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Abstract

In this work, we propose a model for the passive transport of a solute in a fractured porous
medium, for which we develop a Hybrid High-Order (HHO) space discretization. We consider,
for the sake of simplicity, the case where the flow problem is fully decoupled from the transport
problem. The novel transmission conditions in our model mimic at the discrete level the property
that the advection terms do not contribute to the energy balance. This choice enables us to handle
the case where the concentration of the solute jumps across the fracture. The HHO discretization
hinges on a mixed formulation in the bulk region and on a primal formulation inside the fracture
for the flow problem, and on a primal formulation both in the bulk region and inside the fracture for
the transport problem. Relevant features of the method include the treatment of nonconforming
discretizations of the fracture, as well as the support of arbitrary approximation orders on fairly
general meshes.

Keywords: Hybrid High-Order methods, finite volume methods, finite element methods, fractured
porous media, Darcy flow, miscible displacement, passive transport

MSC2010 classification: 76S05, 65N08, 65N30,

1 Introduction

Over the last decades, the research on fluid flows in fractured porous media has received a great amont
of attention because of its relevance in many areas of the geosciences, ranging from ground-water
hydrology to hydrocarbon exploitation. Fractures in the subsurface are indeed ubiquitous, and can
be caused by tectonic forces, changes of temperature, drying processes, by leaching in the plane of
stratification, or by schistosity. Depending on the material that has accumulated within the fractures,
they may act as conduits or barriers, and thus affect the flow patterns in a substantial way. For instance,
it has been observed that fractures near boreholes tend to increase the productivity of wells during oil
recovery. In the context of geological isolation of radioactive waste, the presence of fractures in the
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disposal areas due to, for example, tunnel excavation, can drastically accelerate the migration process
of radionuclides.

A common feature of fractures in porous media is the variety of length scales. While the presence
of smaller fractures may be accounted for by using homogenization or other upscaling techniques,
fractures with larger extension have to be modelled explicitly, and there are several possible ways to
incorporate their presence. Our focus is here on the approach developed in [23], where a reduced
model for the flow in the fracture is obtained by an averaging process, and the fracture is treated as
an interface inside the bulk region. The fracture is assumed to be filled of debris, so that the flow
therein can still be modelled by Darcy’s law. The problem is closed by interface conditions that relate
the average and jump of the bulk pressure to the normal flux and pressure in the fracture. In [11] we
have designed and analysed a Hybrid High-Order (HHO) method to discretize this model, and proved
stability and order O(h**!) convergence of the discretization error measured in an energy-like norm,
with & denoting the meshsize and k > 0 the polynomial degree. Several other discretization schemes
have been proposed for this type of models; see, e.g., [3, 5, 810, 13, 20, 24] and references therein.
Other works where fractures are treated as interfaces include [4, 7, 18].

The literature on passive transport in fractured porous media and related problems is, however,
more scarce. In [22], the authors study a system of advection-diffusion equations where the jump of
the diffusive bulk flux acts as a source term inside the fracture. In the coupling conditions, only the
diffusive part of the total bulk flux is considered. The discretization is based on the Unfitted Finite
Element method, for which well-posedness and O(/¥) convergence in the energy-norm are proved.
In [12], a Finite Volume method is combined to a Trace Finite Element method to solve a transport
problem in the bulk region and inside the fracture, with the jump of the total bulk flux acting as a
source term in the surface problem and under the assumption that the concentration is continuous at
the interface. Convergence in O(h) is numerically observed for the energy-norm of the discretization
error. A similar problem is studied in [1]. In [21], the authors use an averaging technique similar
to [23] in order to derive coupling conditions for a transport problem which allow the concentration to
jump across the fracture. This enables them to model high concentration gradients near the fracture
resulting from highly heterogeneous diffusivity. The problem is used discretized by eXtended Finite
Elements (XFEM), and numerical evidence is provided.

In this work, we consider the passive transport of a solute driven by a velocity field solution of a
(decoupled) Darcy problem. We present two novel contributions:

(i) first, we propose new coupling conditions between the bulk region and fracture inspired by
energy-based arguments, following the general ideas developed by [19] in a different context.
Crucially, these transmission conditions allow the solute concentration to jump across the
fracture;

(ii) second, we propose a novel HHO discretization of this new model where the Darcy velocity field
results from an HHO approximation of the flow problem in the spirit of [11]. The discretization
is designed so as to incorporate the new transmission conditions and to reproduce at the discrete
level the energy argument from which they originate.

The main source of inspiration for the discretization of the advection terms in the bulk region and
inside the fracture is [15], where the authors develop an HHO method robust across the entire range
of Péclet numbers and supporting locally degenerate diffusion. Concerning the coupling of the flow
and transport problems, we take inspiration from [2], where an HHO discretization of miscible
displacements in non-fractured porous media described by the Peaceman model is considered.
Therein, in order to obtain a well-posed discrete problem, the flow problem has to be solved using
polynomials of degree twice as high as the transport problem. In our work, we find that a similar
condition is required to prove the coercivity of the transport bilinear form; see Remark 8 for further
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Figure 1: Illustration of the notation introduced in Section 2.1.

details. A thorough numerical investigation is carried out to demonstrate the order of convergence of
the method and showcase its performance on physical test cases.

The material is organized as follows. In Section 2 we describe the equations that govern the model
along with their weak formulation. In Section 3 we discuss the discrete setting and, in Section 4, we
formulate the HHO approximation. Section 5 is devoted to the numerical tests, including a numerical
study of the convergence properties of the method.

2 The differential model

In this section we introduce the strong and weak formulations of the flow and passive transport
problems. For the sake of simplicity, the presentation focuses on the two-dimensional case with a
single fracture. The extension to the three-dimensional case and to fracture networks is possible (and,
actually, quite straightforward), but requires heavier notations which we want to avoid here.

2.1 Notation

We consider a porous medium saturated by an incompressible fluid that occupies a space region
Q c R? traversed by a fracture I'. We assume that Q is an open, bounded, connected, polygonal
set with Lipschitz boundary 0Q. The fracture I is represented by an open line segment of nonzero
length which cuts Q into two disjoint connected polygonal subdomains Qg 1 and Qp ; with Lipschitz
boundary. The set Qp = Q\ T = Qg1 U Qp corresponds to the bulk region. We denote by
0Qg = U?ZI(GQB,,- \ 1_") the external boundary of the bulk region and by n g the unit normal vector

on 0Qg pointing out of Qp. Fori € {1,2}, we let 0Qp; := 0Qp N Qg ; denote the external boundary
of the subdomain Qp ;. The boundary of the fracture I' is denoted by JI', and the corresponding
outward unit tangential vector is Tgr. Finally, nr denotes the unit normal vector to I" pointing out of
Qg,1. This notation is illustrated in Figure 1.

For any function ¢ sufficiently regular to admit a (possibly two-valued) trace on I', we define the
jump and average operators such that

[ellr = @1 — 2, fohr =2 ?02,

where ¢; = ¢|q,, denotes the restriction of ¢ to the subdomain Qp; C Q. When applied to
vector-valued functions, these operators act component-wise.

Finally, for any X c Q, we denote by (-, -)x and ||-||x the usual inner product and norm of L%(X)
or L?(X)?, according to the context.



2.2 Darcy flow

We now formulate the equations that govern the flow in the saturated, fractured porous medium and
discuss a weak formulation inspired by [6, 14].

2.2.1 Governing equations

In the bulk region Qp and in the fracture I', we model the fluid flow by Darcy’s law in mixed and
primal form, respectively, so that the bulk Darcy velocity u : Qg — R?, the bulk pressure pressure
p: Qp — R, and the fracture pressure pr : I’ — R satisfy

u+Kvp=20 in Qg, (1a)
Vu=f in Qp, (1b)

V¢ - (KrVepr) = &ofr + [u]r -nr inT, (1c)
u-ngo=0 on 0Qg, (1d)
—KrVepr-tor =0 on 0T, (le)

/Pr =0, (1)
r

where f € L?(Qg) and fi € L*(I') denote source or sink terms, K : Qg — R>*? the bulk permeability
tensor, and we have set Kr = «[.{r, with [ : I' — R denoting the tangential permeability inside the
fracture and ¢r : I' — R the fracture thickness. In (1c) and (le), V, and V.- denote the tangential
gradient and divergence operators along I', respectively. We assume that K is symmetric, piecewise
constant on a finite polygonal partition

Pp ={wn,; : i €Ip} ()

of Qg, and uniformly elliptic so that there exist two strictly positive real numbers K and Kg such
that, for almost every x € Qp and all z € R? with |z| = 1,

0<Ky <K(x)z-z<Kg.
The quantities - and £ are also assumed piecewise constant on a finite partition
Pr={owr; : i €Ir} (3)

of I', and such that there exist strictly positive real numbers £- Ir K r Kt such that, for almost every
x el ~ B
0<£1—Sfr(x)ffr, O<Kl— < Kr(x) < Kr.

To close the problem, we add the following transmission conditions across the fracture:
Ar{{ulir - nr = [[plr onT,
Alulr-nr = {pYr—-pr  onT,

where, denoting by & € (%, 1] a user-dependent model parameter, we have set

r £ & 1
Ar = —, A2 =Ar|=—--].
R r r(z 4

“4)

Here, k' : ' — R represents the normal permeability inside the fracture, which is assumed piecewise
constant on the partition #r of I' and such that, for almost every x € I,

0< 41" < /lr(x) < ZF,

for two given strictly positive real numbers A and Ar.

4



Remark 1 (Compatibility condition). Since homogeneous Neumann boundary conditions are considered
on both the bulk and fracture boundaries (cf. (1d) and (1e)), the flow through the porous medium
is entirely driven by the source terms f and fr, which typically model injection or production wells
according to their sign. Decomposing f and fr into their positive and negative parts, i.e., writing
f=f"=fand fr = fif — f7 with f* = IfITif and f = WTifr, we need to further assume the
following compatibility condition in order to ensure that a global mass balance is satisfied:

/QBf++/F€rfr+=/QBf_+/r€rfr_, 5)

which translates the fact that all the fluid that enters the domain through injection wells must exit the
domain through production wells. In this configuration, the fracture pressure pr is defined up to a
constant that is fixed by the zero-average constraint (1f). The bulk pressure, on the other hand, is
uniquely defined without additional conditions owing to the coupling conditions (4).

2.2.2 Weak formulation

We define the space H (div; Qp), spanned by vector-valued functions on Qg whose restriction to every
bulk subregion Qg ;, i € {1,2}, is in H(div; Qp ;). The Darcy velocity space is

U= {u € H(div;Qp) : u-ngo=00n90Qpg and (u; - nr,u; - nr) € L2(F)2} .

The fracture velocity space is Pr := H' (F)ﬂLg(F), with Lg (T") spanned by square-integrable functions
with zero mean value on I'. We define the bilinear forms ai :UxU — R, a;{ :H'T)xH'(T) - R,
b:UxL*Qg) » Randd : U x L3I') — R such that

as(u,q) = (K 'u, 9)a, + (A [ullr-nr, [qlr-nr)r + (Arf{ulrnr, {ghrnorn
ay (pr, zr) = (KrVepr, Ve zr)r, b(u,z) = (V- u,2)qy d(u, zr) = ([ullr - nr, zr)r,

as well as the global bilinear form ﬂgow (U x L*(Qp) x H'(I") x (U x L*(Qp) x H(T')) — R such
that

AL (w, p, pr)s (4,7, 70)) 1= @ (u, @) + b(u, 2) - b(g, p) + d(g, pr) - d(u, zr) + @y (pr, 7r).

With these spaces and bilinear forms, the weak formulation of problem (1)—(4) reads: Find (u, p, pr) €
U x L*(Qp) X Pr such that, for all (g, z, zr) € U x L*(Qg) x H'(I),

ﬂgow((u9 Ds PF), (q7 2, ZF)) = (fv Z)QB + (frfr, ZF)F- (6)

The well-posedness of problem (6) with mixed boundary conditions is studied in [6]; cf. also [14,
24] and references therein.

2.3 Passive transport

We next formulate the equations that govern the passive transport of a solute by the Darcy flow
solution of problem (1)—(4). For the sake of simplicity, we focus on the case where the transport
problem is fully decoupled. This section contains the first main contribution of this paper, namely
novel transmission conditions that enable the treatment of discontinuous solute concentrations across
the fracture.



2.3.1 Bulk region

Denoting by ¢ : Qp — R the concentration of the solute in the bulk and by D : Qg — R>*? the
symmetric, uniformly elliptic bulk molecular diffusivity field, the passive transport of the solute in
the bulk region is governed by the following equations:

V-(uc-DVe)+ fTc=f'C in Qg, (7a)
—DVc¢-ngo=0 on 0Qg, (7b)

where the term f~ ¢ acts as a sink, while the term f*¢, with ¢ : Qg — R denoting the concentration
of solute as it is injected, acts as a source. We assume that both D and ¢ are piecewise constant on
the polygonal partition Pg of Qg (see (2)), and that there exist two strictly positive real numbers Dy
and Dy such that, for almost every x € Qg and all z € R? such that |z] = I,

0<clx)<1, 0 < Dy <D(x)z-z < Dg.

More generally D can depend on u. While the theoretical focus on the case of D independent from
u, this dependence has been considered in some numerical experiments presented in section 5.

2.3.2 Fracture

we define the darcy velocity ur : I' — R? inside the fracture such that ur = —KrV,pr where
pr : I' — R is the fracture pressure solution of problem (1)—(4). Denoting by cr : I' — R the
concentration of the solute inside the fracture, and letting Dr := D[ {r with D[ : I' — R denoting the
(strictly positive almost everywhere) tangential molecular diffusivity of the fracture, the governing
equations for the transport problem inside the fracture are:

VT . (urCr — DFV-,-CF) + frfl—_Cr = frflj—cf‘l: + [[uc - DVC]]F -nr inT, (8a)
—DFV-,-CF cTor = 0 on 61", (Sb)

where again f~c acts as a sink term while f"cr acts as a source, with ¢r : I' — R denoting the
concentration of solute as it is injected in the fracture. For the sake of simplicity, we assume in what
follows that both ¢ and Dr are piecewise constant on the partition Pr of I (see (3)), and such that
there exist two strictly positive real numbers Dy and Dr such that, for almost every x € T,

0<cr(x) <1, 0 < Dy < Dr(x) < Dr.

2.3.3 Transmission conditions

When considering a transport problem, the advective term does not create or dissipate energy: the
only related contribution possibly stems from the boundary, and is equal to zero in the case of no flow
(homogeneous Neumann) boundary conditions. We aim at reproducing this property in our model.
Specifically, we consider the following transmission conditions, which ensure that the advective terms
do not contribute to the energy balance (see Theorem 2):

{uc =DVchr - nr = Brlclr + ({ur - nr){{chr + %([[u]]r -nr)[clr onT,
©)
lue - DVely - nr = BE(elr —er) + 5(Iule - nr){ehr + er) onT,

where ¢ is the user-dependent model parameter introduced in Section 2.2.1, and we have set

_Dr e o (€ 1)
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The term Dp : T' — R represents the normal molecular diffusivity of the fracture, which is assumed
piecewise constant on the partition Pr of I' (see (3)), strictly positive almost everywhere on I', and
such that, for almost every x € I,

0<pB.<prx) = Br

for two given strictly positive real numbers ﬂl_ and ,El-.

2.3.4 Weak formulation

Let H'(Qg) denote the broken Sobolev space spanned by scalar-valued functions on Qp whose
restriction to every bulk subregion Qg ;, i € {1,2}, is in H'(Qp ;). We define the molecular diffusion
bilinear form ap : H'(Qp) x H'(Qp) — R, the advection-reaction bilinear form a, s : H'(Qp) x
H'(Qg) — R, and the diffusion-advection-reaction bilinear form a : H'(Qg) x H'(Qg) such that

ap(c, z) = DVc¢ - Vg, ay,f(c,z) = / (— c(u-Vz)+ f‘cz),
Qp

Qp (10)

a(e, z) = ap(c, 2) + au,f(c, 2).

We also define their fracture-based counterparts al, : H'(I)xH'(I') — R, al piH T)xHYT) - R
and ar : H'(T') x H'(I') — R such that

ab(ers zr) = /DFVTCF - Vezr, a,f,f(cf, r) = / ( —cr(ur - Vezr) + frfr_CrZr),
r r

ar(cr, zr) = ap(cr, zr) + a,if(cr, r).

(1D

The global bilinear form ﬂgamp : (HY(Qp) x H(T')) x (H'(Qp) x HY(T)) — R, that additionally
takes into account terms that stem from the coupling equations, is defined as follows:

AL @ 20) = a6 )+ aners ) + [ BN = en)abe = 20)
o [ (Bl + 5 @ulr - ne)Helr + @b -20))  (12)
r
+'/r(({{u}}r'nr){{c}}r[[z]]r+%([["]]r'nr)[[c]]r[[z]]r)-

With these spaces and bilinear forms, the weak formulation of problem (7)—(8)-(9) reads: Find
(c,cr) € H'(Qg) x H'(T') such that, for all (z, zr) € H'(Qg) x H'(T)

AT (e, cr). (2 2r) = (FE ey + (Erfi G 200 4

2.3.5 Coercivity

In the following theorem, we prove the coercivity of the global transport bilinear form defined by (12)
and show that, thanks to the new transmission conditions (8), the advective terms do not dissipate
energy. This is result is the key ingredient to derive a stability result for problem (13).

Theorem 2 (Coercivity). Let & > 1/2. Then, for all (z, zr) € H'(Qg) x H'(T), it holds
AL (2 2r) (2 20)) = 1Dz, + DL VezrlE + g 2li3, + vzl 1
+11680) (=B — zo)lIE + 11680 I lIE

4
with yp = |i2| and yr = 1"|2fr|‘




Remark 3 (Energy balance). Equation (14) can be interpreted as a global energy balance. The
transmission conditions (9) are designed so that the advective terms do not contribute to this balance.
Additionally, if zr is continuous across I', also all terms related to the molecular diffusion across the
fracture, collected in the second line of (14), disappear.

Proof. Let (z,zr) € H'(Qg) x H'('). By definition of the global bilinear form ﬂga“sp (12), it holds
APz, 20, (2 20)) = a(z,2)+ arler z0) + 182U - 0l + 180 LDl
o [ S0ule moEr+ 20 - 20) as)
o [ (e BelaDe + GHule - mol:I),
Using the definitions (10) and (11) of the bilinear forms a and ar, we obtain

a(z.2) = D"V}, + aup(z2).  arer.zr) = IDE Vel +al (e o). (16)

Expanding the bilinear form 4, y according to its definition (10), we get

au,f(z,Z)=/Q (—z(u-Vz)+f‘zz)

:/Q (—u-V(§)+f_Z2)
:/Q (%(V.u)zz+f_z2) —%‘/r[[uzz]]r'nr

=) Zlly, ~ % ./r (l[”]]r el P + {uhr - nr[[Zz]]r),

a7)

where we have used an integration by parts together with the boundary condition (1d) to pass to the
third line while, to pass to the fourth line, we have used (1b) to write %(V ‘u)+ fT = g +f =
followed by the relation

[ablr = [alr{{t}r + {atirlblr. (18)

Similarly, expanding a,E 7 according to its definition (11), we find
uf(Zr, r) = / —zr(ur - Vezr) + e f Zr)
/(—ur V(—)+€rfr )
/ (507 - un)zt + e 23) (19)
_ 2 -2
= / (E(frfr + [ullr - nr)zr + 6o fr Zr)
r
22, 1 2
= Ixlarlf + 5 [ a0z
r

where we have integrated by parts and used (1e) to pass to the third line, we have used (1c) after
recalling that ur := —KtV,pr to pass to the fourth line, and invoked the definition of yr to conclude.



Plugging (16), (17) and (19) into (15), we obtain
AL (2, 20), (2 20)) =IDVzIR, + 1D Vezrllf + g 21, + Iy zrli2

+ 180 ({zhr = 2ol + 180) Pl 17

+ /r ( - %(ﬂ”]]r ) {2 Pr + ({ur - nr)({{Z}}r = EHZZHF))

+ / %(([[u]]r -np)zg + ([w]r - nr){zPr + zr) {2 - Zr))
r

o [ gulnolzIR

where, to cancel the last term in the third line, we have used formula (18) with a = b = z to infer
%[[zz]]r = {zPrllz]lr. Rearranging the terms on I', we arrive at

t 1 2 12 2 12 12 12 2
AL (2, 20), (2. 20)) = 1DV, + 1D Vezrllf + vy 21, + Iy zrli2

I (el - zo)lR + 168 P LD (20)
+ ‘/F%([[u]]r - nr) (%‘ {2 hr + {2} _;/1?+ %[[Z]]%) ‘

Using the formula
fablir = {atir{Or + %[[a]]rl[b]]r

with @ = b = z to write {{z?}}r = {z}}2 + 1[[z]% in the last line of (20), (14) follows. O

3 Discrete setting

The HHO method is built upon a polygonal mesh of the domain Q defined prescribing a set of mesh
elements 7, and a set of mesh faces 7.

The set of mesh elements 7}, is a finite collection of open disjoint polygons with nonzero area
such that Q = Ureg, Tand h = maxrcq;, hr, with hr denoting the diameter of 7. We also denote by
OT the boundary of a mesh element T € 7j,. The set of mesh faces ¥ is a finite collection of open
disjoint line segments in Q with nonzero length such that, for all F € ¥, (i) either there exist two
distinct mesh elements 77, 7> € 7}, such that F c 971 N 07> (and F is called an interface) or (ii) there
exist a (unique) mesh element 7 € 7, such that F C T N JQ (and F is called a boundary face). We
assume that ¥ is a partition of the mesh skeleton in the sense that Ureq, 0T = Upeg, F.

Remark 4 (Mesh faces). Despite working in two space dimensions, we use the terminology “face”
over “edge” in order to (i) be consistent with the standard HHO nomenclature and (ii) stress the fact
that faces need not coincide with polygonal edges (but can be subsets thereof); see also Remark 5.

We denote by 7—711 the set of all interfaces and by ﬁb the set of all boundary faces, so that
Fn = 7—;1‘ U ?;lb. The length of a face F' € 7, is denoted by hp. For any mesh element T € 7;,, Fr is
the set of faces that lie on T and, for any F € Fr, nyp is the unit normal to F pointing out of 7.
Symmetrically, for any F € 73, 7F is the set containing the mesh elements sharing the face F (two if
F is an interface, one if F' is a boundary face).

To account for the presence of the fracture, we make the following

Assumption 1 (Geometric compliance with the fracture). The mesh is compliant with the fracture,
i.e., there exists a subset 7_~hr C Thl such that " = Fesl F. As aresult, Thr is a (1-dimensional) mesh
of the fracture.
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Figure 2: Treatment of nonconforming fracture discretizations.

Remark 5 (Polygonal meshes and geometric compliance with the fracture). Fulfilling Assumption 1
does not pose particular problems in the context of polygonal methods, even when the fracture
discretization is nonconforming in the classical sense. Consider, e.g., the situation illustrated in
Figure 2, where the fracture lies at the intersection of two nonmatching Cartesian submeshes. In this
case, no special treatment is required provided the mesh elements in contact with the fracture are
treated as pentagons with two coplanar faces instead of rectangles. This is possible since, as already
pointed out, the set of mesh faces 7, need not coincide with the set of polygonal edges of 7.

The set of vertices of the fracture is denoted by V}, and, for all F' € 7—;{, we denote by Vg the
vertices of F. Symmetrically, for any V € YV}, Fy is the set containing the fracture faces sharing the
vertex V (two if V is an internal vertex, one if V is on the boundary on the fracture). For all F € 7—”hr
and all V € Vg, Ty denotes the unit vector tangent to the fracture and oriented so that it points out
of F. Finally, ‘V,i is the set containing the internal vertices and (V,l’ is the set containing the points in
oI, so that V), = (V}i U ‘1/;3.

To avoid dealing with jumps of the problem data inside mesh elements, as well as on boundary
and fracture faces, we additionally make the following

Assumption 2 (Compliance with the problem data). The mesh is compliant with the data, i.e.: (i) for
each mesh element T € 7}, there exists a unique sudomain wg € Pp (see (2)) such that T C wp;
(ii) for each fracture face F € 7—7{ , there is a unique subdomain wr € Pr (see (3)) such that F C wr.

4 The Hybrid High-Order method

In this section, we formulate the HHO discretization of problems (6) (Darcy flow) and (13) (passive

transport).

4.1 Darcy flow

We start with the discretization of problem (6), which is closely inspired by [11]. Through this

section, we denote by / > 0 a fixed integer polynomial degree.

4.1.1 Discrete bulk Darcy velocity unkonwns, bulk Darcy velocity reconstruction, and permeability-
weighted product of Darcy velocities

Let an element T € 7, be fixed, and denote by Kr the (constant) restriction to 7 of the bulk
permeability. For any integer m > 0, set

U = KrVP™(T). Q1)

10



We define the following space of fully discontinuous bulk Darcy velocity unknowns:

—
U, = {gh = (g7, (qrF)resy)res, : forallT € T, g7 € UL and grr € P/(F) forall F € ‘7—}} .

For any T € 7y, the element-based unknown g4 represents the Darcy velocity inside the element,
while the face-based unknown grr, F € ¥r, represents the normal Darcy velocity exiting 7 through

—
F. GivenameshelementT € 7, we denote by U’ IT the restriction of U, to T' and, for any q, € U,,we

—
let 4, = (q7.(qrF)Fer) € U IT The following subspace of U, strongly incorporates the continuity

of Darcy velocity unknowns at each interface F € ?'h’ \ 7_~hr contained in the bulk region, as well as
the homogeneous Neumann boundary condition on 9Qp:

— .
U, =14, €T, : lg,Ir =0forall F e i\ 7l and g = 0forall F e 70}, (22)

where, for all F € ﬂb, we have set gr = grp with T denoting the unique mesh element such that

. —
F € Fr and, forall F € 7"h1, we have defined the jump operator such that, for any q, € u,,

g, lF = Z qrr-

TeTr

For all T € 73, we define the local discrete Darcy velocity reconstruction operator F ZTJ’ LU IT —

U (see (21)) such that, for all ¢ = (¢7, (qrF)rer) € UL, Fi' g solves

/Flflq -VwT:/‘ITVﬂITWT+ Z /CITF(WT—NZTWT) Viwr € BT, (23)
r -~ T T Ferr *F

Notice that the F ZT” q, provides a representation of the Darcy velocity inside T one degree higher than
the element-based unknown q. It can be checked that condition (23) defines a unique element of
U IT+ !, and that it is equivalent to [11, Eq. (19)] with discrete divergence operator expanded according
to its definition.

Based on this Darcy velocity reconstruction operator, we define the global permeability-weighted
product of Darcy velocities a;’h : gﬁl X gil — R such that, for all (u,, qh) € g;l X gfq,

aiep(wy,q,) = (/K P lug - Frlg + sier(ug,q)|- (24)
TeT,

Here the first term is the Galerkin contribution responsible for consistency while, for all T € 7},
sK r-Ur L x U, ! — R is the stabilization bilinear form such that, for all (uT, ) eU; Lox U IT,

I . I+1 L+l g
Sk, QT) = Z K_(FT+ up-nrp —urp)(Fy “RTF — qTF),
Fefr
where, for all F € Fr, we have set Krr = Krnrp - nrp.
4.1.2 Discrete fracture pressure unknowns, fracture pressure reconstruction, and tangential
diffusion bilinear form
The space of discrete fracture pressure unknowns is given by

PL, = {Z{l = ((2p)pests (y)vew,) : zp €P(F) forall F € 7 and 2y, € Rforall V € q/h} :
' (25)

11



Forall F € ?;lr, we denote by B{_’  the restriction of Pl , to F, and set ZL 2 = (2L - (Zv)Veﬂ/F) epP _1. .
We also introduce the following subspace which embeds the zero-mean value constraint:

Blrho {Zheplrh : /FZ;E:O}’ (26)

where z] € P/(F]) is the broken polynomial function on 1 such that (z} )| := z}. forall F € 7.
Let F € Thr and denote by Kr the (constant) restriction to F of the fracture permeability. We
define the local fracture pressure reconstruction operator rlJrl Pl — P"*I(F) such that, for all

zF = (zF, (ZV)(VF) € PFF, ?}VZF is such that, for all wlr, € ]Pl“(F),

/KFV r?}czF VTw,F; = —/ (zEVT-(KFVTWE)) + Z Z\I;(KFVTWE)(V)'TF\/. 27)
F F

VeVg

This relation defines a unique element V r”},z i

additive constant, which we fix by additionally imposing that

I+1 T r\_
/F(rKFzF ZF)—O.

provides inside F a representation of the fracture pressure one degree

hence a polynomial ri'1.z%. € P'*!(F) up to an

I+1
FZF
higher than the element-based fracture unknown z;.

The reconstruction r

We can now define the tangential diffusion bilinear form az”lh : Blr, n X Elr, , — Rsuch that
(Zh’ F) - (/ KrV, r};},zF \Y r}?},q + sKF(zF, 5 1, (28)
Fefl

where the first term is the Galerkin contribution responsible for consistency, while slr{’lF : Blr F X
E{_ — R s the stabilization bilinear form such that, for all (z. 2 4q ) € P X P]f Fo

Kr
e 0= ) o REZe (V) = 2R, (V) - a)) (29)
VeVr

: k+1 . pk k+1 k k+1 — k+1 T k k+l r
with Rg*p « P — PYF(F) such that, for all gF € Prp. R FzF + (rk'FZp = TpTK p2p)-

4.1.3 Discrete flow problem

Let an integer £ > 0 be fixed. Following [2], in order to have a sufficiently accurate representation of
the Darcy velocity when writing the HHO approximation of degree k of the transport problem (13),
we solve the flow problem (6) with an HHO approximation of degree 2k. Thus, the bulk velocity,
bulk pressure, and fracture velocity will be sought, respectively, in U ik (see (22)), Péf‘h = PX(T)
(the space of broken polynomials of total degree < 2k over 7;), and P2kh (see (26)). The discrete

&2k

counterparts of the continuous bilinear forms defined in Section 2.2 are the bilinear forms a P

Qik gik - R, b%,k : Qik Pékh - R, dﬁk : Qik Elz-kh — R such that

e, g,) = a e g)+ Y (AR, Ig, 1) + (B, g, Ber),

Feﬁf
b (wy, pn) = Z( /uT Vpr + Z /MTFPT),
T <7, Fesr r
a2 / A
Fe?—',f
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%‘h 2215 are defined by (24) and (28), respectively, and, for all

pn € P andall T € 7y, we have set pr = pyr.
Letting ﬂg?f\ZZk : (Q ik X Péf‘h X B%kh) X (Q ,zlk X Pg‘h X E%{‘h) — R be the global bilinear form
such that

where the bilinear forms a and a

,2k
ﬂg?}\zzk((ﬂha pha EZ)’ (gh’ Zhs EZ)) = ai’h (Eh’ gh) + bik(ﬂh, Zh) - bik(gh7 ph)

2k r 2k r 2k, r T
+ dh (ghv Eh) - dh (Ehv Eh) + aK’h (Eh’ g/’l)’

the HHO discretization of problem (6) reads: Find (u,,, pp, pZ) eU flk X Pékh X B%kh o such that, for

r 2k 2k 2k
all (gh, zh,gh) eU," x PB’h XEF,h’

A i (W P P (G, 700 23)) = (o 2n)ey + (U fr 2 (30)

4.2 Passive transport

We now formulate the HHO discretization of the passive transport problem (13). In what follows, the
polynomial degree k is the same as in Section 4.1.3.

4.2.1 Discrete bulk concentration unknowns, bulk concentration reconstruction, and molecular
diffusion bilinear form

We define the fully discontinuous space of bulk concentration unknowns as follows:

,‘k
Py, = {Eh = (zr, (zrF)FeF;)rey, © foralT € Ty, zr € PX(T) and z7p € PK(F) forall F € 9‘}} .

—k
ForallT € 75, we denotg by P’é,T the restriction of Py , to T, and we set z,. = (zr, (zrF)Fes;) € EE’T.
For any interface F € ¥, shared by distinct elements 73, T, € 7F, we introduce the jump and average

—k
operators such that, for any g, € Py,

InF + InF

[[éh]]F = ZNF — ZIF> {{éh}}F = 5

—k
The following subspace of Py , strongly incorporates the continuity of concentration unknowns across
interfaces contained in the bulk region:

—%k .
Pl =z, € Py ¢ liz,lr =0forall F e H\ T (31)

Let now an element T € 7, be fixed, and denote by Dy the restriction to T of the bulk molecular
diffusivity. We define the bulk concentration reconstruction operator rf)*Tl : Blﬁ, T = PK+1(T) such
k+1

that, for all z,. = (zr, (z7F)Fer) € E{;T, rppZy solves

/DTV"£+]I"§T . VWT = —/ (ZTV . (DTVWT)) + Z / ZTF(DTVWT . nTF) VWT € ]Pk+l(T).
T T Fefr F

This condition defines r~*}

D% up to a constant, which we fix by additionally imposing that

k+1
J Ubtzg =t} =0
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The polynomial rnglzT provides a representation of the concentration inside T one degree higher
than the element-based unknown zr.
We are now ready to define a global molecular diffusion bilinear form closely inspired by [16].

; k . pk k k k
More precisely, we let ap, P, X Py, — R be such that, for all (¢;, z,) € Py X Py s

k . k+1 k+1 k
aD,h(Eh’Eh) = (/DTVFD 7¢r VD Tis +SD,T(£T’§T) >
TeT,

where the first term is the Galerkin contribution responsible for consistency, while S’Zj T Bg T X

EE, + — Ris the stabilization bilinear form such that, for all (cps ET) € P T X P’é .

Drr | i1 k+1
borlepz) = > / (RShey — cre)R 2, — orr),
Fefr

with Dyp := Dynyp - npp for all F € ¥ and R"Jr1 Eé — P**1(T) such that, for all z.

k+1 k k+1
Tir = ApTprir)-

BT’
Rk“ iy =T+ (rp

4.2.2 Fracture concentration unknowns, fracture concentration reconstruction, and molecular
diffusion bilinear form

The fracture concentration is sought in the space P Pk defined by (25) with [ = k. Forall F € 7—;{, we
define the fracture concentration reconstruction operator k“ Pk — P**1(F) as in (27) setting

I = k and replacing K by D = Dr|r. Similary, we denote by al: b h : B{E n X B{E , — Rthe tangential
molecular diffusion bilinear form defined as (28)—(29) with [ = k and KF replaced by Dp.

4.2.3 Darcy velocities and advection-reaction bilinear forms in the bulk region and in the
fracture

In order to discretize the advection-reaction terms that appear in the passive transport problem, we
need suitable representations of the Darcy velocity both in the bulk region and inside the fracture.

Denote by (u,, ph, ]_72) el; 2k P2k X P%kh o the solution of the discrete flow problem (30). For
any T € Ty, taking in (30) q, = 0, z, such that zz» = 0 for all 77 € 7, \ {T} while z7 spans P>(T),

and Elrz = 0, we infer the following local balance for the discrete bulk Darcy velocity:
[urvars 3 [wrrzr= [ gz var e (32)
Fe¥r

Additionally, by definition (22) of U} 2k the Darcy velocity thus defined has continuous normal
components across interfaces contamed in the bulk in the sense that [[u, ]| = 0 for all F' € 7—‘};‘ \ 7—;{.
Thus, u,, is the natural candidate to play the role of the Darcy velocity in the bulk region.

Let now a fracture face F' € ﬁr be fixed, and define the fracture Darcy velocity gg =

(ulrc, (M,Fw)vgvp) such that
up(V) -try + YRV F) if Vel
= —-KpV; r,%k;glpr and, for all V € Vi, up, = F ’;’
0 if VeV

where, for all V € Vg, yp' : P2k — R is the boundary residual operator defined as in [17, Lemma
3]. With this choice for the fracture Darcy velocity, the following local balance holds for all F' € ﬁrz

- / ul. Vg + Z U (2 (V) = 7)) = / (é’rfr + [[gh]]p)zlrp Vé; € E%kF (33)
F F

VeVr
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Moreover, the discrete fracture Darcy velocity is continuous across internal vertices, that is to say,

D upy =0forall VeV (34)
FE?\/

u II; is therefore the natural candidate to play the role of the Darcy velocity inside the fracture.
We now have all the ingredients to define discrete counterparts of the advective terms in the bulk
region and inside the fracture. More precisely, closely following [15], we define the advection-reaction

T kK . pk k Lk . pk k
bilinear forms Ay Py, %Py, »R and Ay Py, x Py, such that

af,,f,h(Eh,éh) = Z (/ cr(—ur -Vzr + fzr) + Z / urper(zr — zrF) + s];’T(gT, ZT))’
77, \YT Ferr v F 35)
at (chhz) =) ( /F Cp(— U Ve 2o+ fi 7)) + ) ey R (V)(2p (V) = 2h) + s34 (e z;>),

FeFl VeV

where, forall 7 € 7, and all F € Thr, s];’T : BE,T X EE,T — R and slrll; : EIIE’F X B’EF — R are the
upwind stabilization bilinear forms respectively in the bulk and inside the fracture such that

u u

Szlj,T(QT’ ) = / IT}V'TTF(CT —crr)(2r — 2TF);
Fefr

] (36)

(CF’ZF) = Z W%( F(V) Cv)(ZF(V)_Zv)
VeVr

4.2.4 Passive transport problem

We are now ready to state the HHO discretization of the transport problem (13). At the discrete
level, the counterpart of the continuous bilinear form defined in (12) is the bilinear form AT

£&hk
k k k k
(BB,h X EF,h) X (BB’h X EF,h) — R such that

trans 'y .k k Ik r F
fh/f(( h’ )’ (gh’gF)) ':aD h(ch’ Zh) +au fh(ch’ Zh) +al) h(ch’ ) +aufh(ch’ )

« 3 [ (Bt be — btz e =)+ Brle, Doz, I

Fe?‘r

> ({{gh}}F{{gh}}F[[zh]]H [[gh]]F[[gh]]F[[zh]]F) 7)
7

* Z/ S, e (e Br + )z, B = 2p),

Fej?-‘r

where the role of the terms in the last three line is to enforce the transmission conditions (9) on T'.
The HHO discretization of problem (13) then reads: Find (c,, g}:) € £’]§ n X Eli , such that

A (e i) (2, 2)) —/ frezn +/€rfr oz, Y,z € Py, X P (38)

We now prove the discrete counterpart of the Theorem 2.
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Theorem 6 (Discrete coercivity). Let & > 1/2. Then, for all (z,.z)) € Py, X Pf.,. it holds

—I,n’

trans
ﬂ;i;:lg((gh’zh) (Zh’ZF)) aDh(Zh’Zh)+a (Zh’ z,)

>

I 1
”XB/’ZTZT”% + Z §|||MTF|1/2(ZT - ZTF)||12:)

TeT, Fefr
| 1 (39)
N 7= §|u£v|(z£<v>—z5>2)
Fef, VeVr
+ 3 (BEIz, e - R IE + Brlile, Irl ).
FeFl

where, for all T € T, and all F € 7’?{, xB,7 = (xB)|r and xr,r = (xr)|F, respectively.

Remark 7 (Upwind contributions). Unlike the continuous case (see Theorem 2), we have in the second
and third lines of the energy balance (39) upwind-related contributions of bulk and fracture region,
respectively. These could be removed at the price of having coercivity in a weaker norm.

Proof. The proof is similar to the one of the Theorem 2. Let (z,,z; ) € P, X Pt be fixed and set
#,2) € P2k x Pk 11, such that,

2 2

VT Th @ =2 = GrGrodrer) = (o (S rer,)
&R @y “
VEEFy.  @)iF =2 = @ @)very) = (0 (T very).

transp
&hk

obtain the terms in the first and last line of (39). Let now 17 = a h(zh, 7). h=a h(zh, Zh
and let 73 gather the remaining coupling terms, that is to say, the two last lines on the rlght -hand side
of (37) with ¢, = z, and ¢}, = zj. for all F € ¥,/ Expanding 7; and 7 according to their respective

Using the definition of the global bilinear form A (37) with (ch, 1") = (2, Zi) we immediately

definitions (35), and recalling the definitions of the stabilization bilinear forms s’lj,T and sl'j’ F (36), it
is inferred that

=Yy (/T(—uT-VzT+f—z%)+

TeT,

Z '/F (MTF(ZT —rF) + %l”TFI(ZT - ZTF)Z))’ (41a)

Fe¥Fr

L=y (/F( —uf ek v fial )+ Y (uh V) - H) + %|u2vl(z,r:(V) - z&)z)). (41b)

Fe(]’,f VeVr

Using the local balances (32) in the bulk and (33) inside the fracture (that hold since 2y € P2K(T) for
all T € 7, and g; € B%{‘F forall F € ﬂr) together with the fact that

Z Z UTFErF = Z [u,2,1F,

TeT, FeFr Fe‘FE
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which follows from (u,,2,) € U }21" x P2k we finally we get from (41a) and (41b)

=—B,h’
1
L= |yl + D) 5|||uTF|1/2<zT—zTF)||%)— D [ Iwgle  @20)
F
TeT, Fefr Fe‘F;:
1 1
L= (Iahld+ > §|u£v|<z£<v>—z€>2)+ D [ Twlez.  420)
F
FeFl VeVp Fefl

To conclude, it suffices to prove that the sum of the last term in the right-hand side of (42a) and
the last term in the right-hand side of (42b) and 73 is equal to zero. Using (18) to infer first that

lu,2,0F = [u,1r{{z,tF + {u, }rl2,]F and then that [[2,[Ir = [z, ]r {{z, B} F, we get

3 [l bt -T2 )+ 5= Y [ (Dt 3+ 2, - 5,00
Fefi F FeFl F

that concludes the proof since {{2, }}r = %({{gh }}12: + }1[[51]]%). ]

Remark 8 (Polynomial degree and local conservation). The use of polynomials of degree 2k to solve
the discrete flow problem (38) is required in the proof of Theorem 6. Indeed, to pass from (41)
to (42), the argument we used is that both the local balances (32) and (33) are valid when we use as
test functions 2, € BZB’fh and gg € Blz_{‘h defined by (40).

4.3 Extension to the unsteady case

In the numerical tests of Sections 5.2-5.3 below, we consider the physically relevant situation of
unsteady passive transport with a steady Darcy velocity field. The extension of the HHO scheme (38)
to this situation is briefly discussed in what follows.

The transport problem can be extended to the unsteady case by assuming that the unknowns
depend on the time and adding the unsteady contributions ¢d,c and {r¢rd;cr in, respectively, (7a)
and (8a), where ¢ : Qp — R and ¢r : I' — R stand, respectively, for the porosity in the bulk region
and in the fracture such that 0 < ¢ < 1 and 0 < ¢r < 1. In the numerical tests, we assume that these
are piecewise constant on the partitions Pg and Pr (see (2) and (3)), respectively. More generally, the
porosities could also depend on time. Initial conditions for the bulk and the fracture concentration
ct=0,)=c")andcr(r =0,) = c?(') close the problem. The functions ¢ and ¢ that represent the
concentration of solute as it is injected in, respectively, the bulk and the fracture, will also be allowed
to depend on time.

To discretize in time, we consider for sake of simplicity a uniform partition (z"*)g<, <n of the time
interval [0, 7] with £ = 0, ¥ = ¢ the final time of computation, and " — =1 = 6¢ the constant
time step for all 1 < n < N. For any sufficiently regular function of time ¢ taking values in a vector
space V, we denote by ¢" € V its value at discrete time " and we introduce the backward differencing
operator ¢; such that, forall 1 <n < N,

n n—1
Ot = % ev.
With this notation, the discrete problem reads: Forall 1 < n < N, find (¢}, gi’") € E’é, n X B{E’ 5 Such
that, for all (gh,gi) € B’é’h X B{E’h,
[ o+ [Gosc s+ AT Gzt = [ rea [egaad. @
B B
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The initial condition is discretized taking c2 and c,l;’o equal to the L?-orthogonal projections on P*(7,)
and P! (Thr) of ¢® and c?, respectively. Notice that it is not necessary to prescribe face values for
the concentration in the bulk region, nor vertex values for the concentration in the fracture, as these
discrete unknowns do not appear in the discretization of the time derivative.

5 Numerical results

This section contains an extensive numerical validation of the HHO method. We first study
numerically the convergence rates achieved by the method, and then propose two more physical
test cases in which fractures act as barriers or conduits, depending on the value of the permeability
parameters.

5.1 Convergence for a steady problem

We start by a numerical study of the convergence rates obtained by the method for both the flow
problem (30) and the steady passive transport problem (38).

5.1.1 Analytical solution

We approximate problems (30) and (38) on the square domain Q = (0, 1) crossed by the fracture
I'={xeQ : x; =0.5}, and set r = 0.01 and ¢ = 3/4. For the flow problem, we consider the exact
solutions corresponding to the bulk and fracture pressures

(x) = {cos(2x1)cos(7rx2) if x; <0.5 pr(x) = B — Ar[ulr - o

cos(mx;)cos(mxy) if x; > 0.5
and let u|q,, = ~KVp|q, , fori € {1,2} and ur = —KrVpr, with «{ = 1, ' = 0.01 and

_ cos(1) [KF/(2€F) 0

= , Kr == klr.
sin(1) + /2 0 1 ] r=frer

For the passive transport problem, the exact solutions corresponding to the bulk and fracture
concentrations are given by

" exp (2/7r cos(mxy) (,8 - %cos(nxz)%%)) if x; <0.5
clx) = n . 5
exp (2/7r(cos(7rx1) — ) (ﬂ - éCOS(ﬂXz)%%)) if x; > 0.5 )
[uc —DVc]r-nr - {chr (‘/2[[u]]r “nr + ﬁ?)
cr(x) = )

1ol[ullr - nr - BS

with D = I,, the identity matrix of R>?, DOr = 1and DF = 0.01. The source terms f, fr are
inferred from (1b) and (1c), respectively. The right-hand sides of (7a) and (8a) are also modified by
introducing nonzero terms in accordance with the expressions of ¢ and cr; see (44). It can be checked
that, with this choice of analytical solutions, the jump and average of p, u, ¢, DV are not identically
zero on the fracture, which enables us to test the weak enforcement of the transmission conditions (4)
for the flow problem and (9) for the passive transport problem.
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5.1.2 Error measures

On the spaces of discrete bulk unknowns U ik and E;Z, we define the norms ||-|[yy., and ||-||p,» such
that, forall g, € U;*andall z, € Py,

g, 5.4 = > Kr) (||qT||%+ > thqTFn%),

TeT, Fe¥r
D
2 . 2 TF 2
Izl = 3 epr (IDFVarlf + 3 S llar = zre)llF)
T, Ferr ' F

where, for any T’ € 77, EB,T is the largest eigenvalue of the (constant) permeability tensor K, while
op,r = Dv.r/Dy , is the bulk anisotropy ratio with BB’T, Dg 7 > 0 denoting, respectively, the largest
and smallest eigenvalue of the (constant) local bulk molecular diffusivity tensor Dr.

On the spaces of discrete fracture unknowns P2k and Pk r, we define the norms ||-||r,x,, and

I|lr.p,n such that, for all Kh € P2 r., and all zh € P'lih,

1 KFr

IWilF s = D (IKEVevRlE+ > o <F<v>—vv>2)
FeFh vevp  F
| Dr

I Epp = > (IDEVezplE + > h—(ZE(V)—z5>2).
Fe?‘,f VeVe F

For the flow problem, we monitor the following errors defined as the difference between the
numerical solution and suitable projections of the exact solution:

_ 2k

e, — L, ullpns ||I_7£ o 1Pn = 7 pll2(0p) Ip), — ﬂ%,thFHLZ(r)v (45)

Wherell u:=(KrVyr, (ﬂﬁ,(u nrF)res )Te;, Withyr € PY(T)is suchthath (K7Vyr —u)-Vvr =0
for all v € PI(T), I2 pr = ((r pr|p)F€¢r (pr(V))vew,) with 72° denoting the L*-orthogonal
projector on P?K(F), and 7r kp and 77 pr denote, respectively, the L2 orthogonal projections of p
and pr on P2k and P

Lh
Similarly, for the passive transport problem we consider the following error measures:

K r ok K r_k
ey, = Lycllp.ns e, = It perlin,o,n, llen = 7y elli2g)s ey, = mpperllze),  (46)

where [ ’,‘lc = ((ﬂ§C|T)T€¢h , (7r’1‘7 (c|F))Fes,) with 7r§ and 7r§ denoting, respectively, the LZ-orthogonal
projectors on P¥(T) and P*(F), [’Ehcr = ((n’;cnp)Feﬁ, (cr(V))vew,), and nﬁc and n’lf,hcr denote,

respectively, the L2-orthogonal projections of ¢ and cr on P’g , and P’lf -

5.1.3 Results

We consider the triangular, Cartesian and nonconforming mesh families of Figure 3.

In Figure 4, we display the errors (45) for the flow problem as functions of the meshsize. The flow
problem (30) is solved using polynomials two times higher than for the passive transport problem, so
higher convergence rates than for the passive transport problem are to be expected. More specifically,
on the triangular mesh we observe convergence in 42K*! of the discretization error measured in the

energy-like norms ||u, — I flku”p,h and || BZ - ﬁlk prlir.x.n» and convergence in h**2 for the error
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(a) Triangular (b) Cartesian (c) Nonconforming

Figure 3: Mesh families for the numerical tests

measured in the L?-norms ||p;, — ﬂflk Pllr2qy) and || pg - ﬂlz_f‘hprll r2m)- Slightly better convergence
rates are observed on Cartesian and nonconforming meshes, as already noticed in [11].

For the passive transport problem (38), we plot in Figure 5 the errors (46) as functions of the
meshsize. For both the energy-like norms of the error [|c, — lfch p.n and || g,l: - !’f werllnp.n, we

obain convergence in #**!. For the L?-norms of the error ||c;, — ﬂ]f,C” L2(Qp) and ||c£ - 711’5 nCll2(r)s on

the other hand, we obtain convergence in #**? using piecewise linear or quadratic polynomials, and

between 4 and h? using piecewise constant polynomials.

5.2 Unsteady transport with impermeable fractures

We next consider a physical test case modelling the unsteady passive displacement of a solute in a
porous medium in which the fractures act as barriers.

The configuration is depicted in Figure 6a. More specifically, the computational domain is the
unit square Q = (0, 1)?, with fractures of constant thickness £r = 1072 corresponding to

IF'={x=0(xLx)eQ : (x1 <0.75and x, € {0.25,0.75}) or (x; > 0.25 and x; = 0.5)}.

The injection well is located in (0.5, 0), the production one in (0.5, 1), and both are modeled by the
source term f defined such that

f(x) = %(tanh (20000.025 - /(2 = 0.5) + x3)) - tanh (200(0.025 - V2= 0.5)+ (2 - 1)2)))-

The fracture source term fr is set to 0. It can be checked that the average of f in Qp is zero, so the
compatibility condition (5) is verified. We set the user parameter & = 0.75.

Concerning the flow problem, we select the values of the permeability in the bulk and in the
fracture so as to obtain impermeable fractures. More specifically, in the bulk we set K = 10731,
while in the fractures the tangential and normal permeability are, respectively, k. = 1073 and
Kf = 1079, In Figure 6a, we display the bulk pressure p obtained with such parameters and the plot
over x; = 0.5. We can clearly see that the pressure jumps across the fractures and decreases from the
injection to the production well.

We consider the unsteady passive transport problem (43), set the final time ¢/ = 100 and the time
step 0t = 1. Att = 0, there is not solute in the bulk nor in the fractures. The concentration of injected
solute in the bulk is given, for all x € Qg, by c(¢,x) = 1 if t < 30 and ¢{(t, x) = 0 otherwise. Since
we do not have wells in the fracture, we set cr = 0. The porosity in the bulk and in the fracture is set
to ¢ = ¢r = 107", The molecular diffusivity in the bulk is defined locally for all T € 7}, such that

Dr = ¢dnlr + 9IF ¥ u, (A Ey1 + di(I2 — Eu)),
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where |[F7"" u | is the Euclidean norm of F 7" u,, Ey 1 = |F7 " u | (FT u, @ F; ET)’

while d,, = 1073, d; = 1 and d; = 1072 denote, respectively, the molecular diffusion, longitudinal, and
transverse dispersion coefficients. Notice that the high-order reconstruction of the Darcy velocity is
needed to define Dt since, when using constant elements k = 0, we do not have cell-based DOFs for
the flux. The fracture counterpart of the molecular diffusivity is defined, for all F' € 7:;11"’ as follows

Dr = trorduds + ¢rluk|(@ Eur + dl (Io — Ey F)),

with E,, f = |u1rvl‘2 (u? ® ufv) and where d%, = 107>, dlr = 1 and d] = 1072 denote, respectively,
the fracture molecular diffusion, longitudinal, and transverse dispersion coefficients. We set the
normal molecular diffusivity of the fracture D' equal to 1. A more in-depth investigation of the
meaning of this term is postponed to a future work.

We run the test case on the Cartesian mesh depicted in Figure 3b of meshsize 4 = 7.81- 1073 with
k = 2. In Figure 6b, we display the bulk concentration at different time ¢. As expected, the solute
follows the corridors designed by the fractures that act as barriers and goes from the injection to the
production well.

5.3 Unsteady transport with permeable fractures

We next focus on the case where the fractures act as conduits. The domain is still the square unit
Q = (0, 1), the fractures of constant thickness £ = 1072 are located in

I'={x e Q : x1 €{2/32,8/32,13/32,19/32,24/32,30/32} and 0.25 < x; < 0.75}.

The configuration is depicted in Figure 7a. The only parameters that differ from the previous test
case of Section 5.2 are the fracture permeabilities: to obtain permeable fractures, we set the normal
permeability x{ = 1073 and the tangential one K = 10~!. With this choice, it is expected that the
flow is attracted by the fractures.

In Figure 7a, we display the bulk pressure p and Darcy velocity u# where, for the latter, the legend
correspond to the value of the magnitude. As expected, the flow is from the injection well towards
the fractures near the bottom of the domain, and from the fractures to the production well near the
top of the domain.

In Figure 7b, we display the bulk concentration c at different times. We can clearly see that the
solute attracted by the fractures goes faster to the production well than the surrounding one stayed in
the bulk.
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Figure 4: Convergence results for the test case of Section 5.1. Errors (45) for the flow problem v. A
on the triangular, Cartesian and nonconforming mesh families of Figure 3.
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Figure 5: Convergence results for the test case of Section 5.1. Errors (46) for the passive transport
problem v. A on the triangular, Cartesian and nonconforming mesh families of Figure 3.
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(a) Domain configuration (left), bulk pressure p (middle) and bulk pressure profile over x; = 0.5 (right).

(b) Snapshots of the bulk concentration ¢ at times (from left to right, top to bottom): ¢ =
5, 10, 20, 30, 40, 50, 60, 80, 100.

Figure 6: Configuration and numerical results for the test of Section 5.2 (unsteady transport with
impermeable fractures).
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(b) Snapshots of the bulk concentration ¢ at times (from left to right, top to bottom): ¢ =
5, 10, 15, 20, 30, 40, 60, 80, 100.

Figure 7: Configuration and numerical results for the test of Section 5.3 (unsteady transport with
permeable fractures).
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