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Abstract

In this work, we propose a model for the passive transport of a solute in a fractured porous
medium, for which we develop a Hybrid High-Order (HHO) space discretization. We consider,
for the sake of simplicity, the case where the flow problem is fully decoupled from the transport
problem. The novel transmission conditions in our model mimic at the discrete level the property
that the advection terms do not contribute to the energy balance. This choice enables us to handle
the case where the concentration of the solute jumps across the fracture. The HHO discretization
hinges on a mixed formulation in the bulk region and on a primal formulation inside the fracture
for the flow problem, and on a primal formulation both in the bulk region and inside the fracture for
the transport problem. Relevant features of the method include the treatment of nonconforming
discretizations of the fracture, as well as the support of arbitrary approximation orders on fairly
general meshes.

Keywords: HybridHigh-Ordermethods, finite volumemethods, finite elementmethods, fractured
porous media, Darcy flow, miscible displacement, passive transport
MSC2010 classification: 76S05, 65N08, 65N30,

1 Introduction

Over the last decades, the research on fluid flows in fractured porous media has received a great
amount of attention because of its relevance in many areas of the geosciences, ranging from ground-
water hydrology to hydrocarbon exploitation. Fractures in the subsurface are indeed ubiquitous,
and can be caused by tectonic forces, changes of temperature, drying processes, by leaching in the
plane of stratification, or by schistosity. Depending on the material that has accumulated within the
fractures, they may act as conduits or barriers, and thus affect the flow patterns in a substantial way.
For instance, it has been observed that fractures near boreholes tend to increase the productivity of
wells during oil recovery. In the context of geological isolation of radioactive waste, the presence of
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fractures in the disposal areas due to, for example, tunnel excavation, can drastically accelerate the
migration process of radionuclides.

A common feature of fractures in porous media is the variety of length scales. While the presence
of smaller fractures may be accounted for by using homogenization or other upscaling techniques,
fractures with larger extension have to be modelled explicitly, and there are several possible ways to
incorporate their presence. Our focus is here on the approach developed in [3131], where a reduced
model for the flow in the fracture is obtained by an averaging process, and the fracture is treated as
an interface inside the bulk region. The fracture is assumed to be filled of debris, so that the flow
therein can still be modelled by Darcy’s law. The problem is closed by interface conditions that relate
the average and jump of the bulk pressure to the normal flux and pressure in the fracture. In [1515] we
have designed and analysed a Hybrid High-Order (HHO) method to discretize this model, and proved
stability and order O(hk+1) convergence of the discretization error measured in an energy-like norm,
with h denoting the meshsize and k ≥ 0 the polynomial degree. This method is based on a mixed
formulation for the bulk coupled with a primal method for the fracture. This choice is motivated by
the fact that the unknowns of the method are those that naturally appear in the coupling conditions
(44), namely the normal component of the bulk flux and the fracture pressure. For a review of other
formulations, we refer the reader to [2626]. Concerning the equivalence of mixed and primal HHO
methods, see [11, 1212]. We also refer the reader to [1717, 2222] and also [2424, Section 3.2.5] concerning flux
formulations of HHO methods, which highlight their local conservation properties. Several other
discretization schemes have been proposed for this type of models; see, e.g., [44, 66, 99, 1010, 1313, 1414, 1818,
2828, 3333] and references therein. Other works where fractures are treated as interfaces include [55, 88,
2525].

The literature on passive transport in fractured porous media and related problems is, however,
more scarce. In [3030], the authors study a system of advection-diffusion equations where the jump of
the diffusive bulk flux acts as a source term inside the fracture. In the coupling conditions, only the
diffusive part of the total bulk flux is considered. The discretization is based on the Unfitted Finite
Element method, for which well-posedness and O(hk) convergence in the energy-norm are proved.
In [1616], a Finite Volume method is combined with a Trace Finite Element method to solve a transport
problem in the bulk region and inside the fracture, with the jump of the total bulk flux acting as a
source term in the surface problem and under the assumption that the concentration is continuous at
the interface. Convergence in O(h) is numerically observed for the energy-norm of the discretization
error. A similar problem is studied in [22]. In [2929], the authors use an averaging technique similar
to [3131] in order to derive coupling conditions for a transport problem which allow the concentration
to jump across the fracture. This enables them to model high concentration gradients near the
fracture resulting from highly heterogeneous diffusivity. The problem is discretized by eXtended
Finite Elements (XFEM), and numerical evidence is provided. Yet another approach is represented
by Discrete Fracture Networks (DFNs) models, where the bulk surrounding fractures is considered as
impervious, so that the flow can only occur through the fracture planes and across their intersections;
see, e.g., [1111], where authors propose a system of unsteady advection-diffusion in DFNs.

In this work, we consider the passive transport of a solute driven by a velocity field solution of a
(decoupled) Darcy problem. We present two novel contributions:

(i) first, we propose new coupling conditions between the bulk region and fracture inspired by
energy-based arguments, following the general ideas developed by [2727] in a different context.
Crucially, these transmission conditions allow the solute concentration to jump across the
fracture;

(ii) second, we propose a novel HHO discretization of this newmodel where the Darcy velocity field
results from an HHO approximation of the flow problem in the spirit of [1515]. The discretization
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is designed to incorporate the new transmission conditions and to reproduce at the discrete level
the energy argument from which they originate.

The main source of inspiration for the discretization of the advection terms in the bulk region
and inside the fracture is [2121], where the authors develop an HHO method that is proven to be
robust across the entire range [0,+∞] of local Péclet numbers and that supports locally degenerate
diffusion. The adaptation of the analysis techniques developed in this reference to the present case
seems possible, and will make the object of a future, theoretically oriented work. Concerning
the coupling of the flow and transport problems, we take inspiration from [33], where an HHO
discretization of miscible displacements in non-fractured porous media described by the Peaceman
model is considered. Therein, in order to obtain a well-posed discrete problem, the flow problem has
to be solved using polynomials of degree twice as high as the transport problem. In our work, we find
that a similar condition is required to ensure the coercivity of the transport bilinear form; see Remark
1111 for further details. A thorough numerical investigation is carried out to demonstrate the order of
convergence of the method and showcase its performance on physical test cases.

The material is organized as follows. In Section 22 we describe the equations that govern the
model in the steady case along with their weak formulation. In Section 33 we discuss the discrete
setting. In Section 44, we formulate the HHO space approximation and hint to the generalization
to the unsteady case. Section 55 contains a complete panel of steady and unsteady numerical tests,
including a numerical study of the convergence properties of the method and more physical test cases
corresponding to conductive and impermeable fractures.

2 The differential model

In this section we introduce the strong and weak formulations of the flow and passive transport
problems in the steady case. For the sake of simplicity, the presentation focuses on the two-
dimensional case with a single fracture.

2.1 Notation

We consider a porous medium saturated by an incompressible fluid that occupies a space region
Ω ⊂ R2 traversed by a fracture Γ. We assume that Ω is an open, bounded, connected, polygonal
set with Lipschitz boundary ∂Ω. The fracture Γ is represented by an open line segment of nonzero
length which cuts Ω into two disjoint connected polygonal subdomains ΩB,1 and ΩB,2 with Lipschitz
boundary. The set ΩB B Ω \ Γ = ΩB,1 ∪ ΩB,2 corresponds to the bulk region. We denote by
∂ΩB B

⋃2
i=1(∂ΩB,i \ Γ) the external boundary of the bulk region and by n∂Ω the unit normal vector

on ∂ΩB pointing out of ΩB. For i ∈ {1, 2}, we let ∂ΩB,i B ∂ΩB ∩ΩB,i denote the external boundary
of the subdomain ΩB,i. The boundary of the fracture Γ is denoted by ∂Γ, and the corresponding
outward unit tangential vector is τ∂Γ. Finally, nΓ denotes the unit normal vector to Γ pointing out of
ΩB,1. This notation is illustrated in Figure 11.

For any function ϕ sufficiently regular to admit a (possibly two-valued) trace on Γ, we define the
jump and average operators such that

[[ϕ]]Γ B (ϕ1 − ϕ2) |Γ , {{ϕ}}Γ B
(ϕ1 + ϕ2

2

)
|Γ
,

where ϕi B ϕ |ΩB, i denotes the restriction of ϕ to the subdomain ΩB,i ⊂ ΩB. When applied to
vector-valued functions, these operators act component-wise.

Finally, for any X ⊂ Ω, we denote by (·, ·)X and ‖·‖X the usual inner product and norm of L2(X)
or L2(X)2, according to the context.
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Figure 1: Illustration of the notation introduced in Section 2.12.1.

2.2 Darcy flow

We now formulate the equations that govern the flow in the saturated, fractured porous medium and
discuss a weak formulation inspired by [77, 1919].

2.2.1 Governing equations

In the bulk regionΩB and in the fracture Γ, wemodel the fluid flow byDarcy’s law inmixed and primal
form, respectively, so that the bulk Darcy velocity u : ΩB → R

2, the bulk pressure p : ΩB → R, and
the fracture pressure pΓ : Γ→ R satisfy

u + K∇p = 0 in ΩB, (1a)
∇ · u = f in ΩB, (1b)

−∇τ · (KΓ∇τpΓ) = `Γ fΓ + [[u]]Γ · nΓ in Γ, (1c)
u · n∂Ω = 0 on ∂ΩB, (1d)

−KΓ∇τpΓ · τ∂Γ = 0 on ∂Γ, (1e)∫
Γ

pΓ = 0, (1f)

where f ∈ L2(ΩB) and fΓ ∈ L2(Γ) denote source or sink terms, K : ΩB → R
2×2 the bulk permeability

tensor, and we have set KΓ B κτ
Γ
`Γ, with κτΓ : Γ → R denoting the tangential permeability inside the

fracture and `Γ : Γ → R the fracture thickness. In (1c1c) and (1e1e), ∇τ and ∇τ · denote the tangential
gradient and divergence operators along Γ, respectively. We assume that K is symmetric, piecewise
constant on a finite polygonal partition

PB = {ωB,i : i ∈ IB} (2)

of ΩB, and uniformly elliptic, so that there exist two strictly positive real numbers KB and KB such
that, for almost every x ∈ ΩB and all z ∈ R2 with |z | = 1,

0 < KB ≤ K (x)z · z ≤ KB.

The quantities κτ
Γ
and `Γ are also assumed piecewise constant on a finite partition

PΓ = {ωΓ,i : i ∈ IΓ} (3)

of Γ, and such that there exist strictly positive real numbers `
Γ
,`Γ K

Γ
,KΓ such that, for almost every

x ∈ Γ,
0 < `

Γ
≤ `Γ(x) ≤ `Γ, 0 < K

Γ
≤ KΓ(x) ≤ KΓ .
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To close the problem, we add the following transmission conditions across the fracture:

λΓ{{u}}Γ · nΓ = [[p]]Γ on Γ,

λ
ξ
Γ
[[u]]Γ · nΓ = {{p}}Γ − pΓ on Γ,

(4)

where, denoting by ξ ∈
(

1
2, 1

]
a user-dependent model parameter, we have set

λΓ B
`Γ
κn
Γ

, λ
ξ
Γ
B λΓ

(
ξ

2
−

1
4

)
.

Here, κn
Γ

: Γ→ R represents the normal permeability inside the fracture, which is assumed piecewise
constant on the partition PΓ of Γ and such that, for almost every x ∈ Γ,

0 < λ
Γ
≤ λΓ(x) ≤ λΓ,

for two given strictly positive real numbers λ
Γ
and λΓ.

Remark 1 (Compatibility condition). Since homogeneousNeumannboundary conditions are considered
on both the bulk and fracture boundaries (cf. (1d1d) and (1e1e)), the flow through the porous medium
is entirely driven by the source terms f and fΓ, which typically model injection or production wells
according to their sign. Decomposing f and fΓ into their positive and negative parts, i.e., writing
f = f + − f − and fΓ = f +

Γ
− f −
Γ
with f ± B | f |± f

2 and f ±
Γ
B
| fΓ |± fΓ

2 , we need to further assume the
following compatibility condition in order to ensure that a global mass balance is satisfied:∫

ΩB

f + +
∫
Γ

`Γ f +Γ =
∫
ΩB

f − +
∫
Γ

`Γ f −Γ , (5)

which translates the fact that all the fluid that enters the domain through injection wells must exit the
domain through production wells. In this configuration, the fracture pressure pΓ is defined up to a
constant that is fixed by the zero-average constraint (1f1f). The bulk pressure, on the other hand, is
uniquely defined without additional conditions owing to the coupling conditions (44).
Remark 2 (Boundary conditions). The model can be adapted to incorporate all the usual boundary
conditions. One can consider, e.g., non-homogeneous Neumann boundary conditions on the bulk and,
in the case where the fracture hits the domain boundary ∂Ω, non-homogeneous Neumann boundary
conditions on its tip. On the other hand, if the fracture boundaries lie in the interior of the domain
Ω, a no-flow condition is required, where suitable compatibility conditions have to be enforced in
each case. We do not dwelve further into this topic here, as the extension of the proposed method is
relatively standard.

2.2.2 Weak formulation

We define the spaceH(div;ΩB), spanned by vector-valued functions onΩB whose restriction to every
bulk subregion ΩB,i, i ∈ {1, 2}, is in H(div;ΩB,i). The Darcy velocity space is

U B
{
u ∈ H(div;ΩB) : u · n∂Ω = 0 on ∂ΩB and (u1 · nΓ, u2 · nΓ) ∈ L2(Γ)2

}
.

The fracture pressure space is PΓ B H1(Γ)∩L2
0(Γ), with L2

0(Γ) spanned by square-integrable functions
with zero mean value on Γ. We define the bilinear forms aξK : U ×U → R, aΓK : H1(Γ)×H1(Γ) → R,
b : U × L2(ΩB) → R and d : U × L2(Γ) → R such that

aξK (u, q) B (K
−1u, q)ΩB + (λ

ξ
Γ
[[u]]Γ·nΓ, [[q]]Γ·nΓ)Γ + (λΓ{{u}}Γ·nΓ, {{q}}Γ·nΓ)Γ,

aΓK (pΓ, zΓ) B (KΓ∇τpΓ,∇τ zΓ)Γ, b(u, z) B (∇ · u, z)ΩB, d(u, zΓ) B ([[u]]Γ · nΓ, zΓ)Γ,
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as well as the global bilinear formAflow
ξ : (U × L2(ΩB) ×H1(Γ)) × (U × L2(ΩB) ×H1(Γ)) → R such

that

Aflow
ξ ((u, p, pΓ), (q, z, zΓ)) B aξK (u, q) + b(u, z) − b(q, p) + d(q, pΓ) − d(u, zΓ) + aΓK (pΓ, zΓ).

With these spaces and bilinear forms, the weak formulation of problem (11)–(44) reads: Find (u, p, pΓ) ∈
U × L2(ΩB) × PΓ such that, for all (q, z, zΓ) ∈ U × L2(ΩB) × H1(Γ),

Aflow
ξ ((u, p, pΓ), (q, z, zΓ)) = ( f , z)ΩB + (`Γ fΓ, zΓ)Γ . (6)

The well-posedness of problem (66) with mixed boundary conditions is studied in [77]; cf. also [1919,
3333] and references therein.

2.3 Passive transport

We next formulate the equations that govern the passive transport of a solute by the Darcy flow
solution of problem (11)–(44). For the sake of simplicity, we focus on the case where the transport
problem is fully decoupled. This section contains the first main contribution of this paper, namely
novel transmission conditions that enable the treatment of discontinuous solute concentrations across
the fracture.

2.3.1 Bulk region

Denoting by c : ΩB → R the concentration of the solute in the bulk and by D : ΩB → R
2×2 the

symmetric, uniformly elliptic bulk diffusion-dispersion tensor, the passive transport of the solute in
the bulk region is governed by the following equations:

∇ · (uc − D∇c) + f −c = f +ĉ in ΩB, (7a)
−D∇c · n∂Ω = 0 on ∂ΩB, (7b)

where the term f −c acts as a sink, while the term f +ĉ, with ĉ : ΩB → R denoting the concentration
of solute as it is injected, acts as a source. We assume that both D and ĉ are piecewise constant on
the polygonal partition PB of ΩB (see (22)), and that there exist two strictly positive real numbers DB
and DB such that, for almost every x ∈ ΩB and all z ∈ R2 such that |z | = 1,

0 ≤ ĉ(x) ≤ 1, 0 < DB ≤ D(x)z · z ≤ DB.

More generally D can depend on u. While the theoretical results provided hereafter focus on the
case of D independent from u, this dependence has been considered in some numerical experiments
presented in Section 55.

2.3.2 Fracture

We define the Darcy velocity uΓ : Γ → R2 inside the fracture such that uΓ B −KΓ∇τpΓ where
pΓ : Γ → R is the fracture pressure solution of problem (11)–(44). Denoting by cΓ : Γ → R the
concentration of the solute inside the fracture, and letting DΓ B Dτ

Γ
`Γ with Dτ

Γ
: Γ → R denoting

the (strictly positive almost everywhere) tangential diffusion-dispersion coefficient of the fracture, the
governing equations for the transport problem inside the fracture are:

∇τ · (uΓcΓ − DΓ∇τcΓ) + `Γ f −Γ cΓ = `Γ f +Γ ĉΓ + [[uc − D∇c]]Γ · nΓ in Γ, (8a)
−DΓ∇τcΓ · τ∂Γ = 0 on ∂Γ, (8b)
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where again f −
Γ

c acts as a sink term while f +
Γ

ĉΓ acts as a source, with ĉΓ : Γ → R denoting the
concentration of solute as it is injected into the fracture. For the sake of simplicity, we assume in
what follows that both ĉΓ and DΓ are piecewise constant on the partition PΓ of Γ (see (33)), and such
that there exist two strictly positive real numbers D

Γ
and DΓ such that, for almost every x ∈ Γ,

0 ≤ ĉΓ(x) ≤ 1, 0 < D
Γ
≤ DΓ(x) ≤ DΓ .

Remark 3 (Bulk and fracture boundary conditions). Considering no-flow boundary conditions on
the bulk and fracture flux (1d1d) and (1e1e) entails a slight simplification, since we do not have to deal
with the decomposition of the bulk or fracture boundary into their respective inflow or outflow parts.
Other boundary conditions can be considered, but this topic will not be further developed here for the
sake of brevity.

2.3.3 Transmission conditions

To derive transmission conditions for the hybrid dimensional passive transport problem, we have
followed a technique similar to that used in [2727] and [2121] in a completely different context. We started
from the observation that in the unreduced model, where the fracture is not reduced to an internal
interface, the transport operator does not contribute to the energy balance, aside from a possible
contribution at the boundary (which is zero if we prescribe zero normal Darcy velocity). Therefore,
we want to obtain also in the reduced model an energy estimate where the transport term behaves
similarly. In particular, in the energy estimate for the hybrid dimensional problem, the terms related
to transport in the coupling conditions have to cancel out and give no contribution to the energy. This
is crucial, since energy estimates are a key ingredient for the coercivity of the differential problem.
This is far from trivial, however we will show that this is possible if the following conditions are used
(see Theorem 55):

{{uc − D∇c}}Γ · nΓ = βΓ[[c]]Γ + ({{u}}Γ · nΓ){{c}}Γ +
1
8
([[u]]Γ · nΓ)[[c]]Γ on Γ,

[[uc − D∇c]]Γ · nΓ = β
ξ
Γ
({{c}}Γ − cΓ) +

1
2
([[u]]Γ · nΓ)({{c}}Γ + cΓ) on Γ,

(9)

where ξ is the user-dependent model parameter introduced in Section 2.2.12.2.1, and we have set

βΓ B
Dn
Γ

`Γ
, β

ξ
Γ
B βΓ

(
ξ

2
−

1
4

)−1
.

The termDn
Γ

: Γ→ R represents the normal diffusion-dispersion coefficient of the fracture, which is
assumed piecewise constant on the partition PΓ of Γ (see (33)), strictly positive almost everywhere on
Γ, and such that, for almost every x ∈ Γ,

0 < β
Γ
≤ βΓ(x) ≤ βΓ,

for two given strictly positive real numbers β
Γ
and βΓ.

Remark 4 (Limit cases). We may notice that in the case of a pure diffusion-dispersion problem in the
bulk and in the fracture, corresponding to the case u = 0, the transmission conditions (99) reduce to

{{−D∇c}}Γ · nΓ = βΓ[[c]]Γ on Γ, (10a)

[[−D∇c]]Γ · nΓ = β
ξ
Γ
({{c}}Γ − cΓ) on Γ. (10b)

The first equation (10a10a) stipulates that the diffusive flux across the fracture is proportional to the
difference of concentration at the two sides of the fracture, while the second equation (10b10b) stipulates
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that the exchange between the bulk and the fracture is proportional to the difference between the
average concentration across the fracture and the concentation at the interior of the fracture. On
the other hand, for a pure transport problem (which corresponds to the case when all the diffusion-
dispersion coefficients are zero), simple algebraic manipulations show that we obtain c1 = c2 =

cΓ across the fracture Γ, provided that [[u]]Γ · nΓ , 0. This is reasonable, since in this limit
case concentration is just transmitted across the interface. In intermediate cases, the transmission
conditions (99) as designed so as to guarantee the satisfaction of the energy inequality, as we will show
in Section 2.3.52.3.5.

2.3.4 Weak formulation

Let H1(ΩB) denote the broken Sobolev space spanned by scalar-valued functions on ΩB whose
restriction to every bulk subregion ΩB,i, i ∈ {1, 2}, is in H1(ΩB,i). We define the molecular diffusion
bilinear form aD : H1(ΩB) × H1(ΩB) → R, the advection-reaction bilinear form au, f : H1(ΩB) ×

H1(ΩB) → R, and the diffusion-advection-reaction bilinear form a : H1(ΩB) × H1(ΩB) such that

aD(c, z) B
∫
ΩB

D∇c · ∇z, au, f (c, z) B
∫
ΩB

(
− c(u · ∇z) + f −cz

)
,

a(c, z) B aD(c, z) + au, f (c, z).
(11)

We also define their fracture-based counterparts aΓD : H1(Γ)×H1(Γ) → R, aΓu, f : H1(Γ)×H1(Γ) → R

and aΓ : H1(Γ) × H1(Γ) → R such that

aΓD(cΓ, zΓ) B
∫
Γ

DΓ∇τcΓ · ∇τ zΓ, aΓu, f (cΓ, zΓ) B
∫
Γ

(
− cΓ(uΓ · ∇τ zΓ) + `Γ f −Γ cΓzΓ

)
,

aΓ(cΓ, zΓ) B aΓD(cΓ, zΓ) + aΓu, f (cΓ, zΓ).
(12)

The global bilinear form Atransp
ξ :

(
H1(ΩB) × H1(Γ)

)
×

(
H1(ΩB) × H1(Γ)

)
→ R, that additionally

takes into account terms that stem from the coupling equations, is defined as follows:

A
transp
ξ ((c, cΓ), (z, zΓ)) B a(c, z) + aΓ(cΓ, zΓ) +

∫
Γ

β
ξ
Γ
({{c}}Γ − cΓ)({{z}}Γ − zΓ)

+

∫
Γ

(
βΓ[[c]]Γ[[z]]Γ +

1
2
([[u]]Γ · nΓ)({{c}}Γ + cΓ)({{z}}Γ − zΓ)

)
+

∫
Γ

(
({{u}}Γ · nΓ){{c}}Γ[[z]]Γ +

1
8
([[u]]Γ · nΓ)[[c]]Γ[[z]]Γ

)
.

(13)

With these spaces and bilinear forms, the weak formulation of problem (77)–(88)–(99) reads: Find
(c, cΓ) ∈ H1(ΩB) × H1(Γ) such that, for all (z, zΓ) ∈ H1(ΩB) × H1(Γ)

A
transp
ξ ((c, cΓ), (z, zΓ)) = ( f +ĉ, z)ΩB + (`Γ f +Γ ĉΓ, zΓ)Γ . (14)

2.3.5 Coercivity

In the following theorem, we prove the coercivity of the global transport bilinear form defined by (1313)
and show that, thanks to the new transmission conditions (88), the advective terms do not dissipate
energy. This result is the key ingredient to derive a stability result for problem (1414).

Theorem 5 (Coercivity). Let ξ > 1/2. Then, for all (z, zΓ) ∈ H1(ΩB) × H1(Γ), it holds

A
transp
ξ ((z, zΓ), (z, zΓ)) = ‖D

1/2∇z‖2
ΩB
+ ‖D

1/2
Γ
∇τ zΓ‖2Γ + ‖ χ

1/2
B z‖2

ΩB
+ ‖ χ

1/2
Γ

zΓ‖2Γ

+ ‖(β
ξ
Γ
)

1/2({{z}}Γ − zΓ)‖2Γ + ‖(βΓ)
1/2[[z]]Γ‖2Γ,

(15)
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with χB B
| f |
2

and χΓ B
`Γ | fΓ |

2
.

Remark 6 (Energy balance). Equation (1515) can be interpreted as a global energy balance. The
transmission conditions (99) are designed so that the advective terms do not contribute to this balance.
Additionally, if z = zΓ across Γ, also all terms related to the diffusion-dispersion across the fracture,
collected in the second line of (1515), disappear.

Proof. Let (z, zΓ) ∈ H1(ΩB) × H1(Γ). By definition of the global bilinear form Atransp
ξ (1313), it holds

A
transp
ξ ((z, zΓ), (z, zΓ)) = a(z, z) + aΓ(zΓ, zΓ) + ‖(β

ξ
Γ
)

1/2({{z}}Γ − zΓ)‖2Γ + ‖(βΓ)
1/2[[z]]Γ‖2Γ

+

∫
Γ

1
2
([[u]]Γ · nΓ)({{z}}Γ + zΓ)({{z}}Γ − zΓ)

+

∫
Γ

(
({{u}}Γ · nΓ){{z}}Γ[[z]]Γ +

1
8
([[u]]Γ · nΓ)[[z]]2Γ

)
,

(16)

Using the definitions (1111) and (1212) of the bilinear forms a and aΓ, we obtain

a(z, z) = ‖D1/2∇z‖2
ΩB
+ au, f (z, z), aΓ(zΓ, zΓ) = ‖D

1/2
Γ
∇τ zΓ‖2Γ + aΓu, f (zΓ, zΓ). (17)

Expanding the bilinear form au, f according to its definition (1111), we get

au, f (z, z) =
∫
ΩB

(
− z(u · ∇z) + f −z2

)
=

∫
ΩB

(
− u · ∇(

z2

2
) + f −z2

)
=

∫
ΩB

(1
2
(∇ · u)z2 + f −z2

)
−

1
2

∫
Γ

[[uz2]]Γ · nΓ

= ‖ χ
1/2
B z‖2

ΩB
−

1
2

∫
Γ

(
[[u]]Γ · nΓ{{z2}}Γ + {{u}}Γ · nΓ[[z2]]Γ

)
,

(18)

where we have used an integration by parts together with the boundary condition (1d1d) to pass to the
third line while to pass to the fourth line, we have used (1b1b) to write 1

2 (∇ · u) + f − = f
2 + f − = | f |2

followed by the relation
[[ab]]Γ = [[a]]Γ{{b}}Γ + {{a}}Γ[[b]]Γ . (19)

Similarly, expanding aΓu, f according to its definition (1212), we find

aΓu, f (zΓ, zΓ) =
∫
Γ

(
− zΓ(uΓ · ∇τ zΓ) + `Γ f −Γ z2

Γ

)
=

∫
Γ

(
− uΓ · ∇(

z2
Γ

2
) + `Γ f −Γ z2

Γ

)
=

∫
Γ

(1
2
(∇τ · uΓ)z2

Γ + `Γ f −Γ z2
Γ

)
=

∫
Γ

(1
2
(`Γ fΓ + [[u]]Γ · nΓ)z2

Γ + `Γ f −Γ z2
Γ

)
= ‖ χ

1/2
Γ

zΓ‖2Γ +
1
2

∫
Γ

([[u]]Γ · nΓ)z2
Γ,

(20)
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where we have, at first, integrated by parts and used (1e1e) to pass to the third line, then we have used
(1c1c) after recalling that uΓ B −KΓ∇τpΓ to pass to the fourth line, and invoked the definition of χΓ to
conclude. Plugging (1717), (1818) and (2020) into (1616), we obtain

A
transp
ξ ((z, zΓ), (z, zΓ)) =‖D

1/2∇z‖2
ΩB
+ ‖D

1/2
Γ
∇τ zΓ‖2Γ + ‖ χ

1/2
B z‖2

ΩB
+ ‖ χ

1/2
Γ

zΓ‖2Γ

+ ‖(β
ξ
Γ
)

1/2({{z}}Γ − zΓ)‖2Γ + ‖(βΓ)
1/2[[z]]Γ‖2Γ

+

∫
Γ

(
−

1
2
([[u]]Γ · nΓ){{z2}}Γ + ({{u}}Γ · nΓ)

(
����������

{{z}}Γ[[z]]Γ −
1
2
[[z2]]Γ

))
+

∫
Γ

1
2

(
([[u]]Γ · nΓ)z2

Γ + ([[u]]Γ · nΓ)({{z}}Γ + zΓ)({{z}}Γ − zΓ)
)

+

∫
Γ

1
8
([[u]]Γ · nΓ)[[z]]2Γ,

where, to cancel the last term in the third line, we have used formula (1919) with a = b = z to infer
1
2 [[z

2]]Γ = {{z}}Γ[[z]]Γ. Rearranging the terms on Γ, we arrive at

A
transp
ξ ((z, zΓ), (z, zΓ)) = ‖D

1/2∇z‖2
ΩB
+ ‖D

1/2
Γ
∇τ zΓ‖2Γ + ‖ χ

1/2
B z‖2

ΩB
+ ‖ χ

1/2
Γ

zΓ‖2Γ

+ ‖(β
ξ
Γ
)

1/2({{z}}Γ − zΓ)‖2Γ + ‖(βΓ)
1/2[[z]]Γ‖2Γ

+

∫
Γ

1
2
([[u]]Γ · nΓ)

(
�
�z2
Γ − {{z

2}}Γ + {{z}}2Γ −��z
2
Γ +

1
4
[[z]]2Γ

)
.

(21)

Using the formula

{{ab}}Γ = {{a}}Γ{{b}}Γ +
1
4
[[a]]Γ[[b]]Γ

with a = b = z to write {{z2}}Γ = {{z}}2Γ +
1
4 [[z]]

2
Γ
in the last line of (2121), (1515) follows. �

3 Discrete setting

The HHO method is built upon a polygonal mesh of the domain Ω defined prescribing a set of mesh
elements Th and a set of mesh faces Fh.

The set of mesh elements Th is a finite collection of open disjoint polygons with nonzero area
such that Ω =

⋃
T ∈Th T and h = maxT ∈Th hT , with hT denoting the diameter of T . We also denote by

∂T the boundary of a mesh element T ∈ Th. The set of mesh faces Fh is a finite collection of open
disjoint line segments in Ω with nonzero length such that, for all F ∈ Fh, (i) either there exist two
distinct mesh elements T1,T2 ∈ Th such that F ⊂ ∂T1 ∩ ∂T2 (and F is called an interface) or (ii) there
exist a (unique) mesh element T ∈ Th such that F ⊂ ∂T ∩ ∂Ω (and F is called a boundary face). We
assume that Fh partitions the mesh skeleton in the sense that

⋃
T ∈Th ∂T =

⋃
F ∈Fh F.

Remark 7 (Mesh faces). Despite working in two space dimensions, we use the terminology “face”
over “edge” in order to (i) be consistent with the standard HHO nomenclature and (ii) stress the fact
that faces need not coincide with polygonal edges (but can be subsets thereof); see also Remark 88.

We denote by F i
h
the set of all interfaces and by F b

h
the set of all boundary faces, so that

Fh = F
i
h
∪ F b

h
. The length of a face F ∈ Fh is denoted by hF . For any mesh element T ∈ Th, FT is

the set of faces that lie on ∂T and, for any F ∈ FT , nTF is the unit normal to F pointing out of T .
Symmetrically, for any F ∈ Fh, TF is the set containing the mesh elements sharing the face F (two if
F is an interface, one if F is a boundary face).

To account for the presence of the fracture, we make the following assumption.
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Pentagons

Squares

Figure 2: Treatment of nonconforming fracture discretizations.

Assumption 1 (Geometric compliance with the fracture). The mesh is compliant with the fracture,
i.e., there exists a subset F Γ

h
⊂ F i

h
such that Γ =

⋃
F ∈FΓ

h
F . As a result, F Γ

h
is a (1-dimensional) mesh

of the fracture.

Remark 8 (Polygonal meshes and geometric compliance with the fracture). Fulfilling Assumption 11
does not pose particular problems in the context of polygonal methods, even when the fracture
discretization is nonconforming in the classical sense. Consider, e.g., the situation illustrated in
Figure 22, where the fracture lies at the intersection of two nonmatching Cartesian submeshes. In this
case, no special treatment is required if the mesh elements in contact with the fracture are treated as
pentagons with two coplanar faces instead of rectangles. This is possible since, as already pointed
out, the set of mesh faces Fh does not need to coincide with the set of polygonal edges of Th.

The set of vertices of the fracture is denoted by Vh and, for all F ∈ F Γ
h
, we denote by VF the

vertices of F. Symmetrically, for any V ∈ Vh, FV is the set containing the fracture faces sharing the
vertex V (two if V is an internal vertex, one if V is on the boundary on the fracture). For all F ∈ F Γ

h
and all V ∈ VF , τFV denotes the unit vector tangent to the fracture and oriented so that it points out
of F from V . Finally, V i

h
is the set containing the internal vertices and Vb

h
is the set containing the

points in ∂Γ, so thatVh = V
i
h
∪Vb

h
.

To avoid dealing with jumps of the problem data inside mesh elements, as well as on boundary
and fracture faces, we additionally make the following assumption.

Assumption 2 (Compliance with the problem data). The mesh is compliant with the data, i.e.: (i) for
each mesh element T ∈ Th, there exists a unique sudomain ωB ∈ PB (see (22)) such that T ⊂ ωB;
(ii) for each fracture face F ∈ F Γ

h
, there is a unique subdomain ωΓ ∈ PΓ (see (33)) such that F ⊂ ωΓ.

4 The Hybrid High-Order method

In this section, we formulate the HHO discretization of problems (66) (Darcy flow) and (1414) (steady
passive transport).

4.1 Darcy flow

We start with the discretization of problem (66), which is closely inspired by [1515]. Through this
section, we denote by l ≥ 0 a fixed integer polynomial degree.
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4.1.1 Discrete bulkDarcy velocity unkonwns, bulkDarcy velocity reconstruction, andpermeability-
weighted product of Darcy velocities

Let an element T ∈ Th be fixed, and denote by KT the (constant) restriction to T of the bulk
permeability. For any integer m ≥ 0, set

Um
T B KT∇P

m(T), (22)

with Pm(T) denoting the space spanned by the restriction to T of two-variate polynomials of total
degree up to m. We define the following space of fully discontinuous bulk Darcy velocity unknowns:

NU l

h B
{
q
h
B (qT , (qTF )F ∈FT )T ∈Th : for all T ∈ Th, qT ∈ U

l
T and qTF ∈ P

l(F) for all F ∈ FT
}
.

For any T ∈ Th, the element-based unknown qT represents the Darcy velocity inside the element,
while the face-based unknown qTF , F ∈ FT , represents the normal Darcy velocity exiting T through
F. Furthermore, we denote by U l

T the restriction of NU l

h to T and, for any q
h
∈ NU l

h, we let

q
T
B (qT , (qTF )F ∈FT ) ∈ U

l
T . The following subspace ofNU l

h strongly incorporates the continuity of
Darcy velocity unknowns at each interface F ∈ F i

h
\ F Γ

h
contained in the bulk region, as well as the

homogeneous Neumann boundary condition on ∂ΩB:

U l
h B

{
q
h
∈NU l

h : [[q
h
]]F = 0 for all F ∈ F i

h \ F
Γ
h and qF = 0 for all F ∈ F b

h

}
, (23)

where, for all F ∈ F b
h
, we have set qF B qTF with T denoting the unique mesh element such that

F ∈ FT and, for all F ∈ F i
h
, we have defined the jump operator such that, for any q

h
∈NU l

h,

[[q
h
]]F B

∑
T ∈TF

qTF .

For all T ∈ Th, we define the local discrete Darcy velocity reconstruction operator Fl+1
T : U l

T →

U l+1
T (see (2222)) such that, for all q

T
= (qT , (qTF )F ∈FT ) ∈ U

l
T , F

l+1
T q

T
solves∫

T

Fl+1
T q

T
· ∇wT =

∫
T

qT · ∇π
l
TwT +

∑
F ∈FT

∫
F

qTF (wT − π
l
TwT ) ∀wT ∈ P

l+1(T), (24)

with πlT : L1(T) → Pl(T) denoting the L2-orthogonal projector on Pl(T); see, e.g., [2020, Appendix
A.2]. Notice that the quantity Fl+1

T q
T
provides a representation of the Darcy velocity inside T one

degree higher than the element-based unknown qT . It can be checked that condition (2424) defines a
unique element of U l+1

T , and that it is equivalent to [1515, Eq. (19)] with discrete divergence operator
expanded according to its definition.

Based on this Darcy velocity reconstruction operator, we define the global permeability-weighted
product of Darcy velocities al

K,h
: U l

h × U
l
h → R such that, for all (uh, qh

) ∈ U l
h × U

l
h,

alK,h(uh, qh
) B

∑
T ∈Th

(∫
T

K−1
T Fl+1

T uT · F
l+1
T q

T
+ slK,T (uT , qT )

)
. (25)

Here, the first term is the Galerkin contribution responsible for consistency while, for all T ∈ Th,
slK,T : U l

T × U
l
T → R is the stabilization bilinear form such that, for all (uT , qT ) ∈ U

l
T × U

l
T ,

slK,T (uT , qT ) B
∑
F ∈FT

∫
F

hF
KTF
(Fl+1

T uT · nTF − uTF )(F
l+1
T q

T
· nTF − qTF ),

where, for all F ∈ FT , we have set KTF B KT nTF · nTF .

12



4.1.2 Discrete fracture pressure unknowns, fracture pressure reconstruction, and tangential
diffusion bilinear form

The space of discrete fracture pressure unknowns is given by

Pl
Γ,h B

{
zΓ
h
B ((zΓF )F ∈FΓ

h
, (zΓV )V ∈Vh

) : zΓF ∈ P
l(F) for all F ∈ F Γh and zΓV ∈ R for all V ∈ Vh

}
.

(26)
For all F ∈ F Γ

h
, we denote by Pl

Γ,F the restriction of Pl
Γ,h

to F, and set zΓ
F
B (zΓF, (z

Γ
V )V ∈VF ) ∈ Pl

Γ,F .
We also introduce the following subspace which embeds the zero-mean value constraint:

Pl
Γ,h,0 B

{
zΓ
h
∈ Pl

Γ,h :
∫
Γ

zΓh = 0
}
, (27)

where zΓ
h
∈ Pl(F Γ

h
) is the broken polynomial function on F Γ

h
such that (zΓ

h
) |F B zΓF for all F ∈ F Γ

h
.

Let F ∈ F Γ
h

and denote by KF the (constant) restriction to F of the fracture permeability. We
define the local fracture pressure reconstruction operator r l+1

K,F : Pl
Γ,F → P

l+1(F) such that, for all
zΓ
F
= (zΓF, (z

Γ
V )VF ) ∈ Pl

Γ,F , r l+1
K,F zΓ

F
is such that, for all wΓF ∈ P

l+1(F),∫
F

KF∇τr l+1
K,F zΓ

F
· ∇τw

Γ
F = −

∫
F

(
zΓF∇τ · (KF∇τw

Γ
F )

)
+

∑
V ∈VF

zΓV (KF∇τw
Γ
F )(V) · τFV . (28)

This relation defines a unique element ∇τr l+1
K,F zΓ

F
, hence a polynomial r l+1

K,F zΓ
F
∈ Pl+1(F) up to an

additive constant, which we fix by additionally imposing that∫
F

(
r l+1
K,F zΓ

F
− zΓF

)
= 0.

The reconstruction r l+1
K,F zΓ

F
provides inside F a representation of the fracture pressure one degree

higher than the element-based fracture unknown zΓF .
We can now define the tangential diffusion bilinear form aΓ,l

K,h
: Pl
Γ,h
× Pl

Γ,h
→ R such that

aΓ,l
K,h
(zΓ

h
, qΓ

h
) B

∑
F ∈FΓ

h

(∫
F

KF∇τr l+1
K,F zΓ

F
· ∇τr l+1

K,FqΓ
F
+ sΓ,lK,F (z

Γ

F
, qΓ

F
)

)
, (29)

where the first term is the Galerkin contribution responsible for consistency, while sΓ,lK,F : Pl
Γ,F ×

Pl
Γ,F → R is the stabilization bilinear form such that, for all (zΓ

F
, qΓ

F
) ∈ Pl

Γ,F × Pl
Γ,F ,

sΓ,lK,F (z
Γ

F
, qΓ

F
) B

∑
V ∈VF

KF

hF
(Rl+1

K,F zΓ
F
(V) − zΓV )(R

l+1
K,FqΓ

F
(V) − qΓV ), (30)

with Rl+1
K,F : Pl

Γ,F → P
l+1(F) such that, for all zΓ

F
∈ Pl

Γ,F , Rl+1
K,F zΓ

F
B zΓF + (r

l+1
K,F zΓ

F
− πlFr l+1

K,F zΓ
F
).

4.1.3 Discrete flow problem

Let an integer k ≥ 0 be fixed. Following [33], in order to have a sufficiently accurate representation of
the Darcy velocity when writing the HHO approximation of degree k of the transport problem (1414),
we solve the flow problem (66) with an HHO approximation of degree 2k. Thus, the bulk velocity,
bulk pressure, and fracture pressure will be sought, respectively, in U2k

h (see (2323)), P2k
B,h B P

2k(Th)

(the space of broken polynomials of total degree ≤ 2k over Th), and P2k
Γ,h

(see (2727)). The discrete
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counterparts of the continuous bilinear forms defined in Section 2.22.2 are the bilinear forms aξ,2k
K,h

:
U2k

h × U
2k
h → R, b2k

h
: U2k

h × P2k
B,h → R, d2k

h
: U2k

h × P2k
Γ,h
→ R such that

aξ,2k
K,h
(uh, qh

) B a2k
K,h(uh, qh

) +
∑
F ∈FΓ

h

(
(λ
ξ
F [[uh]]F, [[qh

]]F )F + (λF {{uh}}F, {{qh
}}F )F

)
,

b2k
h (uh, ph) B

∑
T ∈Th

(
−

∫
T

uT · ∇pT +
∑
F ∈FT

∫
F

uTF pT

)
,

d2k
h (uh, pΓ

h
) B

∑
F ∈FΓ

h

∫
F

[[uh]]F pΓF,

where the bilinear forms a2k
K,h

and aΓ,2k
K,h

are defined by (2525) and (2929), respectively, and, for all
ph ∈ P2k

B,h and all T ∈ Th, we have set pT B ph |T .

Letting Aflow
ξ,h,2k :

(
U2k

h × P2k
B,h × P2k

Γ,h

)
×

(
U2k

h × P2k
B,h × P2k

Γ,h

)
→ R be the global bilinear form

such that

Aflow
ξ,h,2k((uh, ph, pΓ

h
), (q

h
, zh, zΓh)) B aξ,2k

K,h
(uh, qh

) + b2k
h (uh, zh) − b2k

h (qh
, ph)

+ d2k
h (qh

, pΓ
h
) − d2k

h (uh, z
Γ

h
) + aΓ,2k

K,h
(pΓ

h
, zΓ

h
),

the HHO discretization of problem (66) reads: Find (uh, ph, pΓ
h
) ∈ U2k

h × P2k
B,h × P2k

Γ,h,0 such that, for
all (q

h
, zh, zΓh) ∈ U

2k
h × P2k

B,h × P2k
Γ,h

,

Aflow
ξ,h,2k((uh, ph, pΓ

h
), (q

h
, zh, zΓh)) = ( f , zh)ΩB + (`Γ fΓ, zΓh)Γ . (31)

4.2 Passive transport

We now formulate the HHO discretization of the steady passive transport problem (1414). In what
follows, the polynomial degree k is the same as in Section 4.1.34.1.3.

4.2.1 Discrete bulk concentrationunknowns, bulk concentration reconstruction, andmolecular
diffusion bilinear form

We define the fully discontinuous space of bulk concentration unknowns as follows:

NPk

B,h B
{
z
h
= (zT , (zTF )F ∈FT )T ∈Th : for all T ∈ Th, zT ∈ Pk(T) and zTF ∈ P

k(F) for all F ∈ FT
}
.

For allT ∈ Th, we denote by Pk
B,T the restriction ofNPk

B,h toT , andwe set z
T
= (zT , (zTF )F ∈FT ) ∈ Pk

B,T .
For any interface F ∈ F i

h
shared by distinct elements T1,T2 ∈ TF , we introduce the jump and average

operators such that, for any z
h
∈NPk

B,h,

[[z
h
]]F = zT1F − zT2F, {{z

h
}}F =

zT1F + zT2F

2
. (32)

The following subspace ofNPk

B,h strongly incorporates the continuity of concentration unknowns across
interfaces contained in the bulk region:

Pk
B,h B

{
z
h
∈NPk

B,h : [[z
h
]]F = 0 for all F ∈ F i

h \ F
Γ
h

}
. (33)
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Let now an element T ∈ Th be fixed, and denote by DT the restriction to T of the bulk diffusion-
dispersion tensor. We define the bulk concentration reconstruction operator rk+1

D,T : Pk
B,T → P

k+1(T)
such that, for all z

T
= (zT , (zTF )F ∈Ft ) ∈ Pk

B,T , rk+1
D,T z

T
solves∫

T

DT∇rk+1
D,T z

T
· ∇wT = −

∫
T

(
zT∇ · (DT∇wT )

)
+

∑
F ∈FT

∫
F

zTF (DT∇wT · nTF ) ∀wT ∈ P
k+1(T).

This condition defines rk+1
D,T z

T
up to a constant, which we fix by additionally imposing that∫

T

(
rk+1
D,T z

T
− zT

)
= 0.

The polynomial rk+1
D,T z

T
provides a representation of the concentration inside T one degree higher

than the element-based unknown zT .
We are now ready to define a global molecular diffusion bilinear form closely inspired by [2323].

More precisely, we let ak
D,h

: Pk
B,h × Pk

B,h → R be such that, for all (ch, zh) ∈ Pk
B,h × Pk

B,h,

ak
D,h(ch, zh) B

∑
T ∈Th

( ∫
T

DT∇rk+1
D,T cT · ∇rk+1

D,T z
T
+ skD,T (cT , zT )

)
,

where the first term is the Galerkin contribution responsible for consistency, while skD,T : Pk
B,T ×

Pk
B,T → R is the stabilization bilinear form such that, for all (cT , zT ) ∈ Pk

B,T × Pk
B,T ,

skD,T (cT , zT ) B
∑
F ∈FT

∫
F

DTF

hF
(Rk+1

D,T cT − cTF )(Rk+1
D,T z

T
− zTF ),

with DTF B DT nTF · nTF for all F ∈ FT and Rk+1
D,T : Pk

B,T → P
k+1(T) is such that, for all z

T
∈ Pk

B,T ,
Rk+1
D,T z

T
B zT + (rk+1

D,T z
T
− πkT rk+1

D,T z
T
).

4.2.2 Fracture concentrationunknowns, fracture concentration reconstruction, andmolecular
diffusion bilinear form

The fracture concentration is sought in the space Pk
Γ,h

defined by (2626) with l = k. For all F ∈ F Γ
h
, we

define the fracture concentration reconstruction operator rk+1
D,F : Pk

Γ,F → P
k+1(F) as in (2828) setting

l = k and replacing KF by DF B DΓ |F . Similary, we denote by aΓ,k
D,h

: Pk
Γ,h
×Pk
Γ,h
→ R the tangential

molecular diffusion bilinear form defined as (2929)–(3030) with l = k and KF replaced by DF .

4.2.3 Darcy velocities and advection-reaction bilinear forms in the bulk region and in the
fracture

In order to discretize the advection-reaction terms that appear in the passive transport problem, we
need suitable representations of the Darcy velocity both in the bulk region and inside the fracture.

Denote by (uh, ph, pΓ
h
) ∈ U2k

h × P2k
B,h × P2k

Γ,h,0 the solution of the discrete flow problem (3131). For
any T ∈ Th, taking in (3131) q

h
= 0, zh such that zT ′ = 0 for all T ′ ∈ Th \ {T} while zT spans P2k(T),

and zΓ
h
= 0, we infer the following local balance for the discrete bulk Darcy velocity:∫

T

−uT · ∇zT +
∑
F ∈FT

∫
F

uTF zT =
∫
T

f zT ∀zT ∈ P2k(T). (34)
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Additionally, by definition (2323) of U2k
h , the Darcy velocity thus defined has continuous normal

components across interfaces contained in the bulk in the sense that [[uh]]F = 0 for all F ∈ F i
h
\ F Γ

h
where the jump operator is defined applying (3232) componentwise. Thus, uh is the natural candidate
to play the role of the Darcy velocity in the bulk region.

Let now a fracture face F ∈ F Γ
h

be fixed, and define the fracture Darcy velocity uΓF =
(uΓF, (u

Γ
FV )V ∈VF ) such that

uΓF B −KF∇τr2k+1
K,F pΓ

F
and, for all V ∈ VF, uΓFV B

{
uΓF (V) · τFV + γ

num
FV (p

Γ

F
) if V ∈ V i

h

0 if V ∈ Vb
h

,

where, for all V ∈ VF , γnum
FV : P2k

Γ,F → R is the boundary residual operator defined as in [2424, Lemma
3]. With this choice for the fracture Darcy velocity, the following local balance holds for all F ∈ F Γ

h
:

−

∫
F

uΓF · ∇τ zΓF +
∑

V ∈VF

uΓFV (z
Γ
F (V) − zΓV ) =

∫
F

(
`Γ fΓ + [[uh]]F

)
zΓF ∀zΓ

F
∈ P2k

Γ,F . (35)

Moreover, the discrete fracture Darcy velocity is continuous across internal vertices, that is to say,∑
F ∈FV

uΓFV = 0 for all V ∈ V i
h . (36)

uΓF is therefore the natural candidate to play the role of the Darcy velocity inside the fracture.
We now have all the ingredients to define discrete counterparts of the advective terms in the bulk

region and inside the fracture. More precisely, closely following [2121], we define the advection-reaction
bilinear forms ak

u, f ,h
: Pk

B,h × Pk
B,h → R and aΓ,k

u, f ,h
: Pk
Γ,h
× Pk

Γ,h
such that

ak
u, f ,h(ch, zh) B

∑
T ∈Th

( ∫
T

cT (−uT · ∇zT + f −zT ) +
∑
F ∈FT

∫
F

uTFcT (zT − zTF ) + sku,T (cT , zT )

)
,

aΓ,k
u, f ,h
(cΓh, z

Γ

h
) B

∑
F ∈FΓ

h

(∫
F

cΓF (−u
Γ
F ·∇τ zΓF + `Γ f −Γ zΓF )+

∑
V ∈VF

uΓFV cΓF (V)(z
Γ
F (V)− zΓV )+ sΓ,ku,F (c

Γ
F, z
Γ

F
)

)
,

(37)

where, for all T ∈ Th and all F ∈ F Γ
h
, sku,T : Pk

B,T × Pk
B,T → R and sΓ,ku,F : Pk

Γ,F × Pk
Γ,F → R are the

upwind stabilization bilinear forms respectively in the bulk and inside the fracture such that

sku,T (cT , zT ) B
∑
F ∈FT

∫
F

|uTF | − uTF

2
(cT − cTF )(zT − zTF ),

sΓ,ku,F (c
Γ
F, z
Γ

F
) B

∑
V ∈VF

|uΓFV | − uΓFV
2

(cΓF (V) − cΓV )(z
Γ
F (V) − zΓV ).

(38)

4.2.4 Passive transport problem

We are now ready to state the HHO discretization of the steady transport problem (1414). At the
discrete level, the counterpart of the continuous bilinear form defined in (1313) is the bilinear form
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A
transp
ξ,h,k

:
(
Pk

B,h × Pk
Γ,h

)
×

(
Pk

B,h × Pk
Γ,h

)
→ R such that

A
transp
ξ,h,k
((ch, c

Γ
h), (zh, z

Γ

F
)) Bak

D,h(ch, zh) + ak
u, f ,h(ch, zh) + aΓ,k

D,h
(cΓh, z

Γ

h
) + aΓ,k

u, f ,h
(cΓh, z

Γ

h
)

+
∑
F ∈FΓ

h

∫
F

(
β
ξ
F ({{ch}}F − cΓF )({{zh}}F − zΓF ) + βF [[ch]]F [[zh]]F

)
+

∑
F ∈FΓ

h

∫
F

(
{{uh}}F {{ch}}F [[zh]]F +

1
8
[[uh]]F [[ch]]F [[zh]]F

)
+

∑
F ∈FΓ

h

∫
F

1
2
[[uh]]F ({{ch}}F + cΓF )({{zh}}F − zΓF ),

(39)

where the role of the terms in the last three lines is to enforce the transmission conditions (99) on Γ.
The HHO discretization of problem (1414) then reads: Find (ch, c

Γ
h
) ∈ Pk

B,h × Pk
Γ,h

such that

A
transp
ξ,h,k
((ch, c

Γ
h), (zh, z

Γ

F
)) =

∫
ΩB

f +ĉzh +
∫
Γ

`Γ f +Γ ĉΓzΓh ∀(z
h
, zΓ

h
) ∈ Pk

B,h × Pk
Γ,h . (40)

We now prove the discrete counterpart of the Theorem 55.

Theorem 9 (Discrete coercivity). Let ξ > 1/2. Then, for all (z
h
, zΓ

h
) ∈ Pk

B,h × Pk
Γ,h

, it holds

A
transp
ξ,h,k
((z

h
, zΓ

h
), (z

h
, zΓ

F
)) = ak

D,h(zh, zh) + aΓ,k
D,h
(zΓ

h
, zΓ

h
)

+
∑
T ∈Th

(
‖ χ

1/2
B,T zT ‖2T +

∑
F ∈FT

1
2
‖|uTF |

1/2(zT − zTF )‖
2
F

)
+

∑
F ∈FΓ

h

(
‖ χ

1/2
Γ,F zΓF ‖

2
F +

∑
V ∈VF

1
2
|uΓFV |(z

Γ
F (V) − zΓV )

2

)
+

∑
F ∈FΓ

h

(
β
ξ
F ‖{{zh}}F − zΓF ‖

2
F + βF ‖[[ch]]F ‖

2
F

)
,

(41)

where, for all T ∈ Th and all F ∈ F Γ
h
, χB,T B (χB) |T and χΓ,F B (χΓ) |F , respectively.

Remark 10 (Upwind contributions). Unlike the continuous case (see Theorem 55), we have in the
second and third lines of the energy balance (4141) upwind-related contributions of bulk and fracture
region, respectively. These could be removed at the price of having coercivity in a weaker norm.

Proof. The proof is similar to the one of the Theorem 55. Let (z
h
, zΓ

h
) ∈ Pk

B,h × Pk
Γ,h

be fixed and set
(zh, z

Γ
h
) ∈ P2k

B,h × P2k
Γ,h

such that,

∀T ∈ Th, (zh) |T = zT = (zT , (zTF )F ∈FT ) B (
z2
T

2
, (

z2
TF

2
)F ∈FT ),

∀F ∈ F Γh , (zΓh) |F = z
Γ
F = (z

Γ
F, (z

Γ
V )V ∈VF ) B (

(zΓF )
2

2
, (
(zΓV )

2

2
)V ∈VF ).

(42)

Using the definition of the global bilinear form Atransp
ξ,h,k

(3939) with (ch, c
Γ
h
) = (z

h
, zΓ

h
), we immediately

obtain the terms in the first and last line of (4141). Let now I1 B ak
u, f ,h
(z

h
, z

h
), I2 B aΓ,k

u, f ,h
(zΓ

h
, zΓ

h
),

and let I3 gather the remaining coupling terms, that is to say, the two last lines on the right-hand side
of (3939) with ch = z

h
and cΓF = zΓF for all F ∈ F Γ

h
. Expanding I1 and I2 according to their respective
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definitions (3737), and recalling the definitions of the stabilization bilinear forms sku,T and sku,F (3838), it
is inferred that

I1 =
∑
T ∈Th

( ∫
T

(
− uT · ∇zT + f −z2

T

)
+

∑
F ∈FT

∫
F

(
uTF (zT − zTF ) +

1
2
|uTF |(zT − zTF )

2
))
, (43a)

I2 =
∑
F ∈FΓ

h

( ∫
F

(
− uΓF · ∇τz

Γ
F + `Γ f −Γ zΓF

2
)
+
∑

V ∈VF

(
uΓFV (z

Γ
F (V) − z

Γ
V ) +

1
2
|uΓFV |(z

Γ
F (V) − zΓV )

2
))
. (43b)

Using the local balances (3434) in the bulk and (3535) inside the fracture (that hold since zT ∈ P
2k(T) for

all T ∈ Th and z
Γ
F ∈ P2k

Γ,F for all F ∈ F Γ
h
) together with the fact that∑

T ∈Th

∑
F ∈FT

uTF zTF =
∑
F ∈FΓ

h

[[uhzh]]F,

which follows from (uh, zh) ∈ U
2k
h × P2k

B,h, we finally get from (43a43a) and (43b43b)

I1 =
∑
T ∈Th

(
‖ χ

1/2
B,T zT ‖2T +

∑
F ∈FT

1
2
‖|uTF |

1/2(zT − zTF )‖
2
F

)
−

∑
F ∈FΓ

h

∫
F

[[uhzh]]F, (44a)

I2 =
∑
F ∈FΓ

h

(
‖ χ

1/2
Γ,F zΓF ‖

2
F +

∑
V ∈VF

1
2
|uΓFV |(z

Γ
F (V) − zΓV )

2

)
+

∑
F ∈FΓ

h

∫
F

[[uh]]F z
Γ
F . (44b)

To conclude, it suffices to prove that the sum of the last term in the right-hand side of (44a44a) and
the last term in the right-hand side of (44b44b) and I3 is equal to zero. Using (1919) to infer first that
[[uhzh]]F = [[uh]]F {{zh}}F + {{uh}}F [[zh]]F and then that [[zh]]F = [[zh]]F {{zh}}F , we get∑

F ∈FΓ
h

∫
F

(
[[uh]]F z

Γ
F − [[uhzh]]F

)
+ I3 =

∑
F ∈FΓ

h

∫
F

(
[[uh]]F (

1/2{{z
h
}}2F + 1/8[[z

h
]]2F − {{zh}}F )

)
,

that concludes the proof since {{zh}}F =
1
2 ({{zh}}

2
F +

1
4 [[zh]]

2
F ). �

Remark 11 (Polynomial degree and local conservation). The use of polynomials of degree 2k to solve
the discrete flow problem (4040) is required in the proof of Theorem 99. Indeed, to pass from (4343) to (4444),
the argument is that both the local balances (3434) and (3535) are valid when we use as test functions
zh ∈ P2k

B,h and z
Γ
h
∈ P2k

Γ,h
defined by (4242).

4.3 Extension to the unsteady case

In the numerical tests of Sections 5.25.2–5.35.3 below, we consider the physically relevant situation of
unsteady passive transport with a steady Darcy velocity field. The extension of the HHO scheme (4040)
to this situation is briefly discussed in what follows.

The transport problem can be extended to the unsteady case by assuming that the unknowns
depend on time and adding the unsteady contributions φdtc and `ΓφΓdtcΓ in, respectively, (7a7a)
and (8a8a), where φ : ΩB → R and φΓ : Γ → R stand, respectively, for the porosity in the bulk region
and in the fracture such that 0 < φ < 1 and 0 < φΓ < 1. In the numerical tests, we assume that these
quantities are piecewise constant on the partitions PB and PΓ (see (22) and (33)), respectively. More
generally, the porosities could also depend on time. Initial conditions for the bulk and the fracture
concentration c(t = 0, ·) = c0(·) and cΓ(t = 0, ·) = c0

Γ
(·) close the problem. The functions ĉ and ĉΓ
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that represent the concentration of solute as it is injected in, respectively, the bulk and the fracture,
will also be allowed to depend on time.

To discretize in time, we consider for sake of simplicity a uniform partition (tn)0≤n≤N of the time
interval [0, tF ] with t0 = 0, tN = tF the final time of computation, and tn − tn−1 = δt the constant
time step for all 1 ≤ n ≤ N . For any sufficiently regular function of time ϕ taking values in a vector
spaceV , we denote by ϕn ∈ V its value at discrete time tn and we introduce the backward differencing
operator δt such that, for all 1 ≤ n ≤ N ,

δtϕ
n B

ϕn − ϕn−1

δt
∈ V .

With this notation, the discrete problem reads: For all 1 ≤ n ≤ N , find (cn
h
, cΓ,n

h
) ∈ Pk

B,h × Pk
Γ,h

such
that, for all (z

h
, zΓ

h
) ∈ Pk

B,h × Pk
Γ,h

,∫
ΩB

φδtcnh zh +
∫
Γ

`ΓφΓδtc
Γ,n
h

zΓh +A
transp
ξ,h,k
((cnh, c

Γ,n
h
), (z

h
, zΓ

F
)) =

∫
ΩB

f +ĉnzh +
∫
Γ

`Γ f +Γ ĉnΓ zΓh . (45)

The initial condition is discretized taking c0
h
and cΓ,0

h
equal to the L2-orthogonal projections on Pk(Th)

and Pl(F Γ
h
) of c0 and c0

Γ
, respectively. Notice that it is not necessary to prescribe face values for

the concentration in the bulk region, nor vertex values for the concentration in the fracture, as these
discrete unknowns do not appear in the discretization of the time derivative.

5 Numerical results

This section contains an extensive numerical validation of the HHO method. We first study
numerically the convergence rates achieved by the method, and then propose two more physical
test cases in which fractures act as barriers or conduits, depending on the value of the permeability
parameters.

5.1 Convergence for a steady problem

We start by a numerical study of the convergence rates of the method for both the flow problem (3131)
and the steady passive transport problem (4040).

5.1.1 Analytical solution

We approximate problems (3131) and (4040) on the square domain Ω = (0, 1)2 crossed by the fracture
Γ = {x ∈ Ω : x1 = 0.5}, and set `Γ = 0.01 and ξ = 3/4. For the flow problem, we consider the exact
solutions corresponding to the bulk and fracture pressures

p(x) B

{
cos(2x1) cos(πx2) if x1 < 0.5
cos(πx1) cos(πx2) if x1 > 0.5

, pΓ(x) B {{c}}Γ − λΓ[[u]]Γ · nΓ,

and let u |ΩB, i = −K∇p |ΩB, i for i ∈ {1, 2} and uΓ = −KΓ∇τpΓ, with κτΓ = 1, κn
Γ
= 0.01 and

K B
cos(1)

sin(1) + π/2

[
κn
Γ
/(2`Γ) 0

0 1

]
, KΓ B κτΓ`Γ .
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For the steady passive transport problem, the exact solutions corresponding to the bulk and fracture
concentrations are given by

c(x) B


exp
(

2/π cos(πx1)
(
βΓ −

1
8 cos(πx2)

κn
Γ

`Γ

cos(1)(sin(1)−π/2)
sin(1)+π/2

))
if x1 < 0.5

exp
(

2/π(cos(πx1) − π)
(
βΓ −

1
8 cos(πx2)

κn
Γ

`Γ

cos(1)(sin(1)−π/2)
sin(1)+π/2

))
if x1 > 0.5

,

cΓ(x) B
[[uc − D∇c]]Γ · nΓ − {{c}}Γ

(
1/2[[u]]Γ · nΓ + β

ξ
Γ

)
1/2[[u]]Γ · nΓ − β

ξ
Γ

,

(46)

with D = I2, the identity matrix of R2×2, Dτ
Γ
= 1 and Dn

Γ
= 0.01. The source terms f , fΓ are

inferred from (1b1b) and (1c1c), respectively. The right-hand sides of (7a7a) and (8a8a) are also modified by
introducing nonzero terms in accordance with the expressions of c and cΓ; see (4646). It can be checked
that, with this choice of analytical solutions, the jump and average of p, u, c, D∇c are not identically
zero on the fracture, which enables us to test the weak enforcement of the transmission conditions (44)
for the flow problem and (99) for the steady passive transport problem.

5.1.2 Error measures

On the spaces of discrete bulk unknowns U2k
h and Pk

h
, we define the norms ‖·‖U,h and ‖·‖D,h such

that, for all q
h
∈ U2k

h and all z
h
∈ Pk

h
,

‖q
h
‖2U,h B

∑
T ∈Th

(KB,T )
−1

(
‖qT ‖

2
T +

∑
F ∈FT

hF ‖qTF ‖
2
F

)
,

‖z
h
‖2D,h B

∑
T ∈Th

%−1
D,T

(
‖D

1/2
T ∇zT ‖2T +

∑
F ∈FT

DTF

hF
‖zT − zTF ‖

2
F

)
,

where, for any T ∈ Th, KB,T is the largest eigenvalue of the (constant) permeability tensor KT , while
%D,T B DB,T/DB,T is the bulk anisotropy ratio with DB,T ,DB,T > 0 denoting, respectively, the largest
and smallest eigenvalue of the (constant) local bulk diffusion-dispersion tensor DT .

On the spaces of discrete fracture unknowns P2k
Γ,h

and Pk
Γ,h

we define the norms ‖·‖Γ,K,h and
‖·‖Γ,D,h such that, for all vΓ

h
∈ P2k

Γ,h
and all zΓ

h
∈ Pk

Γ,h
,

‖vΓh ‖
2
Γ,K,h B

∑
F ∈FΓ

h

(
‖K

1/2
F ∇τv

Γ
F ‖

2
F +

∑
V ∈VF

KF

hF
(vΓF (V) − v

Γ
V )

2

)
,

‖zΓ
h
‖2
Γ,D,h B

∑
F ∈FΓ

h

(
‖D

1/2
F ∇τ zΓF ‖

2
F +

∑
V ∈VF

DF

hF
(zΓF (V) − zΓV )

2

)
.

For the flow problem, we monitor the following errors defined as the difference between the
numerical solution and suitable projections of the exact solution:

‖uh − I2k
h u‖U,h, ‖pΓ

h
− I2k

h pΓ‖Γ,K,h, ‖ph − π2k
h p‖L2(ΩB), ‖pΓh − π

2k
Γ,hpΓ‖L2(Γ), (47)

where I2k
h u B (KT∇yT , (π

2k
F (u · nTF )F ∈FT )T ∈Th with yT ∈ P

2k(T) is such that
∫
T
(KT∇yT − u) ·

∇vT = 0 for all vT ∈ P2k(T), I2k
Γ,h

pΓ B ((π2k
F pΓ |F )F ∈FΓ

h
, (pΓ(V))V ∈Vh

) with π2k
F denoting the

L2-orthogonal projector on P2k(F), and π2k
h

p and π2k
Γ,h

pΓ denote, respectively, the L2-orthogonal
projections of p and pΓ on P2k

B,h and P2k
Γ,h

,
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(a) Triangular (b) Cartesian (c) Nonconforming

Figure 3: Mesh families for the numerical tests

Similarly, for the steady passive transport problem we consider the following error measures:

‖ch − Ikhc‖D,h, ‖cΓh − Ik
Γ,hcΓ‖Γ,D,h, ‖ch − πkhc‖L2(ΩB), ‖cΓh − π

k
Γ,hcΓ‖L2(Γ), (48)

where Ik
h
c B ((πkT c |T )T ∈Th, (π

k
F (c |F ))F ∈Fh )with π

k
T and πkF denoting, respectively, the L2-orthogonal

projectors on Pk(T) and Pk(F), Ik
Γ,h

cΓ B ((πkFcΓ |F )F ∈FΓ
h
, (cΓ(V))V ∈Vh

), and πk
h

c and πk
Γ,h

cΓ denote,
respectively, the L2-orthogonal projections of c and cΓ on Pk

B,h and Pk
Γ,h

.

5.1.3 Results

We consider the triangular, Cartesian and nonconforming mesh families of Figure 33.
In Figure 44, we display the errors (4747) for the flow problem as functions of the meshsize. The flow

problem (3131) is solved using polynomials two times higher than for the passive transport problem, so
higher convergence rates than for the passive transport problem are to be expected. More specifically,
on the triangular mesh we observe convergence in h2k+1 of the discretization error measured in the
energy-like norms ‖uh − I2k

h u‖P,h and ‖pΓ
h
− I2k

h
pΓ‖Γ,K,h, and convergence in h2k+2 for the error

measured in the L2-norms ‖ph − π2k
h

p‖L2(ΩB) and ‖p
Γ
h
− π2k
Γ,h

pΓ‖L2(Γ). Slightly better convergence
rates are observed on Cartesian and nonconforming meshes, as already noticed in [1515].

For the steady passive transport problem (4040), we plot in Figure 55 the errors (4848) as functions of
the meshsize. For both the energy-like norms of the error ‖ch − Ik

h
c‖D,h and ‖cΓ

h
− Ik
Γ,h

cΓ‖Γ,D,h, we
obain convergence in hk+1. For the L2-norms of the error ‖ch − πkhc‖L2(ΩB) and ‖c

Γ
h
− πk
Γ,h

c‖L2(Γ),
on the other hand, we obtain convergence in hk+2 using piecewise linear or quadratic polynomials,
and for the case k = 0 in a fracture, we remark a stagnation of convergence around 10−3. This
phenomenon will be investigate in further works.

5.2 Unsteady transport with impermeable fractures

We next consider a physical test case modelling the unsteady passive displacement of a solute in a
porous medium in which the fractures act as barriers.

The configuration is depicted in Figure 6a6a. More specifically, the computational domain is the
unit square Ω = (0, 1)2, with fractures of constant thickness `Γ = 10−2 corresponding to

Γ = {x = (x1, x2) ∈ Ω : (x1 < 0.75 and x2 ∈ {0.25, 0.75}) or (x1 > 0.25 and x2 = 0.5)} .

The injection well is located in (0.5, 0), the production one in (0.5, 1), and both are modeled by the
source term f defined such that

f (x) =
1
2

(
tanh

(
200(0.025 −

√
(x2

1 − 0.5) + x2
2)

)
− tanh

(
200(0.025 −

√
(x2

1 − 0.5) + (x2 − 1)2)
))
.
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The fracture source term fΓ is set to 0. It can be checked that the average of f in ΩB is zero, so the
compatibility condition (55) is verified. We set the user parameter ξ = 0.75.

Concerning the flow problem, we select the values of the permeability in the bulk and in the
fracture so as to obtain impermeable fractures. More specifically, in the bulk we set K = 10−3I ,
while in the fractures the tangential and normal permeability are, respectively, κτ

Γ
= 10−3 and

κn
Γ
= 10−6. In Figure 6a6a, we display the bulk pressure p obtained with such parameters and the plot

over x1 = 0.5. We can clearly see that the pressure jumps across the fractures and decreases from the
injection to the production well.

We consider the unsteady passive transport problem (4545), set the final time tF = 100 and the time
step δt = 1. At t = 0, there is not solute in the bulk nor in the fractures. The concentration of injected
solute in the bulk is given, for all x ∈ ΩB, by ĉ(t, x) = 1 if t < 30 and ĉ(t, x) = 0 otherwise. Since
we do not have wells in the fracture, we set ĉΓ ≡ 0. The porosity in the bulk and in the fracture is set
to φ = φΓ = 10−1. Following [33, 3232], the diffusion-dispersion tensor in the bulk is defined locally for
all T ∈ Th such that

DT = φdmI2 + φ|F
2k+1
T uT |(dlEu,T + dt(I2 − Eu,T )),

where |F2k+1
T uT | is the Euclidean norm of F2k+1

T uT , Eu,T B |F
2k+1
T uT |

−2
(
F2k+1
T uT ⊗ F2k+1

T uT

)
,

while dm = 10−5, dl = 1 and dt = 10−2 denote, respectively, the molecular diffusion, longitudinal,
and transverse dispersion coefficients. Notice that the high-order reconstruction of the Darcy velocity
is needed to define DT since, if using constant elements k = 0, we do not have cell-based DOFs for
the flux. The fracture counterpart of the diffusion-dispersion coefficient is defined, for all F ∈ F Γ

h
,

as follows
DF = `ΓφΓdΓmI2 + φΓ |u

Γ
F |(d

Γ
l Eu,F + dΓt (I2 − Eu,F )),

with Eu,F B |u
Γ
F |
−2 (

uΓF ⊗ uΓF
)
and where dΓm = 10−5, dΓl = 1 and dΓt = 10−2 denote, respectively,

the fracture molecular diffusion, longitudinal, and transverse dispersion coefficients. We set the
normal diffusion-dispersion coefficient of the fracture Dn

Γ
equal to 1. A more in-depth investigation

of the meaning of this term is postponed to a future work.
We run the test case on the Cartesian mesh depicted in Figure 3b3b of meshsize h = 7.81 ·10−3 with

k = 2. In Figure 6b6b, we display the bulk concentration at different time t. As expected, the solute
follows the corridors designed by the fractures that act as barriers and goes from the injection to the
production well.

5.3 Unsteady transport with permeable fractures

We next focus on the case where the fractures act as conduits. The domain is still the square unit
Ω = (0, 1)2, the fractures of constant thickness `Γ = 10−2 are located in

Γ = {x ∈ Ω : x1 ∈ {2/32, 8/32, 13/32, 19/32, 24/32, 30/32} and 0.25 < x2 < 0.75} .

The configuration is depicted in Figure 7a7a. The only parameters that differ from the previous test
case of Section 5.25.2 are the fracture permeabilities: to obtain permeable fractures, we set the normal
permeability κn

Γ
= 10−3 and the tangential one κτ

Γ
= 10−1. With this choice, it is expected that the

flow is attracted by the fractures.
In Figure 7a7a, we display the bulk pressure p and Darcy velocity u where, for the latter, the color

scale correspond to the value of the magnitude. As expected, the flow is from the injection well
towards the fractures near the bottom of the domain, and from the fractures to the production well
near the top of the domain.
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In Figure 7b7b, we display the bulk concentration c at different times. We can distinctly see that
the solute channeled by the fractures flows towards the production well faster than the solute in the
surrounding bulk medium.

Conclusions

We conclude this paper by pointing out its main contributions and discuss perspectives of further
works. We have introduced a new reduced model for the passive transport of a solute in fractured
porous media driven by Darcy velocites. To derive the transmission conditions, we used an energy-
based argument such that, as in the unreduced model, transport terms do not contribute to the energy
balance. These transmission conditions allow the solute concentration to jump across the fracture.
The presentation of the model and its discretization are done considering the steady case, while the
extension to the unsteady case is presented and used for numerical experiments. In future works, we
will investigate further the physical meaning of the fracture normal diffusion-dispersion coefficient
Dn
Γ
in the new transmission conditions (99), and we will carry out the complete analysis of the discrete

formulation, including its well-posedness and the study of the convergence properties of the HHO
method adapting the techniques of [2121].
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Figure 4: Convergence results for the test case of Section 5.15.1. Errors (4747) for the flow problem v. h
on the triangular, Cartesian and nonconforming mesh families of Figure 33.
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Figure 5: Convergence results for the test case of Section 5.15.1. Errors (4848) for the passive transport
problem v. h on the triangular, Cartesian and nonconforming mesh families of Figure 33.
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(a) Domain configuration (left), bulk pressure p (middle) and bulk pressure profile over x1 = 0.5 (right).

0 1

(b) Snapshots of the bulk concentration c at times (from left to right, top to bottom): t =
5, 10, 20, 30, 40, 50, 60, 80, 100.

Figure 6: Configuration and numerical results for the test of Section 5.25.2 (unsteady transport with
impermeable fractures).
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(a) Domain configuration (left), bulk pressure p (middle), and Darcy velocity u (right).

0 1

(b) Snapshots of the bulk concentration c at times (from left to right, top to bottom): t =
5, 10, 15, 20, 30, 40, 60, 80, 100.

Figure 7: Configuration and numerical results for the test of Section 5.35.3 (unsteady transport with
permeable fractures).
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