
HAL Id: hal-01784172
https://hal.science/hal-01784172

Submitted on 3 May 2018

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Model Execution and Debugging: A process to leverage
existing tools

Faiez Zalila, Eric Jenn, Marc Pantel

To cite this version:
Faiez Zalila, Eric Jenn, Marc Pantel. Model Execution and Debugging: A process to leverage ex-
isting tools. ModelsWard (5th International Conference on Model-Driven Engineering and Software
Development), Feb 2017, Porto, Portugal. pp. 401-408. �hal-01784172�

https://hal.science/hal-01784172
https://hal.archives-ouvertes.fr

To cite this version : Zalila, Faiez and Jenn, Eric and Pantel, Marc Model

Execution and Debugging: A process to leverage existing tools. (2017) In:

ModelsWard (5th International Conference on Model-Driven Engineering

and Software Development), 19 February 2017 - 21 February 2017 (Porto,

Portugal).

Open Archive TOULOUSE Archive Ouverte (OATAO)
OATAO is an open access repository that collects the work of Toulouse researchers and

makes it freely available over the web where possible.

This is an author-deposited version published in : http://oatao.univ-toulouse.fr/

Eprints ID : 18236

To link to this article: DOI: 10.5220/0006143104010408

URL : http://dx.doi.org/10.5220/0006143104010408

Any correspondence concerning this service should be sent to the repository

administrator: staff-oatao@listes-diff.inp-toulouse.fr

http://www.idref.fr/078866618
http://oatao.univ-toulouse.fr/
http://dx.doi.org/10.5220/0006143104010408
mailto:staff-oatao@listes-diff.inp-toulouse.fr

Model Execution and Debugging:
A process to leverage existing tools

Faiez Zalila1, Eric Jenn1
∗

and Marc Pantel2

1IRT Antoine de Saint Exupéry, Toulouse, France
2IRIT, Université de Toulouse, Toulouse, France

{faiez.zalila, eric.jenn}@irt-saintexupery.com, marc.pantel@enseeiht.fr

Keywords: Modeling, Formal verification, Model-checking, Debugging, Simulation, Model Execution, IDE

Abstract: Model checking is an effective technique for the verification of critical systems. However, it relies on be-

havioral models which writing and verification is most of time costly. Thus, those models shall be validated

and debugged thoroughly, and simulation, i.e. model execution, can be used for that purpose. To reduce the

development costs of simulators and ensure their behavioral consistency with model verifiers, we advocate

the reuse of parts of the model verification toolchain to implement them. To support this claim, this paper

proposes a method illustrated with a realistic case study applied to FIACRE behavioral models. The approach

relies on the creation and exploitation of relations between models representing the information required by

the user on the one hand, and information produced by the tools, on the other hand.

1 INTRODUCTION

1.1 Problem statement

Early validation and verification (V&V) activities re-

duce development costs, as specification and design

errors can be detected and fixed as soon as possible in

the development process. To that purpose, these ac-

tivities are performed on various system models (re-

quirements, architecture, design, function, etc.) ex-

pressed using Domain Specific Modeling Languages

(DSMLs).

Whenever complex behavioral properties are at

stake, model-checking is an efficient approach to

prove the absence of errors on those models. How-

ever, to overcome scalability issues, it is usually

mandatory to create multiple models, at various ab-

straction levels, covering several kind of properties,

etc.

Animating those models is one of the best means

to remove trivial modeling bugs, to ensure that the

model indeed expresses the designers intents, and

eventually to reduce the overall cost of verification

(Bourdil et al., 2016b).

To be verified or validated, models expressed us-

ing abstract, user-level, languages are usually trans-

formed into the more concrete formalisms of model-

∗Seconded from Thales Avionics, Toulouse, France

checkers and/or simulators (Visser et al., 2012). Then,

to be exploited, the results produced by these tools

must be re-interpreted in terms of the abstract lan-

guage. Obviously, such roundtrip between abstract

and concrete models could be avoided by develop-

ing V&V means directly applicable on abstract lan-

guages.

However, we advocate the roundtrip strategy for

two main reasons: (i) developing a new model

checker or simulator and ensuring the semantics con-

sistency of both tools is a very complex task, and

(ii) there already exists a plethora of model-checkers

and/or simulators. Unfortunately, the necessary re-

interpretation phase is not trivial as information get

lost during the successive transformations to verifica-

tion languages: it relies on the appropriate use, com-

bination, and possibly completion of available data.

In this paper, we propose an approach to implement

the rountrip strategy based on the analysis of anno-

tated metamodels.

1.2 Our contribution

Our approach combines and leverages existing low-

level verification, validation, and transformation

means to provide the end-user with appropriate de-

bugging information. It relies on the construction of

transitive relations between the data produced by the

various tools, and the user requirements for the model

Figure 1: FIACRE meta-model (extract)

simulator.

We illustrate this approach on the develop-

ment of a model simulator for the Fiacre language

(Berthomieu et al., 2008) using the existing model

checking toolbox TINA (Berthomieu et al., 2004).

This paper is structured as follows. Section 2

presents the context of the study and the use-case.

It gives an overview of the user requirements for the

model simulator. Section 3 proposes different design

method for such tools. It details their implementa-

tion and discuss about the adopted solution. Section 4

gives some related works in the domain of the simu-

lators design. Section 5 concludes the paper.

2 THE CONTEXT AND THE

CASE-STUDY

The work presented in this paper is carried out in

the framework of the INGEQUIP project at the In-

stitut de Recherche Technologique Saint-Exupry in

Toulouse, France. The project experiments and as-

sesses various engineering methods and tools in the

domain of hardware/software co-design, virtual in-

tegration and formal verification in the automotive,

process Can

(&pain, &pouts,

&pkGM:MulPkts, &fp:nbFP, &fn:FN)

is

states rcv, txtime, tx, model_error

var m:Msg,

i:0..NB_NODES:=0,

fo:nbFO := 0,

omissions:Omissions := init_omissions(),

omission:bool := false

from rcv

wait[0,0];

m := highestRankMsg(pktsIn);

on not (m.mtype=Empty);

to txtime

from txtime

wait [0.00005, 0.00005]; i := 0; to tx

from tx

wait [0,0];

select

on i < NB_NODES;

if not failedNodes[$i] then

pktsGammaMin[$i] :=

enqueue(pktsGammaMin[$i],m)

end;

i := i + 1;

loop

[]

on i < NB_NODES

and fo < FO and not fn[$i];

omissions[$i] := omissions[$i] + 1;

fo := fo + 1;

m.omissions := m.omissions + 1;

omission := true;

if omissions[$i] = FO then

fp := fp + 1; fn[$i] := true;

pkin[$i] := {||}; pkout[$i] := {||};

pkGM[$i] := {||}

end;

i := i + 1;

loop

[...]

Listing 1: FIACRE model of the CAN controller (extract)

space, and aeronautics domains.

A small three-wheeled rover is used as demonstra-

tor. Its architecture is representative of a significant

family of real systems. It is composed of a mission

subsystem in charge of the computation of the rover

mission, trajectory tracking, etc. and a power subsys-

tem in charge of the management of the powertrain.

Figure 2: Informal debugging metamodel

The two subsystems are interconnected by a unique

CAN bus.

To comply with the availability and safety require-

ments, the mission subsystem is broken down into

two channels (left/right) with two units per channel

(COM/MON). A clock synchronization (CS) protocol

(Rodrigues et al., 1998) ensures a synchronous behav-

ior of all units.

This CS protocol model is around 700 lines of Fi-

acre code covering both the units to be synchronized

and the communication network (CAN). Verification

is performed using the TINA toolchain. Even though

directly inspired from (Rodrigues et al., 1998), build-

ing the model of the CS protocol required a signifi-

cant design and debugging effort due to the various

abstractions and simplifications that were required to

obtain a tractable model (Bourdil et al., 2016a). In

the rest of the document, we will take small samples

of this model as illustrate specific issues encountered

during the design of the model simulator.

2.1 The Fiacre modeling language

Fiacre is the French acronym for Intermediate For-

mat for Embedded Distributed Components Architec-

tures. It was designed as the target language for model

transformations from different DSMLs such as (Ran-

gra and Gaudin, 2014), AADL (Berthomieu et al.,

2010; Bodeveix et al., 2015) or LADDER (Farines

et al., 2011). Fiacre is used to describe the behavioral

and timing aspects of concurrent systems for formal

verification and simulation purposes. It is built around

two mains constructs:

• Processes modelling sequential behaviors from

states and transitions. A transition con-

tain deterministic statements (assignments, con-

ditionals, loops, and sequential compositions),

non-deterministic statements (non-deterministic

choice and non-deterministic assignments), com-

munication statements, and state transitions.

• Component modelling concurrent and hierarchi-

cal composition of communicating processes.

Figure 3: Technical domains

Besides these two main constructs, Fiacre also sup-

ports the definition of properties involving Fiacres ob-

servable elements (states, variables, etc.). The prop-

erty language includes LTL properties, Dwyer et al.

patterns and their timed extensions (Abid et al., 2014).

Figure 1 gives a structural subset of the Fiacre

metamodel. A Fiacre model (Model) contains a set

of declarations (Declaration). Two kinds of declara-

tions are identified: ProcessDeclaration describes a

Fiacre process, and ComponentDeclaration describes

the Composition of components and/or processes.

The latter contains a set of concurrent Block that may

be either a hierarchical CompositeBlock or a compo-

nent/process InstanceDeclaration. Listing 1 shows a

sample of the Fiacre code for the clock synchroniza-

tion model2. The elements used later are in bold char-

acters.

2.2 The TINA verification toolbox

Verifications are performed by the TINA toolbox, a

set of tools used to edit and analyze Timed Transition

System (TTS), an extension of Time Petri Nets (TPN)

with data manipulation. The following toolbox com-

ponents are considered in this paper:

• TINA constructs reachability graphs and Kripke

transitions systems from TTS and TPN

• PLAY is a TTS and TPN animator.

To be processed by TINA, a Fiacre model must be

translated to TTS using the dedicated tool FRAC3.

Due to the semantic gap between the two languages,

some constructs present in the Fiacre input may be

hidden from the TTS output. Fortunately, FRAC can

also generate transformation traceability data (using

2The complete Fiacre model is accessible at
http://projects.laas.fr/fiacre/examples/

2016-twirtee/twirtee/claims/c1.fcr
3http://projects.laas.fr/fiacre/download.

php

the -G option) that can be exploited to build the Fiacre

simulator feedback. Now, let us consider the design-

ers needs in terms of debugging features.

2.3 Requirements for the Fiacre

simulator

As stated before, even though verification is highly

automated thanks to model checking techniques,

building the model remains a manual activity. The

model developer requires means to assess that the

model indeed expresses its intention and eliminate

modeling errors before starting the formal verification

phase (which might be quite costly).

Moreover, after the model checking phase, s/he

also needs means to interpret the counter-examples

that may be produced by the model-checker. To some

extent, debugging models is similar to debugging pro-

grams: the user needs capabilities to observe the se-

quences of states during the model execution, step

through these sequences, stop the execution when

some condition occurs, etc.

More precisely, it relates to debugging a mul-

tithreaded software since the execution of a Fiacre

model is the composition of multiple processes ex-

ecuted concurrently. However, some differences are

worth mentioning: (i) the user has a full control of

time, (ii) some transitions within processes may be

selected non-deterministically (select clauses), (iii)

some state transitions may occur synchronously be-

tween processes, etc.

From now on, we will focus on a few key require-

ments for such an execution/debugging environment

and see how we managed to implement them with a

minimal development effort.

Let FS be the Fiacre Simulator under design.

• REQ-1: The FS shall refer to modeling elements

using user-level designation. For instance, it

shall present values according to the representa-

tion used in the Fiacre source model. This applies

in particular to data types like structs, unions, etc.

• REQ-2: When applicable, the FS shall display the

location of the modeling elements in the source

model. Reciprocally, the FS shall provide the user

with the capability to select or designate an ele-

ment directly on the source model.

• REQ-3: The FS shall visualize the evolution of

Fiacre variables and states along time.

• REQ-4: The FS shall allow breakpoint to be

placed on any transition in the source model.

Breakpoints shall be triggered when the transi-

tion is fired. (Breakpoints are not placed on state-

ments.

date: 0

state 5: Can_1_srcv , Can_1_vstates=0,

Can_1_vm={mtype=Adjust ,

nid=-1,

omissions=0,

round=0,sid=-1},

Can_1_vi=0,Can_1_vfo=0,

Can_1_vomissions=[0,0,0],

Can_1_vomission=false

enabled:

Can_1_t0 [0,0]

StartRound_1_t4 [0,w[

StartRound_1_t5 [44999955 ,45000045]

StartRound_2_t0 [0,0]

StartRound_2_t1 [0,0]

StartRound_3_t0 [0,0]

StartRound_3_t1 [0,0]

firable: Can_1_t0

StartRound_1_t4

StartRound_2_t0

StartRound_2_t1

StartRound_3_t0

StartRound_3_t1

? # 0

do firing: Can_1_t0

date: 0

state 6: Can_1_stxtime ,Can_1_vstates=1,

Can_1_vm={mtype=Start ,

nid=0,

omissions=0,

round=-1,

sid=0},

Can_1_vi=0,Can_1_vfo=0,

Can_1_vomissions=[0,0,0],

Can_1_vomission=false

enabled:

Can_1_t1 [50,50]

StartRound_1_t4 [0,w[

StartRound_1_t5 [44999955 ,45000045]

StartRound_2_t0 [0,0]

StartRound_2_t1 [0,0]

StartRound_3_t0 [0,0]

StartRound_3_t1 [0,0]

firable: StartRound_1_t4

StartRound_2_t0

StartRound_2_t1

StartRound_3_t0

StartRound_3_t1

Listing 2: Excerpt of a TTS execution trace produced by the
TTS simulator (PLAY)

The previous list of requirements is (partially) de-

scribed on Figure 2: a debugging session is a se-

quence of debugging steps, each step being a triple

(observation, analysis, action) corresponding to the

usual scenario where: (i) the system is executed, (ii)

some observations are obtained from this execution,

Figure 4: Implementation solutions

and (iii) those observations determine the next step of

execution.

Of course, part of the triple may be ignored in

an execution step: observations may be ignored dur-

ing some specific phases (e.g., case of initialization),

actions may be automated (e.g., random selection of

transitions), etc.

In the rest of the document, focus is placed on the

Observation part (in blue on Figure 2). It is expanded

in Figure 3 where it is linked to the data provided by

the other available models.

3 DESIGN SOLUTIONS

Figure 3 shows the Fiacre and TTS technical

domains involved in the implementation. The ap-

proach consists in analyzing TTS execution informa-

tion (computed using the TTS Simulation model and

stored in the TTS Trace model) to obtain the corre-

sponding execution information at the Fiacre level.

Figure 4 shows the three solutions that are presented

and analyzed hereafter.

3.1 Solution 1: Use the TTS simulation

model

The first solution (the blue part at the top of Figure 4)

exploits two sources of information: the TTS descrip-

tion that represents the structure of a TTS model, and

the TTS simulation model. Listing 2 shows a sam-

ple of the TTS simulation model corresponding to the

CAN Fiacre process introduced earlier.

From these two sources, information about the ex-

ecution of the Fiacre model is obtained by a sequence

of three phases: extraction, identification, and con-

struction.

Extraction consists in analyzing the textual out-

put of the PLAY tool to produce the TTS simu-

lation model and, thus, instantiate TTS simulation

metaclasses (DynamicTTSPlace, DynamicTTSVari-

able, etc.). This phase is implemented using Xtext4.

Identification associates the TTS description ele-

ments with the Fiacre model elements. To do that,

some knowledge is required about (i) how the TTS

desription is built from the Fiacre model, and (ii) how

the Fiacre model elements are encoded is the TTS de-

scription. For example, state “txtime” of the first in-

stance of the CAN process declaration in Fiacre is en-

coded as TTS place “Can 1 stxtime” (the “s” in the

id means that corresponds to a Fiacre state declara-

tion). Using this naming convention, one is able to

retrieve the source elements in the Fiacre model.

Finally, construction produces the simulation in-

formation at Fiacre level by instantiating the appro-

priate elements of the Fiacre simulation meta-model

using the Identified Simulation Model. Unfortunately,

this first solution only complies with user requirement

REQ-3 due to missing data in the TTS description and

4https://www.eclipse.org/Xtext/

Trans::Can_1_t0 & Main

from Can_1_srcv

on ({Can_1_vm :=

highestRankMsg (Main_1_vpktsOut);

not((Can_1_vm.mtype = Empty))});

Can_1_vm :=

highestRankMsg (Main_1_vpktsOut);

Can_1_vstates := 1;

to Can_1_stxtime

in [0,0]

Trans::Can_1_t1 & Main

from Can_1_stxtime

on true;

Can_1_vi := 0;

Can_1_vstates := 2;

to Can_1_stx

in [50,50]

Listing 3: Excerpt of “FRAC -G” data

TTS Simulation model. So, let us consider the second

solution.

3.2 Solution 2: Use traceability data

Solution 2 (in red in Figure 4) extends solution 1

by combining information given by the initial trace

model (see Listing 2) with traceability information

generated by FRAC (-G option).

Historically, this information was used for de-

bugging purposes during the development of FRAC.

Later, it was also used to feed verification results from

the TTS level back to Fiacre (Zalila et al., 2012; Zalila

et al., 2013). It is produced during the last step of the

translation phase, before the generation of the TTS

description. It contains TPN and data processing con-

structs (guards, assignments, etc.).

Listing 3 shows a subset of a compilation trace

model related to the CAN process shown in List-

ing1. It contains two TTS transitions: Can 1 t0 and

Can 1 t1. In order to locate these transitions in the Fi-

acre source model using the initial compilation trace

model, it is necessary to understand how the FRAC

compiler generates TTS identifiers from Fiacre-level

identifiers.

Once this relation is established, the transitions

are immediately located in the source code. For exam-

ple, transition Can 1 t0, which identifiers ends with

t0, corresponds to the first transition on the first in-

stance of a CAN process (see lines 9-13 in Listing 1).

Similarly, transition “Can 1 t1” corresponds to the

transition located at lines 14-16 in Listing 1.

To analyze the hybrid TTS of Listing 3, both syn-

tactic and semantic analysis are required. Syntactic

analysis raises no particular difficulty. Semantic anal-

ysis can be achieved in two ways. First, the transition

body may be analyzed line-by-line. This solution re-

quires a significant effort and in-depth knowledge on

the internals of FRAC. For example, FRAC some-

times adds internal guards (e.g., guard on true for

transition Can 1 t1), enriches existing guards (e.g.,

guard of transition Can 1 t0), adds internal assign-

ments, replaces constant identifiers by their value, etc.

Second, the index given in the transitions identi-

fiers (t0, t1, t2, etc.) may be used as the rank of the

transition in the source code of the process.

However, the presence of nested non-

deterministic constructs containing quite similar

source code makes this task extremely difficult.

Unfortunately, this solution satisfies user requirement

REQ-2 only partially as it fails to reach the source

code level.

"flatname": "Can_1",

2 "inst": 1,

"loc":

4 {"from": {"char": 0, "line": 270},

"to": {"char": 0, "line": 364}},

6 "name": "Can",

"states": [

8 {"flatname": "Can_1_srcv",

"loc":

10 {"from": {"char": 7, "line": 272},

"to": {"char": 10, "line": 272}},

12 "sourcename": "rcv"},

...

14],

"transitions": [

16 ...

{"locations": [

18 {"from": {"char": 0, "line": 288},

"to": {"char": 11, "line": 288}},

20 {"from": {"char": 2, "line": 290},

"to": {"char": 25, "line": 290}},

22 {"from": {"char": 25, "line": 290},

"to": {"char": 8, "line": 292}},

24 {"from": {"char": 2, "line": 293},

"to": {"char": 0, "line": 295}}

26],

"name": "Can_1_t1"

28 },

...

30],

...

Listing 4: Excerpt of a “FRAC -j” data (JSON format)

Figure 5: Assessing solutions

3.3 Solution 3: Use the ECT model

Solutions 1 and 2 have not succeeded to satisfy all

user requirements. Used as black-boxes, the existing

tools do not provide sufficient information to asso-

ciate univocally the Fiacre model elements with the

TTS model elements: information is so degraded that

it cannot be reconstructed. The last proposal is then to

extend the FRAC tool in order to export the informa-

tion lost in translation. Accordingly, we introduce a

new trace model, called Extended Compilation Trace

(ECT), that is generated when the option j of FRAC

is activated.

The ECT model offers a direct mapping between

the Fiacre source code elements and the correspond-

ing constructs in the TTS model. The structure of the

ECT reflects the hierarchical organization of the Fi-

acre model. Listing 4 shows a subset of the generated

ECT model related to the CAN process. In this ex-

ample, lines 8-12 associate the generated TTS place

identifier Can 1 srcv with its corresponding Fiacre

source code (sourcename) and its location (character

10 on line 272). This information allows retrieving

the Fiacre source code information directly from the

TTS. Finally, the path from the TTS model to the de-

bugging model is complete, as shown on Figure 5: all

user requirements are satisfied.

3.4 Comparison of solutions

In this subsection, we compare the previous solutions

by estimating the cost required to recover information

degraded during the compilation phase. Figure 5 il-

lustrates this process. In this example, we consider a

Fiacre source code containing a process, proc, instan-

tiated in the compo component. The proc process has

a transition containing a non-deterministic statement

in which each choice contains the same source code

block (x:=x+1; to s1). Let us consider the following

user requirements:

• REQ-a: the FS shall display the executed Fiacre

statements.

• REQ-b: the FS shall display the executed Fiacre

statements in the source model.

The problem consists in satisfying those requirements

when the TTS transition proc 1 t1 is fired during an-

imation. First, we generate the abstract syntax tree

(AST) of the Fiacre model using Xtext. This AST

is flattened in order to generate the TTS transitions.

Flattening consists in assigning an identifier number

to each component/process instance according to its

rank in the container component. A similar flatten-

ing activity is performed on the choices of the non-

deterministic statements in order to generate the body

of each TTS transition. As shown on Figure 5, The

flattened Fiacre model represents a pivot model be-

tween the Fiacre and TTS levels. To satisfy REQ-

a, solution 1 consists in completing the parsing and

numbering activities by correlating the different avail-

able information (proc, 1 and t1) to the generated ones

in the flattened Fiacre model. This process allows

identifying the concerned TTS transition and thus ex-

tracting the corresponding statements. Moreover, as

the source code information (Line 6, Line 11, etc.) is

already available in the identified TTS transition af-

ter the parsing, numbering, correlation and extracting

activities, satisfying REQ-a and REQ-b represent the

same costs. For solution 2, the cost to satisfy REQ-a

is negligible because the text of the executed Fiacre

statements are already available in the TTS transition.

However, the cost to satisfy REQ-b is the same as for

solution 1. For solution 3, the cost to satisfy all re-

quirements is negligible because the new generated

traceability information is sufficient to identify the re-

lated information at the source code level.

Therefore, solution 3 is adopted now to develop

an integrated development environment for the Fiacre

language because it can satisfy all end-user require-

ments on the one hand, and it represents the lowest

cost to resolve Fiacre to TTS mappings on the other.

4 RELATED WORKS

Language engineering toolsets target the model-

ing of languages and the implementation of associated

tools but the behavioral concern are usually not han-

dled. More recent toolsets, like xCore, xMOF (May-

erhofer et al., 2013), the K framework (Rosu, 2013)

or the GEMOC studio (Combemale et al., 2016) al-

low to handle it and ease the development of model

simulators. However, they usually do not target model

checkers except the K framework. But, this one do not

allow to manage efficiently the combinatorial explo-

sion of concurrent behaviors and thus does not scale

to many realistic models. We could have used these

toolsets to build the Fiacre simulator with the risk

of semantic inconsistency between the separate im-

plementation of the behavioral concern in the model

checker and the simulator. Thus we decided to study

the reuse of parts of the model checker to ensure the

same behavior in the simulator.

In the literature, exploiting low-level simulation

information to feedback it into the end-user level is

usually neglected. For example, in the context of the

AltaRica project (Prosvirnova et al., 2013), models

are compiled into a low level formalism: Guarded

Transition Systems (GTS). In this project, the step-

wise simulator performs an interactive step by step

simulation on the generated GTS model.

5 CONCLUSION AND FUTURE

WORK

In this paper, we shared our experience about

reusing existing low-level formal verification and val-

idation tools in order to provide model simulation ca-

pabilities to the end-user. This work enabled us to

develop a Fiacre simulator which is the result of a

long research to hide all TTS information to the Fi-

acre end-user during the animation of his model. This

work has resulted in the implementation of a Fiacre

simulator tool5 This is part of an ongoing work to de-

velop a complete Fiacre IDE that will eventually in-

tegrate advanced features of model animation like the

guided-simulation and the multi-branch simulation.

REFERENCES

Abid, N., Zilio, S. D., and Botlan, D. L. (2014). A formal
framework to specify and verify real-time properties
on critical systems. Int. J. Crit. Comput.-Based Syst.,
5(1/2):4–30.

Berthomieu, B., Bodeveix, J.-P., Dal Zilio, S., Dissaux, P.,
Filali, M., Gaufillet, P., Heim, S., and Vernadat, F.
(2010). Formal Verification of AADL models with FI-
ACRE and Tina. In ERTSS 2010 , pages 1–9, Toulouse,
France.

Berthomieu, B., Bodeveix, J.-P., Filali, M., Farail, P., Gau-
fillet, P., Garavel, H., and Lang, F. (2008). FIACRE: an
Intermediate Language for Model Verification in the

TOPCASED Environment. In 4th European Congress
ERTS Embedded Real-Time Software (2008).

Berthomieu, B., Ribet, P.-O., and Vernadat, F. (2004). The
tool TINA – Construction of Abstract State Spaces for
Petri Nets and Time Petri Nets. International Journal
of Production Research, 42(14):2741–2756.

Bodeveix, J.-P., Filali, M., Garnacho, M., Spadotti, R., and
Yang, Z. (2015). Towards a verified transformation
from {AADL} to the formal component-based lan-
guage {FIACRE}. Science of Computer Program-
ming, 106:30 – 53. Special Issue: Architecture-Driven
Semantic Analysis of Embedded Systems.

Bourdil, P.-A., Dal Zilio, S., and Jenn, E. (2016a). Inte-
grating Model Checking in an Industrial Verification
Process: a Structuring Approach. working paper or
preprint.

Bourdil, P.-A., Jenn, E., and Dal Zilio, S. (2016b). Build-
ing Confidence on Formal Verification Models. In
Fast Abstracts at International Conference on Com-
puter Safety, Reliability, and Security (SAFECOMP),
Trondheim, Norway.

Combemale, B., Brun, C., Champeau, J., Cr’egut, X., Dean-
toni, J., and Le Noir, J. (2016). A Tool-Supported
Approach for Concurrent Execution of Heterogeneous
Models. In 8th European Congress on Embedded Real

5A demo of the simulator can be found here

Time Software and Systems (ERTS 2016), Toulouse,
France.

Farines, J.-M., De Queiroz, M. H., De Rocha, V., Carpes,
A. M., Vernadat, F., and Crégut, X. (2011). A Model-
Driven Engineering Approach to Formal Verification
of PLC programs (regular paper). In Emerging Tech-
nologies and Factory Automation (ETFA), Toulouse,
France, pages 1–8. IEEE.

Mayerhofer, T., Langer, P., Wimmer, M., and Kappel,
G. (2013). xMOF: Executable DSMLs Based on
fUML, pages 56–75. Springer International Publish-
ing, Cham.

Prosvirnova, T., Batteux, M., Brameret, P.-A., Cherfi, A.,
Friedlhuber, T., Roussel, J.-M., and Rauzy, A. (2013).
The altarica 3.0 project for model-based safety assess-
ment. IFAC Proceedings Volumes, 46(22):127 – 132.

Rangra, S. and Gaudin, E. (2014). Sdl to fiacre translation.
In Embedded Real-Time Software and Systems (ERTS
2014).

Rodrigues, L., Y, M. G., and Rufino, J. (1998). Fault-
tolerant clock synchronization in can. In In Proc. of
the 19th Real-Time Systems Symposium (RTSS, pages
420–429. IEEE Computer Society Press.

Rosu, G. (2013). Specifying languages and verifying pro-
grams with k. In Proceedings of 15th International
Symposium on Symbolic and Numeric Algorithms
for Scientific Computing (SYNASC’13), IEEE/CPS.
IEEE. Invited talk. To appear.

Visser, W., Dwyer, M. B., and Whalen, M. (2012). The Hid-
den Models of Model Checking. Software & Systems
Modeling, 11(4):541–555.

Zalila, F., Crégut, X., and Pantel, M. (2012). Verification
results feedback for FIACRE intermediate language. In
Conférence en Ingénierie du Logiciel (CIEL).

Zalila, F., Crégut, X., and Pantel, M. (2013). Formal ver-
ification integration approach for dsml. In Moreira,
A., Schätz, B., Gray, J., Vallecillo, A., and Clarke,
P., editors, Model-Driven Engineering Languages and
Systems, volume 8107 of Lecture Notes in Computer
Science, pages 336–351. Springer Berlin Heidelberg.

