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Abstract

Panel data, frequently employed in empirical investigations, provide estimators be-
ing strongly biased in the presence of atypical observations. The aim of this work is to
propose a `1 Gini regression for panel data. It is shown that the fixed effects within-
group Gini estimator is more robust than the OLS one when the data are contaminated
by outliers. This semi-parametric Gini estimator is proven to be an U -statistics, con-
sequently, it is asymptotically normal.
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Raymond Dugrand, Site de Richter C.S. 79606, 34960 Montpellier Cedex 2. E-mail: ka@lameta.univ-
montp1.fr.
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1 Introduction

Econometrics has devoted an important line of research to `1 regressions. The seminal work

of Olkin and Yitzhaki (1992) has paved the way on a general `1 regression, the so-called

Gini regression, embracing many other common and well-known target functions such as the

Least Absolute Deviation (LAD) and the absolute deviation from a quantile, see Koenker and

Bassett (1978).1 LAD is actually regarded as a partial regression technique since it represents

only one component of the Gini variability to be minimized: the between-group variability

of the Gini index of the residuals (see Yitzhaki and Lambert, 2013). The Gini regression has

been initiated with respect to two non-exclusive approaches. The first one, the parametric

Gini regression, aims at determining (numerically) the coefficient estimates by minimization

of the Gini index of the residuals. The second one, the semi-parametric Gini regression, offers

estimates on the basis of averaging slope coefficients. Those Gini regressions are coincident

if the linearity of the model is assessed. They also share the common property of being

robust to outliers, that is, when data are contaminated by extreme values or more generally

when the underlying distribution deviates from the multivariate normal – see Yitzhaki and

Schechtman (2013) for an overview of the Gini methodology.2

Most of empirical findings are nowadays based on the use of panel or longitudinal data

sets. Panel data benefits are: a much larger variability, less collinearity among the covariates

(compared with cross-sectional data or time series), more degrees of freedom, more efficiency,

and the ability to control for individual heterogeneity.

From our knowledge, Gini regressions are only available either for cross-sectional data

or time series. In this note, a Gini regression for panel data is proposed. We pursue the

idea that the employ of one particular variability is crucial to derive robust estimators.

In panel data, the decomposition of the moment matrices into within- and between-group

variability is known to produce within- and between-group fixed effects estimators. The fixed

effects ordinary least squares (OLS) estimators are very popular and convenient for empirical

investigations, however outliers can drastically affect the estimates. Huber (1981) shows that

only 3% of outliers in a set of observations are sufficient to change significantly the estimates

(strongly biased in the presence of atypical observations). If outliers are removed, some part

of the information in the sample is definitely lost.

1The Gini regression includes other regressions criteria based on the ”city block” metric such as the mean
absolute deviation (MAD). These different target functions also rely on the between-group Gini variability.

2It is also important to note that the OLS regression coefficients are very sensitive to monotonic transfor-
mation of the variables (Yitzhaki and Schechtman, 2013, Chapter 5). If the covariates are multinormal, the
Gini estimates are close than those of OLS.

2



The aim of this note is to decompose the variability of the moment matrices into within-

and between-group Gini variabilities in order to deduce a fixed effects semi-parametric Gini

regression for panel data. We show that the within-group Gini estimator derived from this

decomposition is a semi-parametric estimator. It is also an U -statistics, consequently, it is

asymptotically normal.

The outline of the note is as follows. In Section 2, we begin with the standard Gini

regression approaches for cross-sectional data (Section 2.1) before investigating the within-

group Gini estimator for fixed effects panel data (Section 2.2) and its asymptotic properties

(Section 2.3). In Section 3, Monte Carlo simulation are performed to illustrate the robustness

of the within-group Gini estimator in the presence of outliers. Section 4 closes the note.

2 Gini Regressions

2.1 The standard approaches for cross-sectional data

Consider a model y = a + bx with x,y some N × 1 vectors. The semi-parametric Gini

(simple) regression introduced by Olkin and Yitzhaki (1992), consists in averaging tangents

bij (between observations i and j) with weights vij. Let the values of x be ranked by ascending

order (x1 6 · · · 6 xN), then the semi-parametric Gini estimator of the slope coefficient is

given by:

b̂G =
∑
i<j

vijbij, with vij =
(xi − xj)∑
i<j(xi − xj)

and bij =
(yi − yj)
(xi − xj)

∀i < j ; i = 1, . . . , N.

The authors also demonstrate that if the weights vij are replaced by quadratic ones such

as wij =
(xi−xj)2∑
i<j(xi−xj)2

, then the standard OLS estimator of the slope coefficient is obtained:

b̂OLS =
∑

i<j wijbij. Since it depends on quadratic weights, the OLS slope coefficient is shown

to be heavily sensitive to outliers.

The parametric Gini regression (Olkin and Yitzhaki, 1992) solves the minimization of Gini

index of the residuals (ei = yi − ŷi) and provides the following estimator (only numerically

in the multiple regression case):

b̂PG = arg min
b
G(e) = arg min

b

1

N2

N∑
i=1

N∑
j=1

|ei − ej| .

Based on all pairwise ”city-block” distances, the parametric and non-parametric Gini regres-

sions are equivalent (b̂PG = b̂G) if, and only if, the linearity of the model y = ax + b is

assessed. The semi-parametric Gini regression may be defined according to the cogini op-
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erator3, i.e. cog(y,x) := cov(y, r(x)) and cog(x,x) := cov(x, r(x)) where r(x) is the rank

vector of x:4

b̂G =
cog(y,x)

cog(x,x)
, whereas b̂OLS =

cov(y,x)

cov(x,x)
.

The semi-parametric Gini multiple regression depends on the rank matrix of the regres-

sors. Let X be the N ×K matrix of the regressors and Rx its rank matrix, which contains in

columns the rank vectors r(xk) of the regressors xk for all k = 1, . . . , K. The semi-parametric

Gini multiple regression yields the following estimator (a K × 1 vector):

b̂G = (R′xX)−1R′xy . (1)

The semi-parametric Gini estimator is equivalent to that of instrumental variables regression

in which the instruments are the rank vectors of each regressor. This point has been addressed

by Durbin (1954) and extended to the Gini framework by Yitzhaki and Schechtman (2004).

It is worth mentioning that the cogini index is closed to the Gini coefficient, the so-called

Gini Mean Difference:

GMD = E |xi − xj| = 4cov(x, F (x)),

where F (x) stands for the c.d.f. of the random variable x. Traditionally, two main approaches

have been developed for analyzing the relationship between two random variables. The first

and widely use one focuses on the variance analysis and the covariance operator:

σ2 = cov(x,x) =
1

2
E (xi − xj)

2 .

The second one is based on the covariance between the c.d.f.’s of x and y: cov(F (x), G(y)).

This method is defined to be the rank method, where r(x)/n is an estimator of F (x). The

cogini operator is a mixture of both views. The only difference between the definitions of

the variance and the GMD is the metrics: Euclidean distance and `1 norm, respectively.

Accordingly, the estimator b̂G is less sensitive to extreme values since it is built on the cogini

matrices R′xX =: Gtotal
xx and R′xy =: Gtotal

xy whereas OLS estimators depend on the moment

matrices X′X and X′y.

However, it is also worth mentioning that Eq.(1) relies on some existence conditions of

the matrix (R′xX)−1, which have from our knowledge not been investigated before. In other

words, the well-known Grenander conditions used in OLS regressions (see e.g. Greene, 2003)

have to be specified for the Gini regression framework.

3Actually, it exists two coginis: cov(y, r(x)) and cov(x, r(y)). The cogini enables a new correlation statis-
tics to be characterized, quite close to Pearson’s coefficient, the G-correlation index Γ = cog(y,x)/cog(y,y).
It is bounded between [−1, 1], it is insensitive to monotonic transformation of x and to linear transformation
of y, and it is nil if and only if x and y are independent, see Yitzhaki (2003).

4The rank vector of x (of size N×1) is obtained by replacing the elements of x by their rank (the smallest
value of x being 1 and the highest being N). It is worth mentioning that for ties in the regressors, we have
to estimate the values of the rank vector as mid-points. The procedure is similar to the case of weighted
samples, see Yitzhaki and Schechtman (2013, p. 212-213).
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(i) The first condition postulates, as in the OLS case, that no variable degenerates in a

sequence of zero, that is:

lim
n→+∞

r′(xk)xk 6= 0, k ∈ {1, . . . , K}. (2)

(ii) The usual second Grenander condition indicates that there are no dominating observa-

tion. In the Gini regression case, which is actually built for possible outliers, this hypothesis

as well as the requirement for finite second moments E(x2
k) <∞ for any given k are unnec-

essary.

(iii) The matrix X must be a full rank matrix, otherwise R′xX is non invertible. Moreover,

an additional assumption is needed in the Gini regression framework: the vectors xk cannot

be comonotonic. Two vectors x and y are comonotonic if, and only if, r(x) = r(y). If at

least two regressors xk among k = 1, . . . , K are comonotonic, then R′xX is non invertible.

Let Mc be the set of all comonotonic matrices with at least two comonotonic vectors xk.

Note that the full rank hypothesis implies comonotonicity, whereas the reverse dos not hold

systematically. Then, we have to impose that:

X /∈Mc and X is a full rank matrix. (3)

To summarize, the Gini semi-parametric approach has the advantage of relying on a few

assumptions and no linearity hypothesis is needed. In the remainder, we extend the Gini

regression to fixed effects panel data.

2.2 Fixed effects panel data Gini estimators

Consider the simple formulation of the fixed effects linear panel data model:

ynt = β0 + βn + β′xnt + εnt , (4)

where subscript n denotes the cross-section dimension (n = 1, . . . , N) and where t denotes

the time series dimension (t = 1, . . . , T ). The element ynt of the NT × 1 vector y represents

the n-th observation at time t of the dependent variable, xnt is the K × 1 regressor vector of

the n-th observation at time t, β′ ∈ RK is a 1×K vector of the regression parameters, βn the

unobservable time-invariant individual fixed effect and β0 the intercept. Finally, εnt denotes

the disturbance term which is assumed to be uncorrelated through time and cross-sections.

Averaging (4) over time and subtracting from (4) yields:

ynt − yn. = β′(xnt − xn.) + εnt − εn. . (5)

A well-know result in panel data literature is that the within-group estimator of β (or Least

Squares Dummy Variable) issued from (4) is equivalent to the OLS estimator issued from
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(5):

β̂
WOLS

=

[
N∑

n=1

T∑
t=1

(xnt − xn.)(xnt − xn.)
′

]−1 [ N∑
n=1

T∑
t=1

(xnt − xn.)(ynt − yn.)

]
(6)

=: (Xc′Xc)−1Xc′yc,

where Xc is the NT × K matrix of the centered regressors and yc the centered dependent

variable. Mimicking the OLS estimator (6), one could think that the within-group semi-

parametric Gini estimator for fixed effects panel data is simply given by, using (1),

β̂
WGini

= (R′xcXc)−1R′xcyc, (7)

where Rxc is the rank matrix of Xc. The result (7) is misleading. Actually, in the OLS case,

the estimator (6) is deduced from the decomposition of the moment matrices X′X and X′y

into within-group and between-group variabilities, in other words, the estimator is derived

from the variance analysis. In the Gini regression framework, we have to find the Gini

analysis in which the overall Gini variability is decomposed into within- and between-group

Gini variabilities. In the following lines, the cogini matrices R′xX and R′xy are decomposed

in order to assess the accurate within-group Gini estimator – we shall demonstrate in Section

2.3 that this estimator is a semi-parametric one.

Let the K × 1 vector x.. be the average over time and individuals of X and let the rank

matrix of X of size NT ×K be Rx =: (r′11(X), . . . , r′nt(X), . . . , r′NT (X)) where r′nt(X) is the

nt-th line of Rx, that is, a 1 × K vector. Let rn.(X) be the K × 1 average rank vector of

individual n over time, and r..(X) the K × 1 average rank vector over time and individuals.5

Then, the decomposition of the cogini matrix R′xX is:

Gtotal
xx =

N∑
n=1

T∑
t=1

(xnt − x..)(rnt(X)− r..(X))′ (8)

=
N∑

n=1

T∑
t=1

(xnt + xn. − xn. − x..)r
′
nt(X)

=
N∑

n=1

T∑
t=1

(xnt − xn.)r
′
nt(X) +

N∑
n=1

T∑
t=1

(xn. − x..)r
′
nt(X)

=
N∑

n=1

T∑
t=1

(xnt − xn.)[rnt(X)− rn.(X)]′︸ ︷︷ ︸
within-group variability: Gwithin

xx

+
N∑

n=1

T∑
t=1

(xn. − x..)[rnt(X)− r..(X)]′︸ ︷︷ ︸
between-group variability: Gbetween

xx

.

5rn.(X) = 1
T

∑T
t=1 rnt(X) and r..(X) = 1

NT

∑N
n=1

∑T
t=1 rnt(X).
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The breakdown of the cogini matrix R′y into within-group and between-group variabilities

is derived in the same manner as before:

Gtotal
xy =

N∑
n=1

T∑
t=1

(ynt − yn.)[rnt(X)− rn.(X)]︸ ︷︷ ︸
Gwithin

xy

+
N∑

n=1

T∑
t=1

(yn. − y..)[rnt(X)− r..(X)]︸ ︷︷ ︸
Gbetween

xy

. (9)

In sum, the total Gini variabilities (8) and (9) are given by:

Gtotal
xx = Gwithin

xx + Gbetween
xx and Gtotal

xy = Gwithin
xy + Gbetween

xy . (10)

Following (1), the within-group Gini variabilities (Gwithin
xx and Gwithin

xy ) yield the within-group

Gini estimator:

β̂
WG

= [Gwithin
xx ]−1 [Gwithin

xy ]. (11)

Let Rc be the NT ×K rank matrix such that

Rc := ((r11(X)− r1.(X))′, . . . , (rnt(X)− rn.(X))′, . . . , (rNT (X)− rN.(X))′) , (12)

then the within-group Gini estimator is also expressed as:

β̂
WG

= (Rc′Xc)−1Rc′yc. (13)

The between-group Gini estimator is:

β̂
BG

=
[
Gbetween

xx

]−1 [
Gbetween

xy

]
. (14)

Let us introduce the following matrices:

Fwithin :=
[
Gwithin

xx + Gbetween
xx

]−1
Gwithin

xx (15)

Fbetween :=
[
Gwithin

xx + Gbetween
xx

]−1
Gbetween

xx . (16)

From (10)-(16), the overall Gini estimator of the parameter β issued from (4) is decomposable

as follows:

β̂
G

= [Gtotal
xx ]−1[Gtotal

xy ] =
[
Gwithin

xx + Gbetween
xx

]−1 [
Gwithin

xy + Gbetween
xy

]
=
[
Gwithin

xx + Gbetween
xx

]−1
[
Gwithin

xx β̂
WG

+ Gbetween
xx β̂

BG
]

= Fwithinβ̂
WG

+ Fbetweenβ̂
BG
. (17)

Note that Fwithin and Fbetween depend on the invertibility of Rc′Xc. Therefore, the respect

of the Grenander conditions (2) and (3) yield the identifiability of Fwithin and Fbetween.
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2.3 Inference on the within-group estimator

Yitzhaki and Schechtman (2013) show that all the estimators used in Gini regressions are U -

statistics (first introduced by Heoffding, 1948), which possess desirable asymptotic properties.

We prove in the sequel that the within-group Gini estimator β̂
WG

is a semi-parametric

estimator and it can be estimated as a function of U -statistics.

We first recall the basic notions of U -statistics. Let X1, X2, . . . , XN be N i.i.d. variables,

and φ(X1, X2, . . . , XN) a symmetric function (the kernel) such that:

φ∗(X1, X2, . . . , XN) = (m!)−1
∑

i1,i2,...,im

. . .
∑

φ(Xi1 , Xi2 , . . . , Xim),

where m is the smallest number of observations needed to estimate φ∗. The U -statistic for

the parameter φ∗, which is an unbiased estimate of φ∗, is written in the following form:

U(X1, X2, . . . , XN) =
(
N
m

)−1
∑

i1,i2,...,im

. . .
∑

φ(Xi1 , Xi2 , . . . , Xim).

The variance of an U -statistic, V ar(U), for the parameter φ∗ of degree m (degree of the

kernel) is giving by:

V ar(U) =
(
N
m

)−1
m∑
i=1

(mi )
(
N−m
m−i

)
ξi,

where,

ξi = V ar[φ∗i (X1, X2, . . . , XN)] = E(φ∗2i (X1, X2, . . . , XN))− E(φ∗i (X1, X2, . . . , XN))2.

Another option to estimate the variance of U is the jackknife method:

V ar(U) =
N − 1

N

N∑
i=1

[
U−i −

1

N

N∑
i=1

U−i

]2

,

where U−i is the estimator based on a sample of size N , without the ith observation.

In order to prove that β̂
WG

is a semi-parametric estimator, β̂
WG

is shown to be a function

of slope coefficients stemming from simple semi-parametric Gini regressions. Let rck be the

kth column of Rc and xc
k the kth column of Xc, k = 1, . . . , K. Since the within-group Gini

estimator β̂
WG

= (β̂WG
1 , . . . , β̂WG

K ) yields,

yc = β̂WG
1 xc

1 + · · ·+ β̂WG
K xc

K + ε,
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then the following identities hold:6

cov(yc, rc1) = β̂WG
1 cov(xc

1, r
c
1) + · · ·+ β̂WG

K cov(xc
K , r

c
1) + cov(ε, rc1)

cov(yc, rck) = β̂WG
1 cov(xc

1, r
c
k) + · · ·+ β̂WG

K cov(xc
K , r

c
k) + cov(ε, rck)

cov(yc, rcK) = β̂WG
1 cov(xc

1, r
c
K) + · · ·+ β̂WG

K cov(xc
K , r

c
K) + cov(ε, rcK).

Setting β̂εj :=
cov(ε,rcj)

cov(xc
j ,r

c
j)

, β̂0j :=
cov(yc,rcj)

cov(xc
j ,r

c
j)

and β̂kj :=
cov(xc

k,r
c
j)

cov(xc
j ,r

c
j)

, dividing the three last equations

by, respectively, cov(xc
1, r

c
1), cov(xc

k, r
c
k) and cov(xc

K , r
c
K) yields:

β̂01 = β̂WG
1 + · · ·+ β̂WG

K β̂K1 + β̂ε1

β̂0k = β̂WG
1 β̂1k + · · ·+ β̂WG

K β̂Kk + β̂εk

β̂0K = β̂WG
1 β̂1K + · · ·+ β̂WG

K + β̂εK .

Setting the following column vectors b̂0 := (β̂01, . . . , β̂0K) and b̂ε := (β̂ε1, . . . , β̂εK), then it

comes:  β̂WG
1
...

β̂WG
K

 =

 1 β̂21 . . . β̂K1
...

... . . .
...

β̂1K β̂2K . . . 1


−1 β̂01 − β̂ε1

...

β̂0K − β̂εK

 =: B̂−1
[
b̂0 − b̂ε

]
.

The within-group Gini estimator is a function of slope coefficients of semi-parametric simple

Gini regressions, and as such it is referred to as a semi-parametric Gini estimator. Yitzhaki

and Schechtman (2013, Chapter 9) have proven that β̂0k, β̂εk and β̂kh are function of U -

statistics. If B̂ is a full rank matrix, then β̂
WG

is a function of U -statistics. By Slutzky’s

theorem, β̂
WG

is a consistent estimator of βWG, it is asymptotically normal.

3 An illustration with simple simulations

In this Section, it is shown that the semi-parametric within-group Gini estimator is more

robust than the OLS one when the data are contaminated by outliers. For that purpose,

simple Monte Carlo simulations are performed. The contamination is concerned with only

p% of each sample (p = 1%, 5%, 10%). The steps of the reference simulation are the following.

6This technique has been introduced by Yitzhaki and Schechtman (2013, Chapter 8) in the standard Gini
regression.

9



Reference simulation

• Loop to b = 1, . . . , B = 10, 000 ;

↪→ The regressors are generated from a multivariate normal distribution x ∼ N (µ,Σ)

such that µ = (0, 10, 4), Σ =

 1 0.5 0.2
1 0.15

1

, ε ∼ N (0, 1), β = (0.7, 1.23, 0.13) and

the fixed effects βn ∼ N (0, 5), β0 = 0.75 ;

↪→ The dependent variable y is deduced from (4) ;

↪→ y is regressed on x [OLS and Gini fixed effects estimators] ;

↪→ Outliers are introduced into the regressors (xo), then y is regressed on xo :

the estimates β̂
OLS

b and β̂
G

b are computed for each b = 1, . . . , B ;

• End b ;

• The mean of the Gini and OLS estimates as well as the mean squared error (MSE) are

computed over B. The mean of the within-group Gini and OLS estimates are respectively
¯̂
βWG and

¯̂
βWOLS (

¯̂
βBG and

¯̂
βBOLS for the mean of between-group estimates and

¯̂
βG and

¯̂
βOLS for the mean of global estimates).

In practise, only the within-group OLS estimator is employed for panel data, since the

other estimators (global and between-group ones) are biased. We provide in Table 1 and 2

below some simulations with the global Gini estimator β̂
G

(17) as well as the between-group

Gini estimator β̂
BG

(14) in order to point out the same problem of biased estimates. The

percentage contamination p is fixed to 5%. Precisely, some observations are drawn at random

such that an outlier of 60 is added to all regressors: xo
nt := xnt + 60.

Table 1. Global Gini estimator β̂
G

Estimates → without outliers with outliers

β =
¯̂
βOLS (MSE)

¯̂
βG (MSE)

¯̂
βOLS (MSE)

¯̂
βG (MSE)

0.75 5.0423 (226.478 ) 4.78504 (256.621) 6.856 (443.18 ) 5.0832 (301.12)
0.7 0.773 (5.116 ) 0.7537 (5.559) 1.1022 (10.147) 0.8998(6.961 )
1.23 1.273 (0.886) 1.259 (1.047) 1.3430 (1.945 ) 1.2896 (1.094)
0.13 0.1221 (0.211 ) 0.127 (0.253 ) 0.1267 (0.1909) 0.1195(0.839)

The global Gini estimator is better than the OLS one, but it is strongly biased. The same

remark holds for the between-group Gini estimator. We perform the same simulation, except

that the contamination is fixed to p = 1% (precisely, −90, −80 and −60 are the values of the

outliers added to the first, second and third regressor, respectively). Table 2 reports biased

estimates, but better results are obtained with the between-group Gini estimator.
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Table 2. Between-group Gini estimator β̂
BG

Estimates → without outliers with outliers

β =
¯̂
βBOLS (MSE)

¯̂
βBG (MSE)

¯̂
βBOLS (MSE)

¯̂
βBG (MSE)

0.7 0.7873 (0.03926) 0.7677 (0.03905) 0.6390 (0.0523) 0.6891(0.0301)
1.23 1.2534 (0.0797) 1.25470 (0.0784) 1.0315 (0.082) 1.1929 (0.049)
0.13 0.14570 (0.030) 0.1455 (0.033) 0.09517 (0.056) 0.1195(0.021)

Let us now turn to the study of non-biased estimates. It is well known that the within-

group OLS estimator is not biased. However, when outliers affect the data, the estimators

issued from the variance analysis deviate highly from their true value. In Table 3 below, we

fix p = 1% such that the observations are contaminated by replacing their initial values by

two times the maximum value of the regressor vector they belong to. The results show that

without outliers the OLS estimates are better, but the within-group Gini estimator is less

sensitive to outliers.7

Table 3. Within-group Gini estimator β̂
WG

Estimates → without outliers with outliers

β =
¯̂
βWOLS (MSE)

¯̂
βWG (MSE)

¯̂
βWOLS (MSE)

¯̂
βWG (MSE)

0.7 0.70022 (0.000388) 0.70013 (0.000432) 0.95150 (0.01724) 0.7514 (0.001012)
1.23 1.22991 (0.000062) 1.22989 (0.000067) 1.31870 (0.26722) 1.26013 (0.00253)
0.13 0.13018 (0.000119) 0.13023 (0.000124) 0.22851 (0.17871) 0.140152(0.001948)

In Table 3, all Gini estimates are biased upward because the contaminated values are

positive ones. In Table 4 below, a positive outlier of 50 is added to 10% of the sample drawn

at random (the regressors only). On the contrary, in Table 5, a negative outlier of 50 is

added to 10% of the sample drawn at random. It is apparent that all within-group estimates

are biased upward [respectively downward] whenever the outliers are positive [negative]. It

is also noteworthy that the MSE of the within-group OLS estimates are very high compared

with the Gini ones.

Table 4. Within-group Gini estimator: positive outliers

Estimates → without outliers with outliers

β =
¯̂
βWOLS (MSE)

¯̂
βWG (MSE)

¯̂
βWOLS (MSE)

¯̂
βWG (MSE)

0.7 0.70011 (0.000263) 0.70012 (0.000279) 0.9702 (0.02014) 0.78135 (0.00100)
1.23 1.22993 (0.000442) 1.22989 (0.000475) 1.3243 (0.10242) 1.2679 (0.00351)
0.13 0.13017 (0.000864) 0.13021 (0.000909) 0.2391 (0.19280) 0.1471(0.00315)

7The outliers are added in the regressors only. Indeed, outliers in the fixed effects do not affect the
estimates so that the within-group Gini and OLS estimates are very close.
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Table 5. Within-group Gini estimator: negative outliers

Estimates → without outliers with outliers

β =
¯̂
βWOLS (MSE)

¯̂
βWG (MSE)

¯̂
βWOLS (MSE)

¯̂
βWG (MSE)

0.7 0.70011 (0.000263) 0.70012 (0.000279) 0.5189 (0.45601) 0.6598 (0.00287)
1.23 1.22993 (0.000442) 1.22989 (0.000475) 0.9978 (0.5223) 1.1589 (0.00843)
0.13 0.13017 (0.000864) 0.13021 (0.000909) 0.0851 (0.287650) 0.10991(0.00498)

At last, we simulate non normal distributions. It is known that OLS and Gini estimates

are very close when multinormal distributions are studied (see Yitzhaki and Schechtman,

2013). Then, to prove the superiority of the Gini regression, we simulate non normal dis-

tributions. In such a case, there is no need to contaminate the sample with outliers since

the OLS estimates strongly deviate from their true values. The reference simulation is used

except that the three regressors are the following ones:

• x1 ∼ Cauchy (peak of the distribution 10 and scale parameter 20) ;

• x2 ∼ Weibull (shape parameter 10 and scale parameter 15) ;

• x2 ∼ Exponential (scale parameter 15) ;

• the fixed effects βn ∼ Uniform (on the interval [5, 20]).

The results are depicted in Table 6 below. As can be seen, without outliers, the within-

group Gini estimator is largely superior to the OLS one. This proves that the superiority of

the within-group Gini estimator does not depend on the data generating process.

Table 6. Non normal distributions: no outliers

Estimates → β̂WG β̂WOLS

0.7 0.7032 (0.0099) 0.8501 (1.07564)
1.23 1.2312 (0.0081) 1.29012 (2.74206)
0.13 0.1308 (0.0531) 0.199 (4.4869)

4 Conclusion

Whenever the distribution of the covariates is multivariate normal, both OLS and Gini esti-

mates are very close. Using the Gini approach implies that the efficiency of the OLS is lost.

This is the case for instance when extreme values or measurement errors alter the values of

the regressors.

We have shown that the fixed effects Gini regression does not consist in mimicking the

application of the OLS on the centered model (5). It is based on a proper decomposition

of the cogini matrices into within-group and between-group cogini variabilities. The semi-

parametric within-group Gini estimator avoids to treat the multiple solutions that would

arise in the minimization of a target function such as the Gini index of the residuals of the
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centered model. However, if the outliers drastically affect the sample, then it is possible

that the linearity assumption does not hold any more. Therefore, the semi-parametric Gini

regression should be preferred to the parametric one in this case. Future researches could

be done to compare the minimization approach and the semi-parametric one when outliers

occur.
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