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Abstract

In this work, we propose a model for the passive transport of a solute in a fractured porous
medium, for which we develop a Hybrid High-Order (HHO) space discretization. We consider,
for the sake of simplicity, the case where the flow problem is fully decoupled from the transport
problem. The novel transmission conditions in our model mimic at the discrete level the property
that the advection terms do not contribute to the energy balance. This choice enables us to handle
the case where the concentration of the solute jumps across the fracture. The HHO discretization
hinges on a mixed formulation in the bulk region and on a primal formulation inside the fracture
for the flow problem, and on a primal formulation both in the bulk region and inside the fracture for
the transport problem. Relevant features of the method include the treatment of nonconforming
discretizations of the fracture, as well as the support of arbitrary approximation orders on fairly
general meshes.

Keywords: Hybrid High-Order methods, finite volume methods, finite element methods, fractured
porous media, Darcy flow, miscible displacement, passive transport

MSC2010 classification: 76S05, 65N08, 65N30,

1 Introduction

Over the last decades, the research on fluid flows in fractured porous media has received a great
amount of attention because of its relevance in many areas of the geosciences, ranging from ground-
water hydrology to hydrocarbon exploitation. Fractures in the subsurface are indeed ubiquitous,
and can be caused by tectonic forces, changes of temperature, drying processes, by leaching in the
plane of stratification, or by schistosity. Depending on the material that has accumulated within the
fractures, they may act as conduits or barriers, and thus affect the flow patterns in a substantial way.
For instance, it has been observed that fractures near boreholes tend to increase the productivity of
wells during oil recovery. In the context of geological isolation of radioactive waste, the presence of
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fractures in the disposal areas due to, for example, tunnel excavation, can drastically accelerate the
migration process of radionuclides.

A common feature of fractures in porous media is the variety of length scales. While the presence
of smaller fractures may be accounted for by using homogenization or other upscaling techniques,
fractures with larger extension have to be modelled explicitly, and there are several possible ways to
incorporate their presence. Our focus is here on the approach developed in [31], where a reduced
model for the flow in the fracture is obtained by an averaging process, and the fracture is treated as
an interface inside the bulk region. The fracture is assumed to be filled of debris, so that the flow
therein can still be modelled by Darcy’s law. The problem is closed by interface conditions that relate
the average and jump of the bulk pressure to the normal flux and pressure in the fracture. In [15] we
have designed and analysed a Hybrid High-Order (HHO) method to discretize this model, and proved
stability and order O(h**!) convergence of the discretization error measured in an energy-like norm,
with & denoting the meshsize and k > 0 the polynomial degree. This method is based on a mixed
formulation for the bulk coupled with a primal method for the fracture. This choice is motivated by
the fact that the unknowns of the method are those that naturally appear in the coupling conditions
(4), namely the normal component of the bulk flux and the fracture pressure. For a review of other
formulations, we refer the reader to [26]. Concerning the equivalence of mixed and primal HHO
methods, see [1, 12]. We also refer the reader to [17, 22] and also [24, Section 3.2.5] concerning flux
formulations of HHO methods, which highlight their local conservation properties. Several other
discretization schemes have been proposed for this type of models; see, e.g., [4, 6, 9, 10, 13, 14, 18,
28, 33] and references therein. Other works where fractures are treated as interfaces include [5, 8,
25].

The literature on passive transport in fractured porous media and related problems is, however,
more scarce. In [30], the authors study a system of advection-diffusion equations where the jump of
the diffusive bulk flux acts as a source term inside the fracture. In the coupling conditions, only the
diffusive part of the total bulk flux is considered. The discretization is based on the Unfitted Finite
Element method, for which well-posedness and O(/*) convergence in the energy-norm are proved.
In [16], a Finite Volume method is combined with a Trace Finite Element method to solve a transport
problem in the bulk region and inside the fracture, with the jump of the total bulk flux acting as a
source term in the surface problem and under the assumption that the concentration is continuous at
the interface. Convergence in O(%) is numerically observed for the energy-norm of the discretization
error. A similar problem is studied in [2]. In [29], the authors use an averaging technique similar
to [31] in order to derive coupling conditions for a transport problem which allow the concentration
to jump across the fracture. This enables them to model high concentration gradients near the
fracture resulting from highly heterogeneous diffusivity. The problem is discretized by eXtended
Finite Elements (XFEM), and numerical evidence is provided. Yet another approach is represented
by Discrete Fracture Networks (DFNs) models, where the bulk surrounding fractures is considered as
impervious, so that the flow can only occur through the fracture planes and across their intersections;
see, e.g., [11], where authors propose a system of unsteady advection-diffusion in DFNs.

In this work, we consider the passive transport of a solute driven by a velocity field solution of a
(decoupled) Darcy problem. We present two novel contributions:

(i) first, we propose new coupling conditions between the bulk region and fracture inspired by
energy-based arguments, following the general ideas developed by [27] in a different context.
Crucially, these transmission conditions allow the solute concentration to jump across the
fracture;

(ii) second, we propose a novel HHO discretization of this new model where the Darcy velocity field
results from an HHO approximation of the flow problem in the spirit of [15]. The discretization



is designed to incorporate the new transmission conditions and to reproduce at the discrete level
the energy argument from which they originate.

The main source of inspiration for the discretization of the advection terms in the bulk region
and inside the fracture is [21], where the authors develop an HHO method that is proven to be
robust across the entire range [0, +oo] of local Péclet numbers and that supports locally degenerate
diffusion. The adaptation of the analysis techniques developed in this reference to the present case
seems possible, and will make the object of a future, theoretically oriented work. Concerning
the coupling of the flow and transport problems, we take inspiration from [3], where an HHO
discretization of miscible displacements in non-fractured porous media described by the Peaceman
model is considered. Therein, in order to obtain a well-posed discrete problem, the flow problem has
to be solved using polynomials of degree twice as high as the transport problem. In our work, we find
that a similar condition is required to ensure the coercivity of the transport bilinear form; see Remark
11 for further details. A thorough numerical investigation is carried out to demonstrate the order of
convergence of the method and showcase its performance on physical test cases.

The material is organized as follows. In Section 2 we describe the equations that govern the
model in the steady case along with their weak formulation. In Section 3 we discuss the discrete
setting. In Section 4, we formulate the HHO space approximation and hint to the generalization
to the unsteady case. Section 5 contains a complete panel of steady and unsteady numerical tests,
including a numerical study of the convergence properties of the method and more physical test cases
corresponding to conductive and impermeable fractures.

2 The differential model

In this section we introduce the strong and weak formulations of the flow and passive transport
problems in the steady case. For the sake of simplicity, the presentation focuses on the two-
dimensional case with a single fracture.

2.1 Notation

We consider a porous medium saturated by an incompressible fluid that occupies a space region
Q c R? traversed by a fracture I'. We assume that Q is an open, bounded, connected, polygonal
set with Lipschitz boundary d€2. The fracture I' is represented by an open line segment of nonzero
length which cuts € into two disjoint connected polygonal subdomains Qg ; and Qp ; with Lipschitz
boundary. The set Qp = Q '\ T = Qg1 U Qp 2 corresponds to the bulk region. We denote by
0Qg = Ule (0Q8,; \ I:) the external boundary of the bulk region and by n ¢ the unit normal vector
on 0Qg pointing out of Qp. Fori € {1,2}, we let 0Qp; := 0Qp N @ denote the external boundary
of the subdomain Qg ;. The boundary of the fracture I is denoted by OI', and the corresponding
outward unit tangential vector is Tgr. Finally, nr denotes the unit normal vector to I" pointing out of
Qg,1. This notation is illustrated in Figure 1.

For any function ¢ sufficiently regular to admit a (possibly two-valued) trace on I', we define the
jump and average operators such that

Y1+ ¢
el = (o=, Hobr = (557
where ¢; = ¢|q;, denotes the restriction of ¢ to the subdomain Qp; C Qp. When applied to
vector-valued functions, these operators act component-wise.
Finally, for any X c Q, we denote by (-, -)x and ||-|[x the usual inner product and norm of L?(X)
or L*(X)?, according to the context.
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Figure 1: Illustration of the notation introduced in Section 2.1.

2.2 Darcy flow

We now formulate the equations that govern the flow in the saturated, fractured porous medium and
discuss a weak formulation inspired by [7, 19].

2.2.1 Governing equations

In the bulk region Qp and in the fracture I', we model the fluid flow by Darcy’s law in mixed and primal
form, respectively, so that the bulk Darcy velocity u : Qg — R?, the bulk pressure p : Qg — R, and
the fracture pressure pr : I' — R satisfy

u+Kvp=20 in Qg, (1a)
V-u=f in Qp, (1b)

-V - (KrVepr) ={rfr +[ullr -nr  inT, (1c)
u-ngo=0 on 0Qg, (1d)
—KrVepr-tor =0 on 0T, (le)

/Pr =0, (1)
r

where f € L?(Qg) and fr € L*(I') denote source or sink terms, K : Qg — R?*? the bulk permeability
tensor, and we have set K := «[.{r, with [ : I' — R denoting the tangential permeability inside the
fracture and ¢ér : I' — R the fracture thickness. In (1c) and (le), V, and V.- denote the tangential
gradient and divergence operators along I', respectively. We assume that K is symmetric, piecewise
constant on a finite polygonal partition

P ={wn,; : i€ lp} (2

of Qg, and uniformly elliptic, so that there exist two strictly positive real numbers K and Kg such
that, for almost every x € Qp and all z € R? with |z| = 1,

0<Ky <K(x)z-z<Kg.
The quantities - and £ are also assumed piecewise constant on a finite partition
Pr={wr; : i €lr} (3)

of I', and such that there exist strictly positive real numbers €. ,Zr K. ,Er such that, for almost every
xeT, B .
0<£rﬁfr(x)ﬁfr, O<Kl~ < Kr(x) < Kr.



To close the problem, we add the following transmission conditions across the fracture:

Ar{{ufyr - nr = [[plr onT,

4
Alulr-nr = {pYr—-pr  onT, @

where, denoting by & € ( %, 1] a user-dependent model parameter, we have set

r & & 1
Ar = —, A2 =Ar|=—--].
P T F(z 4)

Here, k' : ' — R represents the normal permeability inside the fracture, which is assumed piecewise
constant on the partition Pr of I' and such that, for almost every x € T,

0 <A < Ar(x) < Ar,

for two given strictly positive real numbers 4. and ar.

Remark 1 (Compatibility condition). Since homogeneous Neumann boundary conditions are considered
on both the bulk and fracture boundaries (cf. (1d) and (1e)), the flow through the porous medium
is entirely driven by the source terms f and fr, which typically model injection or production wells
according to their sign. Decomposing f and fr into their positive and negative parts, i.e., writing
f=f"-fand fr = fif — f7 with f* = mTif and fF = WTiﬁ, we need to further assume the
following compatibility condition in order to ensure that a global mass balance is satisfied:

./ngf++./r€rfF=‘/QBf_+./rgrfr_’ &)

which translates the fact that all the fluid that enters the domain through injection wells must exit the
domain through production wells. In this configuration, the fracture pressure pr is defined up to a
constant that is fixed by the zero-average constraint (1f). The bulk pressure, on the other hand, is
uniquely defined without additional conditions owing to the coupling conditions (4).

Remark 2 (Boundary conditions). The model can be adapted to incorporate all the usual boundary
conditions. One can consider, e.g., non-homogeneous Neumann boundary conditions on the bulk and,
in the case where the fracture hits the domain boundary dQ2, non-homogeneous Neumann boundary
conditions on its tip. On the other hand, if the fracture boundaries lie in the interior of the domain
Q, a no-flow condition is required, where suitable compatibility conditions have to be enforced in
each case. We do not dwelve further into this topic here, as the extension of the proposed method is
relatively standard.

2.2.2 Weak formulation

We define the space H (div; Qg), spanned by vector-valued functions on Qg whose restriction to every
bulk subregion Qg ;, i € {1,2}, is in H(div; Qp ;). The Darcy velocity space is

U= {u € H(div;Qp) : u-nso =00n0Qp and (u; - nr,u; - nr) € LZ(F)Z} .

The fracture pressure space is Pr := H'(I)NL(T), with L(T") spanned by square-integrable functions

with zero mean value on I'. We define the bilinear forms ai :UxU — R, a% HY () xH'(T) = R,
b:UxL*Qp) - Rand d : U x L*(T') — R such that

a5 (u, q) = (K~'u, 9)qy + (A:[ullr-nr, [qlr-nr)r + Ar{uprnr, {ghrnor,
ay (pr, zr) = (KrVepr, Vo zr)r, b(u,z) = (V- u, 2)qy, d(u,zr) = ([ullr - nr, zr)r,

5



as well as the global bilinear form ﬂg"w (U x L*(Qp) x H'(T") x (U x L*(Qp) x H'(T')) — R such
that ’

AL (w, p, pr)s (4,7, 70)) 1= @ (u, @) + b(u, 2) - b(g, p) + d(g, pr) - d(u, zr) + ag (pr, 7r).

With these spaces and bilinear forms, the weak formulation of problem (1)—(4) reads: Find (u, p, pr) €
U x L*(Qg) x Pr such that, for all (g, z, zr) € U x L*(Qg) x H'(I"),

AL ((w, p, pr), (4,2, 2r)) = (fs Doy + (60 frs z0)r- (6)

The well-posedness of problem (6) with mixed boundary conditions is studied in [7]; cf. also [19,
33] and references therein.

2.3 Passive transport

We next formulate the equations that govern the passive transport of a solute by the Darcy flow
solution of problem (1)—(4). For the sake of simplicity, we focus on the case where the transport
problem is fully decoupled. This section contains the first main contribution of this paper, namely
novel transmission conditions that enable the treatment of discontinuous solute concentrations across
the fracture.

2.3.1 Bulk region

Denoting by ¢ : Qg — R the concentration of the solute in the bulk and by D : Qg — R>? the
symmetric, uniformly elliptic bulk diffusion-dispersion tensor, the passive transport of the solute in
the bulk region is governed by the following equations:

V-(uc—-DVe)+ fc=f'c in Qp, (7a)
—DVc-ngo=0 on 0Qg, (7b)

where the term f~c acts as a sink, while the term f*¢, with ¢ : Qg — R denoting the concentration
of solute as it is injected, acts as a source. We assume that both D and ¢ are piecewise constant on
the polygonal partition g of Qp (see (2)), and that there exist two strictly positive real numbers Dy
and Dy such that, for almost every x € Qg and all z € R? such that |z] = I,

0<clx)<1, 0 <Dy < D(x)z -z < Dg.

More generally D can depend on u. While the theoretical results provided hereafter focus on the
case of D independent from u, this dependence has been considered in some numerical experiments
presented in Section 5.

2.3.2 Fracture

We define the Darcy velocity ur : I' — R? inside the fracture such that ur := —KrV,pr where
pr : I' — R is the fracture pressure solution of problem (1)—(4). Denoting by cr : I' — R the
concentration of the solute inside the fracture, and letting Dr := D[ {r with D : I' — R denoting
the (strictly positive almost everywhere) tangential diffusion-dispersion coefficient of the fracture, the
governing equations for the transport problem inside the fracture are:

V.- (urCr - DFVTCF) + frfr_cl" = frflj—c,‘} + [[uc - DVC]]]" -nr inT, (8a)
—DrVier -tor =0 on 0T, (8b)



where again f~c acts as a sink term while f"¢r acts as a source, with ¢r : I' — R denoting the
concentration of solute as it is injected into the fracture. For the sake of simplicity, we assume in
what follows that both ¢r and Dr are piecewise constant on the partition r of " (see (3)), and such
that there exist two strictly positive real numbers D and Dr such that, for almost every x € I,

0<cr(x)<1, 0 < Dy < Dr(x) < Dr.

Remark 3 (Bulk and fracture boundary conditions). Considering no-flow boundary conditions on
the bulk and fracture flux (1d) and (le) entails a slight simplification, since we do not have to deal
with the decomposition of the bulk or fracture boundary into their respective inflow or outflow parts.
Other boundary conditions can be considered, but this topic will not be further developed here for the
sake of brevity.

2.3.3 Transmission conditions

To derive transmission conditions for the hybrid dimensional passive transport problem, we have
followed a technique similar to that used in [27] and [21] in a completely different context. We started
from the observation that in the unreduced model, where the fracture is not reduced to an internal
interface, the transport operator does not contribute to the energy balance, aside from a possible
contribution at the boundary (which is zero if we prescribe zero normal Darcy velocity). Therefore,
we want to obtain also in the reduced model an energy estimate where the transport term behaves
similarly. In particular, in the energy estimate for the hybrid dimensional problem, the terms related
to transport in the coupling conditions have to cancel out and give no contribution to the energy. This
is crucial, since energy estimates are a key ingredient for the coercivity of the differential problem.
This is far from trivial, however we will show that this is possible if the following conditions are used
(see Theorem 5):

{uc —=DVchr - nr = Bricle + ({ufr - no){{cr + %([[u]]r -nr)lcr  onT,
©
lue ~ DVl - nr = BE(elr —er) + 5(Aulr - nr){ehr + er) onT.

where £ is the user-dependent model parameter introduced in Section 2.2.1, and we have set
Dn 'f 1 -1
i & . S _
Br: o Br - ﬁr(z 4) .
The term D : I' — R represents the normal diffusion-dispersion coeflicient of the fracture, which is

assumed piecewise constant on the partition Pr of I' (see (3)), strictly positive almost everywhere on
I', and such that, for almost every x € I,

0<pB. < prx)<pr,

for two given strictly positive real numbers Br and fBr.

Remark 4 (Limit cases). We may notice that in the case of a pure diffusion-dispersion problem in the
bulk and in the fracture, corresponding to the case # = 0, the transmission conditions (9) reduce to

{-DVchir - nr = Brlclr onT, (10a)
[-DVelr - nr = Bo({{c}r —cr)  onT. (10b)

The first equation (10a) stipulates that the diffusive flux across the fracture is proportional to the
difference of concentration at the two sides of the fracture, while the second equation (10b) stipulates



that the exchange between the bulk and the fracture is proportional to the difference between the
average concentration across the fracture and the concentation at the interior of the fracture. On
the other hand, for a pure transport problem (which corresponds to the case when all the diffusion-
dispersion coeflicients are zero), simple algebraic manipulations show that we obtain ¢; = ¢, =
cr across the fracture T', provided that [u]lr - ny # 0. This is reasonable, since in this limit
case concentration is just transmitted across the interface. In intermediate cases, the transmission
conditions (9) as designed so as to guarantee the satisfaction of the energy inequality, as we will show
in Section 2.3.5.

2.3.4 Weak formulation

Let H'(Qg) denote the broken Sobolev space spanned by scalar-valued functions on Qp whose
restriction to every bulk subregion Qg ;, i € {1,2}, is in H'(Qgp ;). We define the molecular diffusion
bilinear form ap : H'(Qp) X H'(Qp) — R, the advection-reaction bilinear form a, 5 : H'(Qp) x
H'(Qp) — R, and the diffusion-advection-reaction bilinear form a : H'(Qg) x H'(Qg) such that

ap(c,z) = / DVc¢-Vz, au,f(c, 2) = / (— c(u-Vz)+ f_cz),
Qg Qs (1)
a(c,z) = ap(c, z) + ayr(c, 2).
We also define their fracture-based counterparts ag :H'()xH'(T) - R, allz e H'(T)xHYT) - R
and ar : H'(T') x H'(T') — R such that

ap(ers zr) = /DFVTCF - Vezr, a,E,f(Cr, r) = / ( —cr(ur - Vezr) + frfr_CrZr), a2)
r r
ar(cr, zr) = ap(cr, zr) + a,E,f(Cr, 2r).
The global bilinear form ﬂgamp : (HY(Qp) x H(T')) x (H'(Qp) x H'(I')) — R, that additionally
takes into account terms that stem from the coupling equations, is defined as follows:
ﬂganSp((C, cr) (z,zr)) = alc, z) + ar(er, zr) + ‘/BE({{C}}F —cr){zhr —ar)
: r
1
o [ (Brlelelale + 5 @ull - o) + e)@ehe - ) 03
r

+ /r (({{u}}r ~nr){crlzlr + %([[u]]r . nr)l[c]]r[[z]]r)-

With these spaces and bilinear forms, the weak formulation of problem (7)—(8)—(9) reads: Find
(c,cr) € H'(Qp) x H'(T) such that, for all (z, zr) € H'(Qg) x H'(T')

ﬂgamp((c, cr) (z.zr)) = (f7¢ 2y + (rfr er, zr)r (9

2.3.5 Coercivity

In the following theorem, we prove the coercivity of the global transport bilinear form defined by (13)
and show that, thanks to the new transmission conditions (8), the advective terms do not dissipate
energy. This result is the key ingredient to derive a stability result for problem (14).

Theorem 5 (Coercivity). Let & > 1/2. Then, for all (z, zr) € H'(Qg) x H'(T), it holds
1 1 1
ﬂga“f’ ((z zr). (z,2r)) = IIDI/ZVZIIéB + IIDF/ZVTZrII% + g zllg, + 1y zrliZ

(15)
+ 189 (B — zo)lIE + 1168r) L] lIF,

8



14
Uy = 18]
Remark 6 (Energy balance). Equation (15) can be interpreted as a global energy balance. The
transmission conditions (9) are designed so that the advective terms do not contribute to this balance.
Additionally, if z = zr across I', also all terms related to the diffusion-dispersion across the fracture,
collected in the second line of (15), disappear.

with yg =

Proof. Let (z,zr) € H'(Qg) x H'(T'). By definition of the global bilinear form ﬂga"sp (13), it holds
ASP(z, 1), (2 20)) = a(a2) + arCer z0) + 182U - 0l + 1080 LDl
o [ 30l e + D - ) (6
o [ ((de - mofEDED + §Tude - ml:).
Using the definitions (11) and (12) of the bilinear forms a and ar, we obtain

a(z.2) = ID'PVz|3, + auyp(z2).  arzr.zr) = IDPVezrli? + ay (2, 7r). 17)

Expanding the bilinear form a,, s according to its definition (11), we get

au,f(z,Z)=/Q (—z(u-Vz)+f‘zz)

:/Q (—u-V(§)+f_Zz)
= /Q (%(V ‘u)z + f‘zz) - % /FI[uZZ]]r “nr

=) Zllgy, — % ./r ([["]]r el P + {udr - nr[[Zz]]r),

(13)

where we have used an integration by parts together with the boundary condition (ld) to pass to the
third line while to pass to the fourth line, we have used (1b) to write %(V “u)+ fT + f |f |
followed by the relation

l[abllr = [allr{{p}r + {a}rlP]r. (19)

Similarly, expanding a£ p according to its definition (12), we find
a, f(Zr, r) = / ( —zr(ur - Vezr) + o ff Zr)
- [(~ur- v asi)
/ (505 un)e? + tefi ) (20)
= / (z(frfr +[ullr - nr)z + 5rfr_2%)
r
2 2, 1 2
= llxr zrlls + 3 r([[u]]r - nr)7p,



where we have, at first, integrated by parts and used (1e) to pass to the third line, then we have used
(1c) after recalling that ur := —Kr V. pr to pass to the fourth line, and invoked the definition of yr to
conclude. Plugging (17), (18) and (20) into (16), we obtain

1 1 1
k?(gamsp((z, Z]"), (Z, ZF)) :”DI/ZVZ”éB + ”DF/ZVTZTH% + ”)(B/ZZHEZB + ||)(F22F||I2‘

+ IEE (e - I + 160 <D
+ [ = e m e+ e o) (kb= 3120 )

g %(([[”]]F np)a + ([l no (B + ) - za)
r
o [ gul - noll?

where, to cancel the last term in the third line, we have used formula (19) with a = b = z to infer
%[[zz]]r = {zPrllz]lr. Rearranging the terms on I', we arrive at

t 1 2 12 2 12 2 12 2
AL (2, 20), (2. 20)) = [IDVVzR, + 1D VezrllE + vy 213, + Iy zrli2

+ 1682 (e — zo)lIE + 118r) Pz |12 o
+ ‘/r%([[u]]r - nr) (%‘ {20 + {2} _;/1?+ zlLIIZ]]%) ‘

Using the formula
fablir = {alir{O}r + %[[a]]rl[b]]r

with a = b = z to write {z>}}r = {z}}2 + 1[[z]} in the last line of (21), (15) follows. O

3 Discrete setting

The HHO method is built upon a polygonal mesh of the domain € defined prescribing a set of mesh
elements 7, and a set of mesh faces 7.

The set of mesh elements 7}, is a finite collection of open disjoint polygons with nonzero area
such that Q = Ureq; Tand h = maxreq;, hr, with hr denoting the diameter of 7. We also denote by
OT the boundary of a mesh element T € 7j,. The set of mesh faces ¥, is a finite collection of open
disjoint line segments in Q with nonzero length such that, for all F € 5, (i) either there exist two
distinct mesh elements 71, T, € 73, such that F ¢ 0T, N dT; (and F is called an interface) or (ii) there
exist a (unique) mesh element 7 € 7, such that F c 9T N JQ (and F is called a boundary face). We

assume that ¥, partitions the mesh skeleton in the sense that Uz eq; 0T = Upeq, F.

Remark 7 (Mesh faces). Despite working in two space dimensions, we use the terminology “face”
over “edge” in order to (i) be consistent with the standard HHO nomenclature and (ii) stress the fact
that faces need not coincide with polygonal edges (but can be subsets thereof); see also Remark 8.

We denote by 7—;11 the set of all interfaces and by 7—‘hb the set of all boundary faces, so that
Fn = 7—2 U 7—2’. The length of a face F € 7, is denoted by hp. For any mesh element T € 7j,, Fr is
the set of faces that lie on T and, for any F € Fr, nyp is the unit normal to F pointing out of 7.
Symmetrically, for any F' € 7, 7F is the set containing the mesh elements sharing the face F' (two if
F is an interface, one if F is a boundary face).

To account for the presence of the fracture, we make the following assumption.

10
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Figure 2: Treatment of nonconforming fracture discretizations.

Assumption 1 (Geometric compliance with the fracture). The mesh is compliant with the fracture,
i.e., there exists a subset 7—;{ C F, such thatT = Fegl F. Asaresult, Thr is a (1-dimensional) mesh
of the fracture.

Remark 8 (Polygonal meshes and geometric compliance with the fracture). Fulfilling Assumption 1
does not pose particular problems in the context of polygonal methods, even when the fracture
discretization is nonconforming in the classical sense. Consider, e.g., the situation illustrated in
Figure 2, where the fracture lies at the intersection of two nonmatching Cartesian submeshes. In this
case, no special treatment is required if the mesh elements in contact with the fracture are treated as
pentagons with two coplanar faces instead of rectangles. This is possible since, as already pointed
out, the set of mesh faces 7, does not need to coincide with the set of polygonal edges of 7.

The set of vertices of the fracture is denoted by V}, and, for all F € F,', we denote by V the
vertices of F. Symmetrically, for any V € V},, ¥y is the set containing the fracture faces sharing the
vertex V (two if V is an internal vertex, one if V is on the boundary on the fracture). For all F' € ?'hr
and all V € Vg, Ty denotes the unit vector tangent to the fracture and oriented so that it points out
of F from V. Finally, (V;l is the set containing the internal vertices and (V}E’ is the set containing the
points in 4T, so that V, = Vi U V.

To avoid dealing with jumps of the problem data inside mesh elements, as well as on boundary
and fracture faces, we additionally make the following assumption.

Assumption 2 (Compliance with the problem data). The mesh is compliant with the data, i.e.: (i) for
each mesh element T € 7, there exists a unique sudomain wg € P (see (2)) such that T C wp;
(ii) for each fracture face F € 7"hr, there is a unique subdomain wr € Pr (see (3)) such that F' C wr.

4 The Hybrid High-Order method

In this section, we formulate the HHO discretization of problems (6) (Darcy flow) and (14) (steady
passive transport).

4.1 Darcy flow

We start with the discretization of problem (6), which is closely inspired by [15]. Through this
section, we denote by / > 0 a fixed integer polynomial degree.

11



4.1.1 Discrete bulk Darcy velocity unkonwns, bulk Darcy velocity reconstruction, and permeability-
weighted product of Darcy velocities

Let an element T € 7, be fixed, and denote by K the (constant) restriction to 7 of the bulk
permeability. For any integer m > 0, set

U = Ky VP'(T), (22)

with P"(T') denoting the space spanned by the restriction to T of two-variate polynomials of total
degree up to m. We define the following space of fully discontinuous bulk Darcy velocity unknowns:

—
U, = {gh = (g7, (qrF)Fesy)rer, : forallT € T, g7 € UL and grp € P/(F) forall F € 7—‘7} .

For any T € 7y, the element-based unknown g represents the Darcy velocity inside the element,
while the face-based unknown grr, F € Fr, represents the normal Darcy velocity exiting 7 through

— —l
F. Furthermore, we denote by QIT the restriction of U, to T and, for any q, € U,, we let

—
q, = (q7.(qrF)Fer) € U lT The following subspace of U, strongly incorporates the continuity of

Darcy velocity unknowns at each interface F' € Th‘ \ ?'hr contained in the bulk region, as well as the
homogeneous Neumann boundary condition on 0Qg:

— .
gil = {gh el, : [[gh]]p :0forallFe7-’2\7ilF and gp :0f0rallF€7—'hb}, (23)

where, for all F € 7—"hb, we have set gr = grr with T denoting the unique mesh element such that

i —
F € 7 and, for all F' € ¥, we have defined the jump operator such that, for any q, € u,,

g, lF = Z qrr-

TeTr

For all T € 7, we define the local discrete Darcy velocity reconstruction operator FlT+1 U lT -

U (see (22)) such that, for all 4, = (47 (qrF)Fes;) € UL, Fl” , solves

/F’“q VWT—/qT Vrpwr + ) /qTF(WT—ﬂ'TWT) Vwr e PHYT),  (24)
T

FeFr

with 7TlT : LY(T) — PYT) denoting the L2-orthogonal projector on P{(T); see, e.g., [20, Appendix
A.2]. Notice that the quantity F lT'* ! q, provides a representation of the Darcy velocity inside 7" one
degree higher than the element-based unknown g. It can be checked that condition (24) defines a
unique element of U*!, and that it is equivalent to [15, Eq. (19)] with discrete divergence operator
expanded according to its definition.

Based on this Darcy velocity reconstruction operator, we define the global permeability-weighted
product of Darcy velocities alK’h : Qil X Qz — R such that, for all (u,, gh) € Q;l X Qil,

aie (W, q,) = ( / K Fi 'y - Flq +sir(ug,q.)|- (25)
TeT,

Here the first term is the Galerkin contribution responsible for consistency while, for all T € 7,
sK r:Ur Ix U, " — R is the stabilization bilinear form such that, for all (s, 4, )eUs;, I ox U lT

sé(,T(ET’ QT) = / —(FlHuT "RTF — MTF)(FZTHQT ATF = 4TF),
FeFr

where, for all F' € Fr, we have set Krr = Krnrp - nrp.

12



4.1.2 Discrete fracture pressure unknowns, fracture pressure reconstruction, and tangential
diffusion bilinear form

The space of discrete fracture pressure unknowns is given by

P{-h = {zh = ((ZF)FE'TF’ (ZV)VE%) : z; e PY(F) forall F € Thr and z‘r, eRforallV e (Vh}
(26)
For all F € 7!, we denote by Plr, - the restriction of P , to F,and set 2! Zp " = (2 (z)vews) € Br P
We also introduce the following subspace which embeds the zero-mean value constraint:

P (e, [4-0f @
T

where z,l; € IP’I(?71F ) is the broken polynomial function on ?'hr such that (z£)| Fo= z; for all F € 7_-hr'

Let F € 7—;{ and denote by K the (constant) restriction to F of the fracture permeability. We
define the local fracture pressure reconstruction operator rlJrl : Pl — P"*I(F) such that, for all
2y = (2 () v) € P _r - “},ZF is such that, for all w}. € ]Pl“(F),

/ KpVergpzr - Vewp = — / (ZEVT-(KFVTW,E>)+ D WKeVewp)(V) - Try. (28)
F F VeVg

hence a polynomial r&LzI € P*1(F) up to an

This relation defines a unique element V,rit! 7L K.FZF

K,FXF>
additive constant, which we fix by additionally imposing that

[ (b - =0

The reconstruction 7.1zl provides inside F a representation of the fracture pressure one degree

<
K,FXF
higher than the element-based fracture unknown z};.

We can now define the tangential diffusion bilinear form az’lh : P{_ n X P{_ , — Rsuch that

ain(Z 4,) = ( [ KTl okl s hah). 29)
Fefl

where the first term is the Galerkin contribution responsible for consistency, while slr{’lF : Plr F X
E{_’ r — Ris the stabilization bilinear form such that, for all (5;’ g;) € P rF X Pr P

S = ) h—(R“‘ 2 (V)= 2 (RE 1 gh (V) - g), (30)
VeVr F
with Rﬁg; : PZF’F — P'*!(F) such that, for all z}, € PZFF, RlJrl Flp = 2p + (r”},zF nhr ?};ZF)

4.1.3 Discrete flow problem

Let an integer k > 0 be fixed. Following [3], in order to have a sufficiently accurate representation of
the Darcy velocity when writing the HHO approximation of degree k of the transport problem (14),
we solve the flow problem (6) with an HHO approximation of degree 2k. Thus, the bulk velocity,
bulk pressure, and fracture pressure will be sought, respectively, in U, 2k (see (23)), P2k = PK(T)

(the space of broken polynomials of total degree < 2k over 7;), and P 5 (see (27)). The discrete
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&2k

counterparts of the continuous bilinear forms defined in Section 2.2 are the bilinear forms ay’’," :

2k 2k 2k . p72k  p2k 2k . 2k o p2k
U, xU, =R b7 UFx Py, =R, 4" U" X Py — Rsuch that

Ny, g,) = ak e g)+ Y (80w, Ig, 1) + Qe B, g, Be)r),

FeFh
bk (w,,, ) = Z (—/uT'VPT+ Z /MTFPT),
TeTp r Ferp 7T
G w,p))= > [ [u,lepk
Fefl F
where the bilinear forms a%‘, , and a;’?}f are defined by (25) and (29), respectively, and, for all

Pn € P%kh and all T € 7y, we have set pr = pyr.
Letting ﬂgf’%k : (g X PRl x E%f‘h) X (g wox PRl x B%f‘h) — R be the global bilinear form
such that

,2k

2k r 2k T 2k, r T
+ dh (gh’ Bh) - dh (Eha Eh) + aK,h (Eh’ éh)’

the HHO discretization of problem (6) reads: Find (u,,, py, pg) elU flk X Pékh x PZ such that, for

—I,h,0
all (g, zn, 7)€ Uk x ngh X g%{;l,

ﬂg?;‘zzk((ﬂhs Ph; 1_72), (gh’ Zh, 52)) = (f>zn)ag + (I frs Z;IZ)F- (31)

4.2 Passive transport

We now formulate the HHO discretization of the steady passive transport problem (14). In what
follows, the polynomial degree £ is the same as in Section 4.1.3.

4.2.1 Discrete bulk concentration unknowns, bulk concentration reconstruction, and molecular
diffusion bilinear form

We define the fully discontinuous space of bulk concentration unknowns as follows:

—%k
Py, =1z, = Gzr. GrF)res )rer, : forallT € Ty, zr € PX(T) and zrp € PX(F) forall F € 77} .

L =
ForallT € 7, we denotg by B’éj the restriction of Py, to T, and we set z,. = (zr, (zTF)Fes;) € EE,T.
For any interface F € ¥, shared by distinct elements 73, 7; € 7F, we introduce the jump and average

—k
operators such that, for any z, € Py,

InF + InF

5 (32)

lz,1F = 257 = z1F, {z,Br =

—%
The following subspace of Py , strongly incorporates the continuity of concentration unknowns across
interfaces contained in the bulk region:

,—.k .
PL, = {gh Py, ¢ [zl =0 forall F e 7 \ ?‘hr} . (33)
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Let now an element T € 7}, be fixed, and denote by D the restriction to T of the bulk diffusion-
dispersion tensor. We define the bulk concentration reconstruction operator r<*1 : E’}; = PRHL(T)

D,T *
_ k K+l
such that, for all z,. = (zr, (zrF)FeF) € BB’T, rDTTgT

solves
‘/‘DTV’{C)T}ET . VWT = —/ (ZTV . (DTVWT)) + Z / ZTF(DTVWT . nTF) VWT € Pk+1(T).
T T FeFr F

This condition defines r~*1

D12 Up to a constant, which we fix by additionally imposing that

k+1
e, — ZT) =0.
/T ( br=r
The polynomial rX*!

D% brovides a representation of the concentration inside 7' one degree higher
than the element-based unknown z7.
We are now ready to define a global molecular diffusion bilinear form closely inspired by [23].

: . pk k k k
More precisely, we let ag n - Pgj X Py, — Rbe such that, for all (cpp2,) € Py, X Pg s

k — k+1 k+1 k
apn(Cp 2,) = Z (/TDTer,TET “Vrprzr +Spr(er 2|

where the first term is the Galerkin contribution responsible for consistency, while s’l‘) T B{; T X

Blé ; — Ris the stabilization bilinear form such that, for all (¢, z) € B’é T X B’é T

D
k . TF  pk+l k+1
SD,T(ET’ ET) = § / A (RDJ:TET - CTF)(RDTTET —2TF),
Fe¥; FIF
T

with Drp == Drnrp - nrp forall F € 7 and R« PE . — PA*I(T) is such that, for all . € P,

k+1 . k+1 _ ko k+1
Ryrzr = 2r + (rplp2, = Aprpp2y).

4.2.2 Fracture concentration unknowns, fracture concentration reconstruction, and molecular
diffusion bilinear form

The fracture concentration is sought in the space £’li ,, defined by (26) with [ = k. For all F € 7_-hr, we

define the fracture concentration reconstruction operator rf)f} : EI": P PK+1(F) as in (28) setting
[ = k and replacing Kr by Dp := Dr|g. Similary, we denote by agkh : E’ﬁ n X E’; , — Rthe tangential

molecular diffusion bilinear form defined as (29)—(30) with [ = k and K F replaz:ed by Dp.

4.2.3 Darcy velocities and advection-reaction bilinear forms in the bulk region and in the
fracture

In order to discretize the advection-reaction terms that appear in the passive transport problem, we
need suitable representations of the Darcy velocity both in the bulk region and inside the fracture.

Denote by (u,,, p, ]_92) e Uk x Plth X B%{(h,o the solution of the discrete flow problem (31). For

any T € Ty, taking in (31) q, = 0, z5, such that z7» = O for all 7" € 7, \ {T'} while z spans P2K(T),

and gg = 0, we infer the following local balance for the discrete bulk Darcy velocity:

/—UT “Vzr + Z /MTFZT = /fZT Vzr € PR(T). (34)
T F T

Fe¥Fr
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Additionally, by definition (23) of U} 2k " the Darcy velocity thus defined has continuous normal
components across interfaces contamed in the bulk in the sense that [[u, | = 0 for all F € Th‘ \ ﬂr
where the jump operator is defined applying (32) componentwise. Thus, u, is the natural candidate
to play the role of the Darcy velocity in the bulk region.

Let now a fracture face F € 7—;{ be fixed, and define the fracture Darcy velocity g? =
(ul., (uly, )v e, ) such that

u; = —KrV, r,%k;glpr and, for all V € Vp, ”Fv =

uF(V) TRV + Yy r) ifVe’V;l
ifvew

where, forall V € Vg, y““m : P2k — R is the boundary residual operator defined as in [24, Lemma
3]. With this choice for the fracture Darcy velocity, the following local balance holds for all F € Thr:

_/Fu;.VTZE+ Z u;V(z;(V)—z5)=L(frfr+ﬂgh]F)z; vz, € PR (35)

VeVp

Moreover, the discrete fracture Darcy velocity is continuous across internal vertices, that is to say,

D upy =0forall VeV (36)
F€7:V

u 1; is therefore the natural candidate to play the role of the Darcy velocity inside the fracture.
We now have all the ingredients to define discrete counterparts of the advective terms in the bulk
region and inside the fracture. More precisely, closely following [21], we define the advection-reaction

T k . pk k Lk . pk k
bilinear forms a, e Py, %Py, - Randa, IR Py, X Pr), such that

al,j,f,h(Eh’éh) = Z (/TCT( ur -Vzr + fzr) + Z / urrer(zr — zrr) + Su r(crs ZT))

TeT FeFr

(37)
all;:;’h(ch, Zh) —Z (/CF( uh Ve +r fy ZF)+ZMFVCF(V)(ZF(V) zv)+s (cF, zF))
Fe?}; F VeVg
where, forallTeTandallFeTr Pk ><Pk —>Rands Pk ><Pk — R are the
upwind stabilization bilinear forms respectlvely 1n the bulk and 1n31de the fracture such that
u u
Swr(Crs2p) = / lTF'fTF(CT —crr)zr — 2rF),
FeFr
(38)
Tk, T T Upy| = Upy ¢ Yy r
S 2p) = ) = (V) = ) (V) = 7).
VeVg

4.2.4 Passive transport problem

We are now ready to state the HHO discretization of the steady transport problem (14). At the
discrete level, the counterpart of the continuous bilinear form defined in (13) is the bilinear form
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AL (b % PE) x (5% P ) = R sueh ha

t r r . k k
‘ﬂ;?;;’s]?((gh’g )’ (Eh’gF)) ‘:aD h(ch7 Zh) +aufh(ch’ Zh) +Cl (Ch, Zh) +Cl h(ch’ Zh

£y / BE(e, e — ez, B - zF)+/aF[[gh]1F[[zh]]F)

Fegl

Py / ({{gh}}F{{gh}}Fﬂzh]}F+ [mh]]F[[gh]]F[[zh]]F) 59)
Fefl

3 [ Slmdetie,Be + cEXiz, e = 2F

Feﬁ’-‘r

where the role of the terms in the last three lines is to enforce the transmission conditions (9) on I'.
The HHO discretization of problem (14) then reads: Find (c,, g}:) € EE n X B’li , such that

g"‘;f(( e C)h (2,0 252)) —/ f czh+/€rfr arz,  Yz,.z) € Py Bh ><P (40)

We now prove the discrete counterpart of the Theorem 5.

Theorem 9 (Discrete coercivity). Let & > 1/2. Then, for all (z,, gg) € E]; x P it holds

=I,n

t r I k Ik I T
ﬂg;zl,slf((éh’ 2, (2 25)) = aD,h(Zh’ Z,) + aD’h(gh, 2,)

3

I 1
”XB/’ZTZTH]Q" + Z §|||uTF|]/2(ZT _ZTF)”%«“)

TeT, Fe¥r
1 (41)
O Iz lz + D) §|u£V|(z£(v>—z5>2)
FE‘T—}; VeVr
+ 3 (BN, B - 2RI + Brlile, IFlE).
FeFl

where, for all T € Ty, and all F € 7_-hl“’ x8,7 = (xB)|r and xr,r = (xr)|F. respectively.

Remark 10 (Upwind contributions). Unlike the continuous case (see Theorem 5), we have in the
second and third lines of the energy balance (41) upwind-related contributions of bulk and fracture
region, respectively. These could be removed at the price of having coercivity in a weaker norm.

Proof. The proof is similar to the one of the Theorem 5. Let (z,, gg) € Eé n X B{E , be fixed and set
(z,,2,) € P3, X P, such that,

VT € Ty, E)ir =2 = @, BrF)Fer) = (Z2T (ZTF VFeF )
(P @Y @
VFEThF’ (Zh)lF _ZF (ZF’ (Zv)Vefvp) =(—5— F » ( ; )Ve(VF)

transp
&,hk

obtain the terms in the first and last line of (41). Let now 77 = au /. h(zh, Zh) I = a, f h(zh, D),
and let 73 gather the remalnlng couphng terms, that is to say, the two last lines on the nght -hand 31de
of (39) with ¢; = z, and cF = zF forall F € ?'hr. Expanding 7; and 7, according to their respective

Using the definition of the global bilinear form A (39) with (ch, F) = (g zi) we immediately
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definitions (37), and recalling the definitions of the stabilization bilinear forms s’lj o and s’; F (33), it
is inferred that

5=y (/T(—uT-VzT+f—z%)+

TeT,

1
Z / (MTF(ZT —#rp) + 5|MTF|(ZT - ZTF)Z)), (43a)
F

Fe¥Fr

L=y (/F(-u;-v,z; o fFal?) + ) (b @ -2 + %|u;‘,|(z;(V)—z‘l;)2)). (43b)

FeFl VeVr

Using the local balances (34) in the bulk and (35) inside the fracture (that hold since z; € P2K(T') for
allT € 7, and g; € B%{‘F forall F € Thr) together with the fact that

Z Z Urrirr = Z Hﬂhzh]]F,

TeT, FeFr Fe(;:lll‘
which follows from (u,,2,) € U }21" X Eszh, we finally get from (43a) and (43b)
1 1
L= gyl + D) 5|||uTF|‘/2(zT—zTF>||%)— > [z le (40
TeT, Fefr Fert °F
1
L= ) |lrali+ > 5|u£v|(z£<v>—z5>2)+ > [ lrzi.  (44b)
FeFl VeVr Fert o

To conclude, it suffices to prove that the sum of the last term in the right-hand side of (44a) and
the last term in the right-hand side of (44b) and 73 is equal to zero. Using (19) to infer first that

lu,2,0F = u,1r{z,}F + {u,}r(2,]F and then that [z, |7 = [z, 7 {z), }F. we get

3 [l bt -tz )+ 5= Y [ (Dt 3+ 2, - 5,00
Fefl F Fefl F

that concludes the proof since {{2, }}r = %({{gh }}% + 711[[5};]]12”)' O

Remark 11 (Polynomial degree and local conservation). The use of polynomials of degree 2k to solve
the discrete flow problem (40) is required in the proof of Theorem 9. Indeed, to pass from (43) to (44),
the argument is that both the local balances (34) and (35) are valid when we use as test functions
7, € Pi, and 7, € P{, defined by (42).

4.3 Extension to the unsteady case

In the numerical tests of Sections 5.2-5.3 below, we consider the physically relevant situation of
unsteady passive transport with a steady Darcy velocity field. The extension of the HHO scheme (40)
to this situation is briefly discussed in what follows.

The transport problem can be extended to the unsteady case by assuming that the unknowns
depend on time and adding the unsteady contributions ¢d,c and {r¢rd,cr in, respectively, (7a)
and (8a), where ¢ : Qp — R and ¢r : I' — R stand, respectively, for the porosity in the bulk region
and in the fracture such that 0 < ¢ < 1 and O < ¢r < 1. In the numerical tests, we assume that these
quantities are piecewise constant on the partitions P and Pr (see (2) and (3)), respectively. More
generally, the porosities could also depend on time. Initial conditions for the bulk and the fracture
concentration c(f = 0,-) = %) and cp(r = 0,-) = le(-) close the problem. The functions ¢ and ¢r
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that represent the concentration of solute as it is injected in, respectively, the bulk and the fracture,
will also be allowed to depend on time.

To discretize in time, we consider for sake of simplicity a uniform partition (z"*)g<, <y of the time
interval [0, z] with £ = 0, V' = ¢ the final time of computation, and * — t*~! = 6t the constant
time step for all 1 < n < N. For any sufficiently regular function of time ¢ taking values in a vector
space V, we denote by ¢ € V its value at discrete time " and we introduce the backward differencing
operator ¢; such that, forall 1 <n < N,

-1
¢ —¢"
ot = ——— €eV.
tp 5t
With this notation, the discrete problem reads: Forall 1 < n < N, find (cj, g,rl’") € B’E n X B’li , such

r k k
that, for all (gh, gh) € BB’h X EF,h’

[ gocian+ /r lrgroel 2] + AT () (250 20) = /Q T /r LfiEy. @)
The initial condition is discretized taking cg and c;;’o equal to the L?-orthogonal projections on P*(75)
and P! (7—'hF ) of ¢ and cl(l, respectively. Notice that it is not necessary to prescribe face values for
the concentration in the bulk region, nor vertex values for the concentration in the fracture, as these
discrete unknowns do not appear in the discretization of the time derivative.

5 Numerical results

This section contains an extensive numerical validation of the HHO method. We first study
numerically the convergence rates achieved by the method, and then propose two more physical
test cases in which fractures act as barriers or conduits, depending on the value of the permeability
parameters.

5.1 Convergence for a steady problem
We start by a numerical study of the convergence rates of the method for both the flow problem (31)
and the steady passive transport problem (40).

5.1.1 Analytical solution

We approximate problems (31) and (40) on the square domain Q = (0, 1)> crossed by the fracture
I'={xeQ : x; =0.5}, and set r = 0.01 and ¢ = 3/4. For the flow problem, we consider the exact
solutions corresponding to the bulk and fracture pressures

p(x) = {COS@“)COS(”Z) Mo <03 @) = e - Aclull - nr

cos(mxi)cos(mxy) if x; > 0.5’
and letu|q, , = ~KVp\q, , fori € {1,2} and ur = —KrV.pr, with «{ = 1, ' = 0.01 and

_ cos(l) [K{.‘/(Z&-) 0

= Kr == «ler.
sin(1) + /2 0 1]’ r = kel
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For the steady passive transport problem, the exact solutions corresponding to the bulk and fracture
concentrations are given by

o) = exp (2/7r cos(mxy) (ﬁr — L cos(mxy) %W)) if 11 < 0.5
exp (Y(cos(mxr) - m) (,Br - Foos(may S Wembonn)) s 05”
(46)
[uc-DVelr - nr - {{chr (1/2[[u]]r ‘nr+ ﬁﬁ)
cr(x) = ’

o[[ullr - nr - B5

with D = I,, the identity matrix of R¥*2, DOf = 1and D = 0.01. The source terms f, fr are
inferred from (1b) and (1c), respectively. The right-hand sides of (7a) and (8a) are also modified by
introducing nonzero terms in accordance with the expressions of ¢ and cr; see (46). It can be checked
that, with this choice of analytical solutions, the jump and average of p, u, c, DVc are not identically
zero on the fracture, which enables us to test the weak enforcement of the transmission conditions (4)
for the flow problem and (9) for the steady passive transport problem.

5.1.2 Error measures

On the spaces of discrete bulk unknowns U 2k and Pk we define the norms |||y, and ||||p,» such
that, forall g, € U?¥ and all zZ, € Pr,

lg, 5, = > Ker)™" (||qT||%+ > hpnqrpn,%),

TeT, Fe¥r
D
2 . 2 TF 2
2l = Y e (I Ve + > =olier = zrrlE).
77, Ferr  F

where, for any T’ € 7y, EB,T is the largest eigenvalue of the (constant) permeability tensor K, while
op,1 = Ds.1/Dy , is the bulk anisotropy ratio with Dg.r, Dy > 0 denoting, respectively, the largest
and smallest eigenvalue of the (constant) local bulk diffusion- dispersion tensor Dr.

On the spaces of discrete fracture unknowns P2k and Pk r, e define the norms ||-|Ir,x,» and

|I-lIr.p.n such that, for all vh € P2k and all gh € P’lih,

1 KFr

IR s = D) (IKEVvRIE + > h—<v£<v>—v€>2),
FeFh vevp  F
1 Dr

I Epp = D) (IDEVezplE + > h—(z£<V)—z5>2).
Fe?‘,f VeVe F

For the flow problem, we monitor the following errors defined as the difference between the
numerical solution and suitable projections of the exact solution:

lwy, — Gullos 1P, = Goprllgn  Ion =7 plligyy P, = #typrlleg, @7

where I2k = (K7 Vyr, (7r2k(u nTF)FeTT)Te‘H, with yr € P?(T) is such that fT (KrVyr —u) -
Vvr = 0 for all vy € P2K(T), lr LPr = ((ﬂ%kpnF)Feg:;, (pr(V))vew,) with 725 denoting the
2_orthogonal projector on P*(F), and ﬂflk p and 7712",kh pr denote, respectively, the L?-orthogonal

projections of p and pr on PZk and Plgkh,
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(a) Triangular (b) Cartesian (c) Nonconforming

Figure 3: Mesh families for the numerical tests

Similarly, for the steady passive transport problem we consider the following error measures:
k I _ gk k r_ _k
“Eh - !hC”D,h’ ”Eh - !r,hcl"“l",D,ha llen — ﬂhC“Lz(QB), ”Ch - ﬂr,hCFHLZ(F), (48)

where / ’,‘lc = ((ﬂiqT)TeTh , (zr’;7 (c|F))Fes,) with ﬂ% and 71;; denoting, respectively, the LZ-orthogonal
projectors on P¥(T) and P*(F), l’li’hcr = ((71";701"|F)F€$f;:’ (ecr(V))vew,), and nzc and n'lf’hcr denote,

respectively, the L2-orthogonal projections of ¢ and cr on P’]; , and P’lf -

5.1.3 Results

We consider the triangular, Cartesian and nonconforming mesh families of Figure 3.

In Figure 4, we display the errors (47) for the flow problem as functions of the meshsize. The flow
problem (31) is solved using polynomials two times higher than for the passive transport problem, so
higher convergence rates than for the passive transport problem are to be expected. More specifically,
on the triangular mesh we observe convergence in A2K*! of the discretization error measured in the
energy-like norms ||u, — I }zlku”p,h and || BZ - ﬁlk prii.x.n, and convergence in h?**2 for the error

measured in the L?-norms ||p;, — ﬂ'ik Pllr2qg) and || pg - ﬂlz_f‘hprll r2m)- Slightly better convergence
rates are observed on Cartesian and nonconforming meshes, as already noticed in [15].

For the steady passive transport problem (40), we plot in Figure 5 the errors (48) as functions of
the meshsize. For both the energy-like norms of the error [|c;, — 1 ﬁcll p.n and || g}: -1 {E perlin,p.n, we

obain convergence in #**!. For the L?-norms of the error ||c; — ﬂ’h‘cll 12(Qy) and ||c£ - ﬂlli’th L2()>
on the other hand, we obtain convergence in #**? using piecewise linear or quadratic polynomials,
and for the case k = 0 in a fracture, we remark a stagnation of convergence around 1073. This
phenomenon will be investigate in further works.

5.2 Unsteady transport with impermeable fractures

We next consider a physical test case modelling the unsteady passive displacement of a solute in a
porous medium in which the fractures act as barriers.

The configuration is depicted in Figure 6a. More specifically, the computational domain is the
unit square Q = (0, 1), with fractures of constant thickness £ = 1072 corresponding to

IF'={x=(0x,x)eQ : (x <0.75and x, € {0.25,0.75}) or (x; > 0.25 and x, = 0.5)}.

The injection well is located in (0.5, 0), the production one in (0.5, 1), and both are modeled by the
source term f defined such that

Fx) = %(tanh (200(0.025 —J@2-05)+ xg)) ~ tanh (200(0.025 - \/(x12 ~0.5) + (x2 1)2))).
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The fracture source term fr is set to 0. It can be checked that the average of f in Qp is zero, so the
compatibility condition (5) is verified. We set the user parameter & = 0.75.

Concerning the flow problem, we select the values of the permeability in the bulk and in the
fracture so as to obtain impermeable fractures. More specifically, in the bulk we set K = 10731,
while in the fractures the tangential and normal permeability are, respectively, k. = 1073 and
Kf = 107, In Figure 6a, we display the bulk pressure p obtained with such parameters and the plot
over x; = 0.5. We can clearly see that the pressure jumps across the fractures and decreases from the
injection to the production well.

We consider the unsteady passive transport problem (45), set the final time 77 = 100 and the time
step ot = 1. Att = 0, there is not solute in the bulk nor in the fractures. The concentration of injected
solute in the bulk is given, for all x € Qg, by ¢(t,x) = 1 if r < 30 and ¢(z, x) = 0 otherwise. Since
we do not have wells in the fracture, we set crr = 0. The porosity in the bulk and in the fracture is set
to ¢ = ¢r = 10~!. Following [3, 32], the diffusion-dispersion tensor in the bulk is defined locally for
all T € 7, such that

Dr = ¢pdul + 9|F 7 u (4 Eyr + d(I2 — Eur)),

2k+1 - : 2k+1 |2kl =2 2kt 2k+1
where |[F7"" u,| is the Euclidean norm of F 7" u,, Eyr = |[F7 " u | (FT u, @ F; Er)v

while dy, = 1075, d; = 1 and d; = 1072 denote, respectively, the molecular diffusion, longitudinal,
and transverse dispersion coefficients. Notice that the high-order reconstruction of the Darcy velocity
is needed to define D7 since, if using constant elements & = 0, we do not have cell-based DOFs for
the flux. The fracture counterpart of the diffusion-dispersion coefficient is defined, for all F' € 7_-hr’
as follows

Dr = trérdy I + ¢rlug|(d Eyr + d{ (Io — Ey F)),

with E,, r = |u;|‘2 (u; ® u;) and where d% = 107>, dlr = 1 and d! = 1072 denote, respectively,
the fracture molecular diffusion, longitudinal, and transverse dispersion coeflicients. We set the
normal diffusion-dispersion coefficient of the fracture D equal to 1. A more in-depth investigation
of the meaning of this term is postponed to a future work.

We run the test case on the Cartesian mesh depicted in Figure 3b of meshsize 4 = 7.81- 1073 with
k = 2. In Figure 6b, we display the bulk concentration at different time . As expected, the solute
follows the corridors designed by the fractures that act as barriers and goes from the injection to the
production well.

5.3 Unsteady transport with permeable fractures

We next focus on the case where the fractures act as conduits. The domain is still the square unit
Q = (0, 1)?, the fractures of constant thickness ¢r = 1072 are located in

I'={x € Q : x1 € {2/32,8/32,13/32,19/32, 24/32,30/32} and 0.25 < x, < 0.75}.

The configuration is depicted in Figure 7a. The only parameters that differ from the previous test
case of Section 5.2 are the fracture permeabilities: to obtain permeable fractures, we set the normal
permeability k' = 1073 and the tangential one Kf = 10!, With this choice, it is expected that the
flow is attracted by the fractures.

In Figure 7a, we display the bulk pressure p and Darcy velocity # where, for the latter, the color
scale correspond to the value of the magnitude. As expected, the flow is from the injection well
towards the fractures near the bottom of the domain, and from the fractures to the production well
near the top of the domain.
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In Figure 7b, we display the bulk concentration ¢ at different times. We can distinctly see that
the solute channeled by the fractures flows towards the production well faster than the solute in the
surrounding bulk medium.

Conclusions

We conclude this paper by pointing out its main contributions and discuss perspectives of further
works. We have introduced a new reduced model for the passive transport of a solute in fractured
porous media driven by Darcy velocites. To derive the transmission conditions, we used an energy-
based argument such that, as in the unreduced model, transport terms do not contribute to the energy
balance. These transmission conditions allow the solute concentration to jump across the fracture.
The presentation of the model and its discretization are done considering the steady case, while the
extension to the unsteady case is presented and used for numerical experiments. In future works, we
will investigate further the physical meaning of the fracture normal diffusion-dispersion coefficient
Dp in the new transmission conditions (9), and we will carry out the complete analysis of the discrete
formulation, including its well-posedness and the study of the convergence properties of the HHO
method adapting the techniques of [21].
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Figure 4: Convergence results for the test case of Section 5.1. Errors (47) for the flow problem v. A
on the triangular, Cartesian and nonconforming mesh families of Figure 3.
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Figure 5: Convergence results for the test case of Section 5.1. Errors (48) for the passive transport
problem v. A on the triangular, Cartesian and nonconforming mesh families of Figure 3.
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(a) Domain configuration (left), bulk pressure p (middle) and bulk pressure profile over x; = 0.5 (right).

(b) Snapshots of the bulk concentration ¢ at times (from left to right, top to bottom): ¢ =
5, 10, 20, 30, 40, 50, 60, 80, 100.

Figure 6: Configuration and numerical results for the test of Section 5.2 (unsteady transport with
impermeable fractures).
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(b) Snapshots of the bulk concentration ¢ at times (from left to right, top to bottom): ¢ =
5, 10, 15, 20, 30, 40, 60, 80, 100.

Figure 7: Configuration and numerical results for the test of Section 5.3 (unsteady transport with
permeable fractures).
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