TS = (B(A) + K)nR™"; 75, = (B™'(4) + K} nRy™.

min
Thesc are represented in Figures la and 1b.

u b

i1
5

min > 24
z3
0 x 0 B
Figure L.a B-conver Technolony Figure i.b fnverse B-conver Technology
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In what follows, we analyze the properties of the aggregated technologies
Tg‘i anc T_Sm, whiel: are semilattice technologies:

QJ)Q
TS ::ZkeS TF = Vies T* fa=+c0

d’('l
TS = ohes T° = Nipes T¢ if = —o0.

—os T

(6.3)

Proposition 6.1 We have the two following properties:

(i) Suppose that for all k € S, T is an upper semilattice. Then \/, oo T* is
an upper semiattice.

(i) Suppose that for all k € S, T* is a lower semilattice. Then N .sT* is a
lower semilattice.

Proof:

(i) Suppose that z,w € V¢ T*. We need to prove that 2V w € Vs T,
By hypothesis, for all k € S there is some 2, w* € T% such that z = V/, 5 2*
and w = V.o w®. Therefore,

2Vw= (\/ Fyv (\/ wh) = \/(::k' v wk).

kES kS hes

Since for all k, T* is an upper semilattice, it follows that =¥ v wt € T*. Thus
eV w € Vs TF and Vg T* is an upper semilattice. The proof of (ii) is
similar. B

Now, we prove that the aggregated technology respects the usual assump-
tions (T1)-(T5) - see Section 2. The first one (T1) displays the no free lunch
assumption, i.e. (0,,0,,) € T* and (0, y*) € TF = Yy = 0,

Proposition 6.2 We hove the two following properties:

(i) If for dll k € 8, T* satisfies the no free lunch assumption (T1), then
Vies T satisfies (T1).

(i) If for all k € S, T* satisfies the no free lunch assumption (T'1), then
Npes T satisfies (T1).

Proof:

Straightforward.

Now, we show tliat infinite outputs cannot be obtained from a finite input
vector (T2), ie. the set A(z") = {(u¥,y*) € TF : ¥ < &%} of dominating
ohservations is bounded Vz* € RY.

Proposition 6.3 We have the two following properties:

(1) If for all k € S, T satisfies (T2}, then \ s T* satisfies (T2).
(ii) If for all k € 8, T* satisfies (T2), then N s T* satisfies (T2).
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Proof:

(i) From {T2) each set A(z*) is assumed to be hounded. Hence, AV es %)
is also bounded, and so, Vs T% respects (T2). The same holds true for (ii).
L5

The aggregated semilattice technology is shown to he closed (T3).

Proposition 6.4 For all k € 8, let T* be (i) an upper semilattice or (ii) a
lower semilattice, then two following properties hold true, respectively.

(i) Forallk € 8, if T* satisfies the closedness assumption (T3), then \/ ¢ T*
satisfies (T3).

(i} For all k € &, if T* satisfies the closedness assumption (T3), then
Npes TF satisfies (T3).

Proof;

(i) Assume by contradiction that V.5 T* is open. Hence, there is some
w,z &€ RYT™ such that (w,z) ¢ Vs T* From Proposition 6.1, \/, s T"
is an upper semilattice. Then, Vkes(wk V %) ¢ \ oo T%. Hence, the map
wh V pes Wr 1S not defined and not continuous on some intervals, that is, it
exists some k € § and at least one i € {1,...,d} such that maxes wF is not
defined. Then, for wy, = (z,3") it exists 2¥ € [3F, 78 + ] or y& € [§F,5F + ¢]
with ¢ > 0 such that maxyes wf is not delined. In such a case, 2% v * & T¥,
and 7% is open on some intervals [2f,z% + €] or [§F, ¥ 4 ¢|. (ii) Mutatis
mutandis (1). ®

We can also prove that the aggregated semilattice technology respects the
frec disposal assumption (T4).

Proposition 6.5 We have the two following properties:

(i) If for allk € 8, T* satisfies a free disposal assumption (T4), then Vies TF
satisfies {T4).

(i) If for all k € S. T% salisfics a free disposal assumption (T4), then
Apes TF satisfles (T4).

Prool:

(i) Suppose that z = (z,y) € V, s T" and let 2/ =(z"y) € R%™ such that
x' 2z 2 and ¥ <y, We need to prove that 2’ € \/, o T* By hypothesis one
can find (2',..., 2151} € V/, s T such that z = /5 2*. If ¢ < y, then there
is some v € RY such that 3/ = y —v. Moreover y —v = (Ve ¥*) —v =
Vies(y® = v). However, y — v 2 O, y — v = (y — v) V 0. Consequently,

y—uv= ( \/(?)‘k —0)) VO, = \/ [(yk — v} V 0y,

kes kes

For all k, since ¢* > O, (¥ —v)V0,, € ¢*V0,, = ¢*. Similarly, if 2’ > 2, then
there is some u € R7 such that &' =z +u = (Vo5 2%) + 1 = V o(a" + ).
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However, since each T* satisfies a free disposal assumption the inequalities
(" — o)V Oy, € 3% and 2% + v > 2% implies that (x* 4+ u, (¥ ~v)V0,) € T,
Hence 2 = {2',¥) € VyesT", which ends the proof. (i) The proof is
siinilar except that one should use the distributivity of the operation V on
A. Suppose that z = (2,y) € Apes T and lot 2/ = (2, y) € RYT™ such that

' 2 rand ¢ < y. By hypothesis one can find (24,...,21%) € A, s T* such
thdt = Npes @ . Paralleling the proof above, if ¢ < ?;, then there is some
v € RT such that ' = y—v. Moreover yy— v = (AkesJ Y= Aes(BF - o).
Since, y — v 2 0y, y — v = (y — v) V 0. Thercfore,

y—uv=( /\(y"' — o)} V0, = /\ [(;{;k —~0) V Dyl

keSS kes

F()r all k. since y* 2 0,, one has (y* —v) vV 0, < vF V Un = 3%, Moreover, if

!z, thtn there is some u € R} such that &’ =z + v = (A, s7") +u =
/\I esla® 4+ u). HOV\ ever, 'alnce each T" satisfies a fiee disposal a&,bumptlon
(y* — ) VO, < y* and 2f + u = 2% implies that 2/ = (2/,¢/) € Mpes TF
whicli ends the proof. B

The constant returns to scale assumption (T5} is also respected by the
aggregated semilattice technology. Recall that the technology T% satisfies
constant retwrns to scale if V3 > 0, (2%, y*) € T* implies (Bz*, By*) € T

Proposition 6.6 The two following properties hold true:

(i) If for all k € S, T* is an upper semiluttice and satisfies the consiant
returns to scale assumption (T5), then \ .o T* is an upper semilattice re-
specling (T5).

(ii) If for all k € S, T* is a lower semilattice and satisfies the constant re-
turns Lo scale assumption (Th), then Nyos T* is a lower semilattice respecting

(T5).

Proof:

(i) Suppose that z,w € Vs T*. We have to pIOVC that fzV fw € Vs TF
for some 4 > 0. Fm all k € S choose some z*, w* € T* such that z = \/, s 2*
and w = V/, g w*. Therefore,

BzV fw= (\/ B v (\/ But) = \/(ﬁzk Vv Bu®)
kcS keS8 kes

By (T5), since T is an upper semilattice for all & € §, we get that SzF v
puk € TF. Thus B2V dw € .o TF, and s0 2V w € Vs T*. Consequently,
VLU' T* is an upper semilattice satisfying (T5). (i) Mutatis mutandis (1).

A last property of equal techuology will be useful in the games defined
below. Inside a coalition, when the technologies of the firms are the same,
the aggregated technology of the coalition inherits the same technelogy.
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Proposition 6.7 We have the two following properties:

(i) Suppose that for all k € S, T* = T is an upper semilattice. Then
Vies TF =T.

(i) Suppose that for ol k € S, TF = T is a lower semilattice. Then
/\kes T*=T.

PProof:

(i) By hypothesis (0,,0,) € T* for all k. Thercfore, for all k, T = T C
ViesT k. Let us show the converse. Assume that z € 7. 1t follows that
for all k there are some z* € T*, such that » = VL_eS z*. Since T = T*,
z* € T for all k. Since T'is an upper semilattice it follows that Vies2* €T
Therefore /.o TF C T. Consequently, \/, s T% = T.

(ii) Assume that z € 7. It follows that for all & there are some z* € 7%,
such that 2 = A, o2 Since T = T*, z* € T for all k. Since T is a lower
semilattice it follows that A, g2* € T. Therefore A, 7% < T. Let us
prove the converse inclusion, Suppose that, z € 7. Since T = T* for all k,
z € TF. Obviously z = A,.g7* Hence 2 € Apes T* and it follows that
T C Npes T*® which proves the converse inclusion. @

Finally, thosc properties indicate that the semilattice structure respects
the traditional assumptions (T1}-(T5) used in the literature.

6.2 Games

Since the @~ and $_-aggregators provide semilattice aggregated technolo-
gies with desirable assumptions, we can now investigate their implications on
firm games. Some restrictions may be imposed on inputs and outputs in order
to clearly identify nogative and positive technical biases.

Definition 6.3 - Input/Output fixed firm games - Let the firm game
be {K.2/(8):5¢C K, 9.}
(i} An input fived firm game is given by,

K. va(S8),7) = {K,v/(5) : S CK, D},

where for all b € 8, 2¥ = .
(i) An output fixed firm game is given by,

O, 1(8). 7)== {K.v/(S): S C K, ,],
where for all k € S, y* = 7.

(i) In input fixed firm games T(K, v,(8), T), coalitions of firms are based on
possible outputs to be produced whereas the amount of inputs is limited to
# for all possible coalitions. This may arise when the firms of specific sectors
are constrained by the amount of their inputs, for instance a maximum is
imposed to respect environmental norms.
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(ii) In output fixed firm games O(K, v {S), 7), coalitions are formed on the
basis of inputs only, whereas the amount of outputs for each coalition is
constrained by §, which may represent a production quota.

The core of those firm games is:

Co = {ap e MK Z% < v, (S),¥S C J‘C} ﬂ {Z D = 'UQ.UC)} . {6.4)

keS ek

The technical biases inherent to the input fixed firm game are the follow-
ing.
Proposition 6.8 If T* is an upper semilattice (lower semilatiice respec-
tively} respecting (T1)-(T4) such that T = T for all k € & C K, then
we have, respectively:

(i) [Z(K, 0a(S), 2) A (a = +o0)] = [AB,(S;q) <0).

(i) [T(K,va(8), B) A (e = —x0)] = [AB(S;9) > 0.

Proof: o

(i) If & = oo, then Z::s T* =V, es TF is an upper semilattice (see Proposi-
tion 6.1). From Proposition 6.5 this sct satisfies the free disposal assumption
(T4), and moreover T = \/, .o T* (sec Proposition 6.7). It follows that the di-
rectional distance function is weakly monotonic on T', that is, (z,y)}, (u,v) €
T such that w € y and v 2 z imply that Dr(u,v;9) > Dplx,y; g). Since this
is an input fixed game, we Lave 2F = 7, for all k € S. Hence, for all S C K,
we have \/, . 2" = . Moreover, \/,..s¥* 2 ¢* for all k. From weak mono-
tonicity, we have Dr(%,V, s ¥%:19) < Dr(z®,y%, g} = Dp(T,y%, g). However,
since T% = T, we Lave for all k € S:

Dy (\/ 2\ o 9) = Dr(®, \/ v*19) < Dr(=*, 1% 9) = Dpela,v%; 9).

keSS  keS keS

This implies that Dr(V, s @, Vies ¥ 9) < max Do (2%, 4% g) which proves
{).

(i) If @ = —oo, then Y s T = AesT* = T is & lower semilattice by
Proposition 6.1. This set satisfies the [rce disposal assumption (T4) from
Proposition 6.5. 1t follows that the directional distance function is weakly
monotonic on A, ¢ T* = T by Proposition 6.7. Then (z,y), (1,v) € T, such
that « € y and v = x imply that Dy(u, v;¢) > Dr(x,y;g). Since this is an
input fixed game, we have 2° = 7, for all k € S, Hence, for all § € K, we have
Nies ¥ = . Moreover, Nies y* < ¢* for all k. From weak monotonicity,
we have Dp(Z, Apes ¥ 9) < Dr(r*,y%;9) = Dp(Z,y"; ¢). Moreover, since
T* = T. we have for all k& € 8:

o

Dy (/\ AN y"";g) = Dr(z, \ v*;9) > Dr(z¥, %, 9) = Dpu(a®, v 9).

kes kesS hES

24



This implies that Dr(A e 2%, Ares U5 9) = rglig Drr (%, 4%; g) which proves
e
(it).

The technical bhiases inherent to the output fixed firim game are the {ol-
lowing.

Proposition 6.9 If T* is an upper semilattice (lower semilattice respec-
tively) respecting (T1)-(T4) such that T = T for all k € & C K, then
we have, respectively:

(1) [O(K, 1a(8),7) A (@ = +00)] = [AB.(S:g) 2 0]

(1i) [O(K,v{S). 9) A (o = —c0)] = [AB.(S,g) < 0]

Proof:
(I’:(I

(i) If @ = oo, then 3, s TF = V,.sT% = T is an upper semilattice re-
specting the [ree disposal assumption (T4), see Propositions 6.1, 6.5 and
6.7. Thoreby, the directional distance tunction is weakly monotfonic on
T, that is, (@, y),{u,v) € T, such that v« € y and v = & imply that
Dy{u,vs9) = Dy(x,y;g9). Since this is an output fixed firm game, we
have 3% = 7, for all k¥ € S, and s0 Vies y* = g for all £ € 8. More-
over, Viesx® 2 &% for all & € S, From weak monotonicity, we have
Dr(Vies®® #19) = Dr(e*,y%9) = Dr(a*,5;9). Since T* = T, we have
toral k € &

DT (\/ Ik:?};g) 2 DT(HTk!yk;g) = D'I*k(-'ﬂk: g\ g)
I;

=

Consequently, Dr(V .o 2 gig) > max Dye{2®, y*; ) which proves (i).
-
(i) H @ = —oq, then 3 .o TF = Ao T® = T satisfies the free disposal
assumption, see Propositions 6.1, 6.5 and 6.7. The directional distance func-
tion is then wealkly monotonic on T, in other words {z,y), (u,#) € T such
that u < y and v 2 x imply that Dr(u,vig) > Dp(z,y;9). Since this is an
output fixed firm game, we have y* = § and so MNiest* =7lorallk € SCK.
Moreover, /\kes 2 < 2% for all k € S, From weak monctonicity, we have
Dy(Npes 3% 7 9) < Dp(a*, 4% ). Since TF = T, we have for all k € S:

Dy (/\ w*, 9) < Dp(eF ¢ 9) = D (a®, 315 9).
kes

This yields Dy(A,cqo FARTH RS rggél Dru(2, y*; g) which proves (ii). =

The previous results indicate that the data aggregation process ®, {re-
spectively @ _,,) 18 relevant with a negative bias that embodies an improve-
ment. of technical efficiency in the input fixed firm game (respectively in the
output fixed firm game).



6.3 Core of firm games and core partitions

The negative bias or equivalently the a-subadditivity (SUB,) is not sufficient
to avoid the vacuity of the core. Briec and Mussard (2014) investigate the
submodularity of the technical bias inherent to allocative firm games in order
to find super-efficient Grm groups. The submodularity of the firm game is
defined as follows.

Definition 8.4 — Submodularity — For all firm gemes {K,v/(S): § C
K. ®s}, such that 81,82 € K with S NSy # 0, the game is submodular (or
concave) if:

I,‘(,.(Sl U 32) S 1)0(51) + ’L’Q(Sg) - Ua(sl M 83)

In the same manner, the submodularity of the aggregation bias is, for Sy, S, C
K such that S; NS, # 9,

AB(E(SI U S‘J) < AB&(SI) + ABQ(‘SE) - ABcr(Sl N ‘32) (65)

The submodularity displays the following interpretation: the loss of technical
efficiency due to the cooperation between two coalitions is no higher than
the aggregated loss of the coalitions taking into account the loss of the joint
cooperation AB,{(S; N &a). It is shown below that the submodularity of the
aggregation bias is closely related to that of the game va(-).

Proposition 6.10 If T* is an upper semilattice (lower semilattice respec-
tively) respecting (T1)-(T4) such that T = T for all k € & C K, then we
have, respectively:

(1) [(AByeo is submodular)] == [v4q i submodular] == (@ € Co# @]

(ii) If kergligsz Uemo( [k} = kezgtligsz V_oo({k)) then:

[(AB_, is submodular)] = [v_y is submodular] = [p € E_QG% @].

Proof:
(i) Let Sy, Sz € K such that §; NS, # @. Since T% = T for all £ € S, then:

:._"1 — TS; — TSz — TS]!’—!S'_} _ TS1U82

Let z* = (&%, ¢4%) € R¥™™, the submodularity of the technical bias is given
by
ABL (81 US8y) < ABL(S1) + ABL(8) — ABL(S: N Ss).

This entails that:

D'F( V 2"’;9)— V Dv--(zk;ﬂ)JrDT( vV 3k39)“ V' Drtg)

keSS LSy RESIUS Ee&inSa keS1MSq
< Dy (\/ ::k;.q) — \/ Dy(2¥;g) + Dy (\/ zk;g) - \/ Dyp(F; g).
sy £ECS) eSSy keSy
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Note that for R = &, S

% I3
max Doz ) <max Dr(z% g) < max Dp(z
(Jaa Dr(zg) <max Dr(2% ) < | max Dr(z 59
Hence, the game v,(-) represented by the characteristic function Dr(-) is
concave, that is, the distance function is submodular:

Dn-( \ z";g) < Dr (\/ zk;g)-i-Dfr (\/ z’“;g) —Dr ( \ z’“;y) :
LeS1US, hes keSa e8NS

To find the previous relation, note that three cases have to be considered:
either the maximum distance v ({k}) is such that & € {& \ S}, or &k €
{8\ S} or finally k& € § NS,. By definition, the pay-off vector ¢ satisfies
linearity, symmetry, aud efficiency (sce Section 2). By Shapley (1972}, the
core interior E‘me is therefore nou empty.

(ii} T the lower semilattice case, we have for R = &, Sa:

Dy(2*; g) > min Dr(z%; ¢) > Drp(z
Lo Dy(z % 9) in ("5 ¢) pin 7(z*; 9).

As a consequence, it is easy to show that the previous condition is nof suf-
ficient to ensure the submodularity of v_,,. However, if mm i _m({k}) =
hes

. 1'311!1 v_oo({k}) then the submodularity of v_, follows,
: 1 2

Dy ( /\ z";g) < Doy (/\ z;‘;g) + D (/\ Zk;g) — Dy ( /\ Z"";g) )
BeSUS, EES, keSy eSSy

Then, the game v_.(-) is concave (submodular). Mereover, since by defi-
nition the pay-off vector ¢ satisfies linearily, symmetry, and efficiency (sce
o

Section 2), then by Shapley (1972), the core interior {_ is non void. B

The last proposition is interesting since it allows to get the non vacuity
of the core. However, it does not tell us the whole story of the sign of the
aggregation bias. Indeed, from the previous result, it is clear that the core
of the firm game may be non void and in the same time the aggregation bias
may be positive or negative as can be seen in Propositions 6.8 and 6.9. In
order to get a clear result about the non vacuity of core and about the sign
of the technical bias, we introduce a partition of the core. The first core
displays the set of imputations o inherent to a positive bias,

s Sa{S),¥SCK o
Aé;(é% >0, VS C K } M {Z‘P’“ = ”"(m}'

Caparo = {%0 e M
rek

The second core vields the set of pay-off vectors ¢ inherent to a negative
bias,

w | Shes s S valS), VS CK -
CaBuso 1= {90 e M ABE(S) Zo VS ek ﬂ Z o = va(K) b

kek
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It is obvious that C, = Cap,<oc U Cap.>0. Consequently, either in the input
or the output fixed firm game, whenever the game v, is submodular, it is
always possible to find a solution in the core interior with improvement of
technical cfficiency.

Corollary 6.1 If T* is an upper semilattice (lower semilatlice respectively)
respecting (T1)-(T4) such that T* =T for allk € S C K, then we have,
respectively:
(1) [Z(K, va(8), T) A (a = 00 A, is submodular)| = ¢ € C.ap,0<0)-
(i) [Z(K, valS), B) Al =

Corollary 6.2 If T* is an upper semilaitice (lower semilaliice respectively)
respecting {T1)-(T4) such that T = T for all k € S C K, then we have,
respectively:
(1) [O(K, valS), 7) Al = +00) A (v, is submodular)] = [ € Cap,.z0)-
(il) [O(K, valS), ) Ala = —00)A(u, i submodular)} = [p € éfm..wgg].

—oo) Ay, 18 submodular)] = {p € Co,qg e 20)-

Proof:
Both corollaries are deduced from Propositions 6.8, 6.9 and 6.10. &

7 Conclusion

The data transformation suggested by Post (2001), in order to gauge tech-
nical efficiency, is of real intercst to improve the accuracy of the mathemat-
ical tools usually employed in the literature. In the same manner, we first
characterize an aggregator @ relevant with general distance functions, and
subscquently relevant with directional distance functions. This aggregator
reduces, under the homogeneity property, to the power mean ®,, which is &
good candidate to deal with aggregated technologies.

The improvement of (the aggregated) technical efficiency of a group of
firms has been shown to be no more impossible. The aggregation bias may
he negative and the result belongs to the core interior of the firm game.
This approach generalizes the firm game, introduced by Briee and Mussard
(2014), defined under the standard sum of technology sets. The aggregation
bias, issued from the $,-aggregator, takes different valuwes: positive, nega-
tive or zero. Then, the cooperation between firms entails all possible cases,
especially with aggregated semilattice technologies that respect all desirable
assuuiptions.

Qur result can be extended to DEA frameworks in order to c¢heck the
convergence rate of the ®,-aggregator. It is possible to show that the aggre-
gation bias may be negative for technology subsets associated with values of
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a that do not necessarily tend to infinity, as in Example 5.1, Indeed, the di-
rectional cistance functions may be computed by solving the following linear
program for all § € K and for all (zs, ys) € RT™:

Ua(8) := max ds
qra

s.t. : g — 05 22.&&8 O™
&

ys + 0590 ézkes Opa®
:l‘r}

Zekzl,ﬂkzo.
keS

Choosing a scalar b enougl large, the determination of the optimal value o*
allowing for the improvement of the technical efliciency in at least one [resp.
for all] coalition[s] is the following.

Algorithm for the convergence of «

e Loop to v € [0, 8] ;
— Compute 9,{S) for all § C K ;

Pee
— Compute AB,(S) = 0,(8) — >_ 9. ({k});
kes
= If AB,(S) < 0 for at least one given § [for all S] then o* =« :
End o ;
— Blse : change o ;
¢ End a.

Finally, the aggregated technology inhcrent to the data transformation,
embodied by the ®,-aggregator, is closely connected to the best input/output
realizations of the firms of the sector {(group}, i.e., the so-called input/output
fixed firtn games. This result is in line with the literature on firm concentra-
tions such as monopolization of industries. In our findings, the improvement
of technical efficiency due to cooperation is, by duality between cost func-
tions and distance functions, a cost reduction. The fusion of the firms may be
viewed as the purchase of the firms of the group realized by the most efficient
onc. Empirically, the purchase of the finng may be allowed by the Compe-
tition Authority insofar the cost reduction implied by the fusion improves
the well-being of the consumers. In this case, the well-known cost-benefit
trade-offs are of interest, as in the celebrated result of Williamson (1968).
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