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Numerical study of unsteady rarefied gas flow through an1

orifice2

M.T. Ho, I. Graur3

Aix Marseille Université, IUSTI UMR CNRS 7343, 13453, Marseille, France4

Abstract5

Transient flow of rarefied gas through an orifice caused by various pressure ratios
between the reservoirs is investigated for a wide range of the gas rarefaction,
varying from the free molecular to continuum regime. The problem is studied
on the basis of the numerical solution of unsteady S-model kinetic equation. It
is found that the mass flow rate takes from 2.35 to 30.37 characteristic times,
which is defined by orifice radius over the most probable molecular speed, to
reach its steady state value. The time of steady flow establishment and the
steady state distribution of the flow parameters are compared with previously
reported data obtained by the Direct Simulation Monte Carlo (DSMC) method.
A simple fitting expression is proposed for the approximation of the mass flow
rate evolution in time.

Keywords: rarefied gas, kinetic equation, orifice, transient flow6

1. Introduction7

The nonequilibrium flows of gases appear in different technological domains8

like the vacuum equipment, high altitude aerodynamics and in a relatively new9

field as the microelectromechanical systems (MEMS). The deviation of a gas10

from its local equilibrium state can be characterized by the Knudsen number,11

which present the ratio between the molecular mean free path and the charac-12

teristic length of the problem. For the relatively large values of the Knudsen13

number the classical continuum approach fails to describe the gas behavior and14

the kinetic equations, like the Boltzmann equation or model kinetic equations,15

must be solved to simulate the gas flows.16

The gas flow through a thin orifice is a problem of a large practical interest17

for the design of the vacuum equipment, space or the microfluidic applications.18

The under-expanded jets through the orifices are predominately used by par-19

ticle analyzer systems to separate and isolate molecules, ions of substances for20

analyzing their physical and chemical properties. The time dependent charac-21

teristics of these jets are important for the investigation of the response time22

of the vacuum gauges developed for the measurements of the rapid pressure23

changes [1].24
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The steady state flows through the orifice, slit and short tube have been25

successfully studied applying the DSMC method and the kinetic equations [2],26

[3], [4], [5], [6], [7], [8], [9]. However, only a few results on the transient rarefied27

flows through an orifice [10], a short tube [11], a long tube [12] or a slit [13]28

may be found in open literature. The flow conditions in [10] are limited to29

high and moderate Mach number owing to significant statical noise of DSMC30

method at low Mach number. The authors of [1] also studied experimentally and31

numerically the transient gas flow, but between two tanks of the fixed volumes.32

The rapid high amplitude pressure changings in time are examined and their33

characteristic time was found to be of the order of few seconds.34

The aim of this work is to analyze the transient properties of gas flow through35

an orifice induced by various values of the pressure ratio over a broad range of36

gas rarefaction. The unsteady nonlinear S-model kinetic equation is solved37

numerically by Discrete Velocity Method (DVM) to obtain the mass flow rate38

and macroscopic parameters as a function of time. The time to reach the steady39

state conditions for the mass flow rate is also estimated. An empirical expression40

for evaluation of time-dependent mass flow rate is proposed.41

2. Problem formulation42

Consider an orifice of radius R0 contained in an infinitesimally thin wall,43

which isolates two infinite reservoirs. Both the upstream and downstream reser-44

voirs are filled with a monatomic gas but maintained at different pressures p045

and p1, respectively, with p0 > p1. The temperatures of the wall and of the gas46

in the reservoirs are equal to T0. At time t = 0, the orifice is opened instantly47

and the gas starts to flow from the upstream reservoir to the downstream one.48

Let us introduce a cylindrical coordinate system (r′, ϑ, z′) with the origin49

positioned at the center of the orifice and the Oz′ axis directed along the axis of50

the reservoirs (see the lateral section shown in Fig. 1). We assume that the flow51

is cylindrically symmetric and does not depend on the angle ϑ and therefore the52

problem may be considered as two dimensional in the physical space with the53

position vector s′ = (r′, z′).54

The gas-surface interaction has a very small impact on an orifice flow [14];55

consequently, this flow is governed by two principal parameters: the pressure56

ratio p1/p0 and gas rarefaction δ determined as57

δ =
R0p0
µ0υ0

, υ0 =

√
2kT0
m

, (1)

where µ0 is the viscosity coefficient at the temperature T0, υ0 is the most prob-58

able molecular speed at the same temperature; m is the molecular mass of the59

gas; k is the Boltzmann constant. It is to note that the gas rarefaction param-60

eter is inversely proportional to the Knudsen number; i.e., when δ varies from61

0 to ∞, the flow regime changes from the free molecular to the hydrodynamic62

regime.63

It is convenient to define the characteristic time t0 of the flow as follows64
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t0 =
R0

υ0
. (2)

The unsteady S-model kinetic equation [15] is used to simulate the tran-65

sient rarefied gas flow through the orifice. The conservative formulation of this66

equation [16], [17] is implemented67

∂

∂t′
(r′f ′)+

∂

∂r′
(r′f ′υp cosϕ)− ∂

∂ϕ
(f ′υp sinϕ)+

∂

∂z′
(r′f ′υz) = r′ν′

(
fS
′
− f ′

)
.

(3)
The main unknown is the molecular velocity distribution function f ′(t′, s′,υ),68

υ = (υp cosϕ, υp sinϕ, υz) is the molecular velocity vector representing the69

molecular velocity space. The polar coordinates are introduced in a plane70

(υr, υϑ) and υp, ϕ are the magnitude and orientation of the molecular velocity71

vector in this (υr, υϑ) plane. The molecular collision frequency ν′ is supposed72

to be independent on the molecular velocity and can be evaluated [15] by73

ν′ =
p′

µ′
. (4)

The equilibrium distribution function fS
′
[15] in eq. (3) is defined in as74

fS
′

= fM
′

[
1 +

2mV q′

15n′ (kT )
2

(
mV 2

2kT ′
− 5

2

)]
, fM

′
= n′

( m

2πkT ′

)3/2
exp

(
−mV

2

2kT ′

)
,

(5)
where fM

′
is the local Maxwellian distribution function, V = υ − u′ is the pe-75

culiar velocity vector, u′ = (u′r, 0, u
′
z) is the bulk velocity vector, q′ = (q′r, 0, q

′
z)76

is the heat flux vector, n′ is the gas numerical density.77

It is useful to define the dimensionless variables as follows78

t =
t′

t0
, s =

s′

R0
, c =

υ

υ0
, u =

u′

υ0
, n =

n′

n0
,

T =
T ′

T0
, p =

p′

p0
, q =

q′

p0υ0
, µ =

µ′

µ0
, f =

f ′υ30
n0

,

(6)

with the help of the state equation p0 = n0kT0. In relations (6), the dimension-79

less molecular velocity vector c is equal to (cp cosϕ, cp sinϕ, cz).80

In this study, the inverse power law potential is employed as the molecu-81

lar interaction potential; therefore, viscosity can be calculated by power law82

temperature dependence as83

µ = Tω, (7)

where ω is the viscosity index, which is equal to 0.5 for Hard Sphere model and84

1 for the Maxwell model [18].85

Incorporating dimensionless quantities (6) into S-model kinetic equation (3),86

the dimensionless conservative form of governing equation is obtained87

∂

∂t
(rf)+

∂

∂r
(rfcp cosϕ)− ∂

∂ϕ
(fcp sinϕ)+

∂

∂z
(rfcz) = rδnT 1−ω (fS − f) . (8)
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The above equation is subjected to the following boundary conditions. The88

distribution function of outgoing from the axis molecules f+ is calculated from89

the distribution function of incoming to the axis molecules f− taking into ac-90

count the axisymmetric condition as91

f+r=0 (t, z, r, ϕ, cp, cz) = f−r=0 (t, z, r, π − ϕ, cp, cz) , (9)

where the superscripts + and − refer to the outgoing and incoming molecules,92

respectively. It is supposed that the computational domain is large enough for93

obtaining the equilibrium far-field. Hence, we assume that the molecules enter-94

ing the computational domain are distributed according to the Maxwellian law95

with the parameters determined by the zero-flow at the pressure and tempera-96

ture corresponding to each reservoir as follows97

f−r=RL
(t, z, r, ϕ, cp, cz) = f−z=−ZL

(t, z, r, ϕ, cp, cz)=
1

π3/2
exp

(
−c2p − c2z

)
,

f−r=RR
(t, z, r, ϕ, cp, cz) = f−z=ZR

(t, z, r, ϕ, cp, cz) =
p1
π3/2

exp
(
−c2p − c2z

)
,
(10)

here RL, RR and ZR, ZL are the radial and axial dimensions of the left and98

right reservoirs, respectively.99

Since the influence of the gas-wall interaction on the flow is week (see Ref.100

[14]) , the fully diffuse scattering is implemented for the molecules reflected from101

both sides of the wall, which separates the two reservoirs, i.e.102

f+z=0∓,r>1 (t, z, r, ϕ, cp, cz) =
n∓w
π3/2

exp
(
−c2p − c2z

)
, (11)

where the superscripts ∓ refers the left (−) and the right (+) sides of the wall.103

The unknown values of the number density at the wall surfaces n∓w are found104

from the impermeability conditions105

n∓w,z=0∓,r>1 (t, z, r) = ±4
√
π

∞̂

0

π̂

0

∞̂

0

czf
∓
z=0∓ (t, z, r, ϕ, cp, cz) dc, (12)

where dc = cpdcpdϕdcz.106

The dimensionless macroscopic flow parameters are defined through the dis-107

tribution function as follows108

n (t, z, r) = 2

∞̂

−∞

π̂

0

∞̂

0

fdc, T (t, z, r) =
4

3n

∞̂

−∞

π̂

0

∞̂

0

Cfdc,

ur (t, z, r) =
2

n

∞̂

−∞

π̂

0

∞̂

0

cp cosϕfdc, uz (t, z, r) =
2

n

∞̂

−∞

π̂

0

∞̂

0

czfdc,

qr (t, z, r) = 2

∞̂

−∞

π̂

0

∞̂

0

cp cosϕCfdc, qz (t, z, r) = 2

∞̂

−∞

π̂

0

∞̂

0

czCfdc,(13)

4



where C = (cp cosϕ− ur)2 + (cp sinϕ)
2

+ (cz − uz)2.109

The mass flow rate is practically the most significant quantity of an orifice110

flow and can be calculated as111

Ṁ (t′) = 2πm

R0ˆ

0

n′ (t′, 0, r′)u
′

z (t′, 0, r′) r′dr′. (14)

The steady state mass flow rate into vacuum p1/p0 = 0 under the free molecular112

flow conditions (δ = 0) was obtained analytically in Refs. [19], [20], [18] as113

Ṁfm =
R2

0

√
π

υ0
p0, (15)

and this quantity is used as reference value for the reduced mass flow rate114

W (t′) =
Ṁ (t′)

Ṁfm

. (16)

The dimensionless mass flow rate is obtained by substituting eqs. (6), (14), (15)115

into eq. (16)116

W (t) = 4
√
π

1ˆ

0

n (t, 0, r)uz (t, 0, r) rdr. (17)

Initially the upstream and downstream reservoirs, separated by a diaphragm, are117

maintained at the pressures p0 and p1, respectively, and at the same temperature118

T0. At time t = 0, just after the diaphragm opening, the mass flow rate is equal119

to W = 1− p1/p0.120

In the next sections we present the numerical approach for the solution of121

the kinetic equation (8).122

3. Method of solution123

Firstly, the discrete velocity method (DVM) is used to separate the contin-124

uum molecular magnitude velocity spaces cp = (0,∞), cz = (−∞,∞) in the125

kinetic equation (8) into discrete velocity sets cpm , czn , which are taken to be126

the roots of Hermite polynomial. The polar angle velocity space ϕ = [0, π] is127

equally discretized into set of ϕl. Next, the set of independent kinetic equations128

corresponding to discrete velocity sets cpm , czn is discretized in time and space129

by Finite difference method (FDM).130

For each reservoir its radial and axial dimensions are taken here to be equal131

(RL = ZL and RR = ZR), and equal to DL and DR, respectively. The influence132

of the dimensions DL and DR on the macroscopic parameters distribution is133

discussed in Section 4.6. In the physical space, the uniform grid (2NO ∗NO)134

with square cells is constructed near the orifice (z = (−1, 1),r = (0, 1)), where135

NO is the number of the grid points through the orifice. At the remaining com-136

putational domain (z = (−ZL,−1) ∪ (1, ZR),r = (1, RL/R)), the non-uniform137
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discretization using increasing power-law of 1.05 is implemented for both radial138

and axial directions, as it is illustrated in Fig. 1.139

The spacial derivatives are approximated by one of two upwind schemes:140

the first-order accurate scheme or second-order accurate TVD type scheme.141

The time derivative is approximated by the time-explicit Euler method. The142

combination of a second-order spatial discretization with forward Euler time-143

marching is unstable, according to a linear stability analysis [21]. However the144

presence of the non-linear limiter keeps it stable [21], [22]. The details of the145

implemented approximations are discussed in Section 4.1.146

As an example the second-order accurate TVD upwind scheme with the147

time-explicit Euler approximation is given for the case of cosϕl > 0, sinϕl > 0148

and czn > 0, when the kinetic equation (8) is replaced by the set of independent149

discretized equations150

rjf
k+1
i,j,l,m,n − rjfki,j,l,m,n

∆tk
+ cpm cosϕl

F ki,j+1/2,l,m,n − F
k
i,j−1/2,l,m,n

0.5 (rj+1 − rj−1)

− cpm
fki,j,l+1,m,n sinϕl+1/2 − fki,j,l,m,n sinϕl−1/2

2 sin(∆ϕl/2)
+ czn

F ki+1/2,j,l,m,n − F
k
i−1/2,j,l,m,n

0.5 (zi+1 − zi−1)

= rjδn
k
i,j

(
T ki,j
)1−ω ((

fSi,j,l,m,n
)k − fki,j,l,m,n) ,

(18)
where fki,j,l,m,n = f

(
tk, zi, rj , ϕl, cpm , czn

)
, ∆tk = tk+1 − tk, ∆zi = zi − zi−1,151

∆rj = rj − rj−1, ∆ϕl = ϕl −ϕl−1. In eq. (18), the approximation of derivative152

of axisymmetric transport term (with respect to ϕ) is implemented with trigono-153

metric correction [23], which helps to reduce considerably the total number of154

grid points Nϕ in the polar angle velocity space ϕ.155

The second-order edge fluxes in the point of physical space i, j are computed156

as157

F ki±1/2,j,l,m,n = fki±1/2,j,l,m,nrj , F ki,j±1/2,l,m,n = fki,j±1/2,l,m,nrj±1/2 (19)
158

fki+1/2,j,l,m,n =

{
fki,j,l,m,n + 0.5∆zi+1minmod(Di+1/2,j,l,m,n, Di−1/2,j,l,m,n) if czn ≥ 0

fki+1,j,l,m,n − 0.5∆zi+1minmod(Di+3/2,j,l,m,n, Di+1/2,j,l,m,n) if czn < 0,

fki,j+1/2,l,m,n =

{
fki,j,l,m,n + 0.5∆rj+1minmod(Di,j+1/2,l,m,n, Di,j−1/2,l,m,n) if cosϕl ≥ 0

fki,j+1,l,m,n − 0.5∆rj+1minmod(Di,j+3/2,l,m,n, Di,j+1/2,l,m,n) if cosϕl < 0.

(20)
where rj+1/2 = 0.5 (rj + rj+1) and159

Di+1/2,j,l,m,n =
fki+1,j,l,m,n − fki,j,l,m,n

∆zi+1
, Di,j+1/2,l,m,n =

fki,j+1,l,m,n − fki,j,l,m,n
∆rj+1

.

(21)
The slope limiter minmod introduced in [24], [21] is given by160

minmod(a, b) = 0.5(sign(a) + sign(b)) min(|a| , |b|). (22)
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Table 1: Numerical grid parameters
Phase space Reservoir Total number of points

Physical space z, r Left
NO = 40

Nzl ×Nrl = 96× 96
Right Nzr ×Nrr = 101× 101

Molecular velocity space ϕ, cp, cz Left & Right Nϕ ×Ncp ×Ncz = 40× 16× 16

The details of computational grid parameters are given in Table 1.161

Concerning the temporal discretization, the time step should satisfy the162

classical Courant-Friedrichs-Lewy (CFL) condition [25] and must also be smaller163

than the mean collision time, or relaxation time, which is inverse of the collision164

frequency ν. Consequently, the time step must satisfy the following criterion165

∆t ≤ CFL/ max
i,j,l,m,n

(
cpm
∆rj

+
cpm
r1∆ϕl

+
czn
∆zi

, νi,j

)
. (23)

As the mass flow rate is the most important characteristic of the flow through166

an orifice the convergence criterion is defined for this quantity as follows167 ∣∣W (
tk+1

)
−W

(
tk
)∣∣

W (tk) ∆tk
≤ ε, (24)

where ε is a positive number and it is taken equal to 10−6. It is to note that this168

convergence criterion differs from that used in Ref. [13], where the transient flow169

through a slit is simulated. Here we introduce the time step in the expression of170

the convergence criterion. It allows us to have the same convergence criterion171

when the size of the numerical grid in the physical space and consequently the172

time step according to the CFL condition (23) change. The expression of the173

convergence criterion (24) may be considered as the criterion on the velocity174

of the mass flow rate changes. The time moment, when the criterion (24) is175

achieved, is notified as tε and the corresponding mass flow rate as W = W (tε).176

It is to underline that the mass flow rate was chosen here as the convergence177

parameter, as it is the most important and useful characteristic of the flow.178

However the calculation were conducted in the most cases, except p1/p0 = 0.9179

and δ = 10, until time equal to 40, when the criterion (24) was already satisfied,180

in order to observe the steady state flow establishment in the flow field far from181

the orifice. The comments on the whole steady state flow field establishment182

are given in Section 4.3.183

The numerical method is implemented as follows. First, the distribution184

function fk+1
i,j,l,m,n in the internal grid points at the new time step k + 1 is185

calculated explicitly by eq. (18) from the data of the current time step k.186

At the boundaries, the distribution function is calculated using the boundary187

conditions (9) - (11). Once the distribution function is known, the values of188

the macroscopic parameters for the new time step are obtained by evaluating189

the integrals in eqs. (13). To do that, the Gauss-Hermite quadrature formulas190

are applied to calculate the integrals over cp, cz spaces, while the trapezoidal191
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rule is used for the approximation of the integrals over ϕ space. After that, the192

mass flow rate for the new time step is evaluated by applying the trapezoidal193

rule for the integral in eq. (17). The macroscopic parameters and the mass194

flow rate are recorded as a function of time. This procedure is iterated until the195

convergence criterion (24) is met; i.e., steady flow conditions for the mass flow196

rate are reached.197

It is to be noticed that the problem is six dimensional in the phase space:198

two variables in the physical space, three variables in the molecular velocity199

space and the time. In order to obtain the reasonable computational time the200

numerical code in parallelized by using the OpenMP technology. From the201

resolution of system (18) the velocity distribution function f can be calculated202

at the new time level separately for each value of the molecular velocity, so203

these calculations are distributed among the separated processors units. The204

final results on the macroscopic parameters are obtained by the summation of205

the corresponding quantities over all processors.206

The parallelization gives the opportunity to run the program code on multi-207

core processor. To have an estimation about computational effort and speedup,208

the wall-clock times for executing the numerical code are recorded. The second-209

oder accurate TVD scheme requires 434 seconds for the first 100 time steps with210

8 cores of processors AMD 8435 2600MHz and 4Gb of memory for each core,211

whereas the first-order accurate scheme takes 242 seconds for the same task.212

These wall-clock times are 2585 and 1518 seconds for second-oder accurate TVD213

scheme and first-order accurate scheme, respectively, when only 1 core is used.214

4. Numerical results215

The numerical simulations are conducted for four values of the pressure216

ratio p1/p0 = 0, 0.1, 0.5, 0.9 which correspond to flow into vacuum, flow of217

strong, medium and weak non-equilibrium. For each value of pressure ratio218

p1/p0 the calculations are carried out with four values of rarefaction parameter219

δ = 0.1, 1, 10, 100; i.e., from the near free molecular to hydrodynamic flow220

regimes.221

4.1. Different approximations of the spatial derivatives222

Two numerical schemes are implemented for the approximation of the spatial223

derivatives: the first-order accurate scheme and the TVD scheme with minmod224

slope limiter. The CFL number for both schemes was equal to 0.95. The225

computational time per time step by using the same computational grid is in226

70% longer for TVD scheme than for the first-order accurate scheme. However,227

in order to reach the same uncertainty of the mass flow rate the four times228

larger number of grid points in each dimension of physical space is needed for229

the first-order accurate scheme, NO = 160, instead of 40 for the TVD scheme.230

Therefore all simulations are carried out by using the TVD scheme.231

After the various numerical tests the optimal dimensions of the numerical232

grid are found (shown in Table 1), which guarantee the numerical uncertainty for233
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Table 2: Dimensionless flow rate W (17) vs rarefaction parameter δ and pressure ratio p1/p0.
Present results W = W (tε), the results from Ref. [5] (Wa), where the steady BGK-model
kinetic equation was solved using the fixed point method, the results obtained in Ref. [14]
(W b) by the DSMC technique.

δ
p1/p0 = 0. 0.1 0.5 0.9

W W a W b W W b W W a W b W W a W b

0.1 1.020 1.020 1.014 0.919 0.91 0.515 0.515 0.509 0.1039 0.105 0.1025
1. 1.150 1.152 1.129 1.054 1.032 0.636 0.635 0.613 0.1356 0.140 0.1297
10. 1.453 1.472 1.462 1.427 1.435 1.188 1.216 1.188 0.4009 0.432 0.4015
100. 1.527 1.508 1.534 1.519 1.524 1.339 1.325 1.344 0.6725 0.669 0.6741

the mass flow rate of the order of 1%. The time step, determined by eq. (23),234

depends crucially on the classical CFL condition subjected to the additional235

restriction for the time step to be smaller than the mean collision time. However,236

for the chosen numerical grid in the physical space, see Table 1, the latter237

restriction is satisfied automatically. Therefore a unique time step ∆t = 0.1543×238

10−4 is used for all the presented here cases.239

4.2. Mass flow rate240

The steady-state values of the mass flow rate W = W (tε) are presented241

in Table 2. These values are in good agreement with the results of Refs. [5],242

[14], obtained from the solution of the stationary BGK-model kinetic equation243

by the fixed point method [5] and by applying the DSMC approach [14]. The244

discrepancy is less than 5% for all considered cases.245

The values of mass flow rate W (t) at several time moments, from t = 0 to246

∼ 40, are given in Table 3. The column (tε) corresponds to the time needed to247

reach the convergence criterion (24).248

To have an estimation of the computational efforts required to achieve the249

convergence criterion (24) the corresponding dimensionless time tε and the num-250

ber of the time steps are presented in Tables 3 and 4, respectively. The time251

evolution of the residual, defined according to eq. (24), is shown on Fig. 2 for252

different pressure ratios to illustrate the convergence velocity of the numerical253

technique. The slowest convergence rate for p1/p0 = 0 and 0.1 is corresponding254

to hydrodynamic regime, whilst that for p1/p0 = 0.5 and 0.9 is in slip regime.255

Nevertheless, the fastest convergence rate is observed at transitional regime for256

all pressure ratios.257

The evolution of the mass flow rate W (t) to its steady state value (given in258

Table 3) is also demonstrated in Fig. 3 for different pressure ratios. The time259

interval shown in Fig. 3 is restricted to the time equal to 40 even if the flow260

does not completely establish for this time moment in the case of pressure ratio261

equal to 0.9. The common behavior is observed for the pressure ratios 0 and262

0.1 with relatively rapid mass flow rate establishment. It is to note that, in the263

hydrodynamic regime, the slope of the mass flow rate evolution reduces sharply264

for the both pressure ratios near the time equal to 3 whilst this slope reduction265

is smooth for other pressure ratios. We can observe anew the longer time of the266
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steady state flow establishment for p1/p0 = 0.9 in whole range of the rarefaction267

parameter, see Fig. 3d).268

In the hydrodynamic flow regime the mass flow rate has a maximum, than269

it decreases to reach after its steady state value from above. This tendency is270

visible in the hydrodynamic regime, but the same trend appears in all other271

regimes, though there it is less apparent because the amplitude of the mass flow272

rate changes is smaller. The non monotone behavior of the residual, see Fig.273

2, confirms the oscillatory character of the mass flow rate conducting in time.274

This behavior is related to the propagation of the initial perturbations created275

by the orifice opening toward the boundary of the computational domain. It is276

to note that the similar behavior of the mass flow rate was observed also in Ref.277

[11].278

To characterize the mass flow rate evolution in time we introduce also the279

time ts as a last time moment when the mass flow rate differs by 1% from280

its steady state value W (tε). The values of ts for various pressure ratios and281

the rarefaction parameters are provided in Table 3. The two main trends for282

time ts, column (ts) in Table 3, are found: for the pressure ratios 0, 0.1 and283

0.5 the longest time to reach the steady state is needed under the transitional284

flow regime (δ = 1), whilst for the pressure ratio 0.9 this maximum of time ts285

appears in the slip flow regime (δ = 10). For the all considered pressure ratios286

the minimum of ts corresponds to the near free molecular flow regime (δ = 0.1).287

It is to note that the exceptionally long time to steady state flow establishment288

is found in the case p1/p0 = 0.9 and (δ = 10).289

The time to steady state mass flow rate establishment, ts, is compared to290

the corresponding quantity t∗s, obtained by DSMC method in Ref. [11], see the291

last column of Table 3. The values of t∗s provided in Ref. [11] are slightly smaller292

than those obtained in the present simulations. The largest difference between293

two values in more than 2 times, corresponds to the pressure ratio equal to 0.5294

in the near hydrodynamic regime (δ = 100), see Table 3. It is noteworthy that295

due to the statistical scattering of the DSMC technique the estimation of the296

time to establish the steady flow is more difficult from the DSMC results than297

by applying the DVM method.298

From dimensionless time ts provided in Table 3, one can calculate easily299

the dimensional time t
′

s needed to obtain the steady-state mass flow rate by300

using eqs. (1), (2), (6). For example, He at room temperature T0 = 300K has301

the most probable molecular speed υ0 = 1116.05m/s and viscosity coefficient302

µ0 = 1.985 × 10−5Nsm−2 (provided in [18]) . If one consider an orifice of303

the radius R0 = 0.5mm and pressure in the upstream reservoir p0 = 44.31Pa,304

the gas flow is in transitional regime (δ = 1.). The dimensionless time of the305

expansion into vacuum (case p1/p0 = 0 in Table 3) is equal to 6.95 and the306

corresponding dimensional time is 3.11µs.307

The mass flow rate as a function of time was fitted using the following model308

W (t) = Wt=0 + (Wt=tε −Wt=0) (1− exp (−t/τ)) , (25)

where the value at the time moment t = 0 is calculated asWt=0 = 1−p1/p0 and309

Wt=tε is the value of the mass flow rate corresponding to the time moment t = tε310
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Table 3: Mass flow rate W for different time moments. The time ts of the steady state flow
establishment as a function of the rarefaction parameter δ and the pressure ratio p1/p0; t∗s
corresponds to the data from Ref. [11]. Time ts is here the dimensionless value, obtained
using eqs. (2) and (6).

p1/p0 δ
W

tε ts t∗st = 0 1 5 10 20 40

0.

0.1 1.0 1.003 1.016 1.019 1.020 1.020 19.71 2.35
1. 1.0 1.028 1.126 1.146 1.149 1.148 15.77 6.95
10. 1.0 1.120 1.423 1.455 1.453 1.456 20.60 6.15
100. 1.0 1.171 1.511 1.528 1.522 1.527 35.26 5.07

0.1

0.1 0.9 0.903 0.915 0.918 0.919 0.919 20.48 2.61
1. 0.9 0.928 1.027 1.049 1.054 1.053 16.87 7.84 6.4
10. 0.9 1.035 1.383 1.427 1.427 1.429 20.94 7.05 7.3
100. 0.9 1.145 1.500 1.520 1.514 1.519 26.94 5.24 4.4

0.5

0.1 0.5 0.503 0.512 0.514 0.515 0.515 22.39 3.64
1. 0.5 0.523 0.607 0.629 0.635 0.635 18.76 9.91 8.7
10. 0.5 0.623 1.060 1.177 1.191 1.189 26.94 9.84 9.1
100. 0.5 0.756 1.309 1.351 1.339 1.342 23.59 5.54 14.0

0.9

0.1 0.1 0.1007 0.1030 0.1036 0.1039 0.1039 22.82 4.44
1. 0.1 0.1059 0.1275 0.1338 0.1356 0.1354 19.20 10.83
10. 0.1 0.1292 0.2602 0.3396 0.3893 0.3991 152.6 30.37
100. 0.1 0.1571 0.4248 0.6222 0.6943 0.6727 36.10 12.28

Table 4: Number of time steps to satisfy convergence criterion (24)

δ
Total number of time steps N (×100)
p1/p0 = 0. 0.1 0.5 0.9

0.1 1277 1327 1451 1479
1. 1022 1093 1216 1244
10. 1335 1357 1746 9889
100. 2285 1746 1529 1339
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where the convergence criterion (24) is achieved. Both the values are given in311

Tables 2 and 3. The fitting parameter (characteristic time) τ for various pressure312

ratios and rarefaction parameters are provided in Table 5 with the corresponding313

uncertainty. It is to note that very similar values of τ are found for the pressure314

ratios 0 and 0.1 for all rarefaction range. For the pressure ratios 0.5 and 0.9315

and for the high level of gas rarefaction also the similar values of the fitting316

parameter τ are found. However in the slip and hydrodynamic flow regimes317

these values become larger, see Table 5.318

Figure 4 demonstrates that the exponential representation in form of eq.319

(25) gives the good estimation for the time evolution of the mass flow rate.320

The coefficient of determination R2 of the fitting curve is equal, for example, to321

0.990 for the case p1/p0 = 0.9 and δ = 1 and decreases to 0.973 for p1/p0 = 0.9322

and δ = 100. The maximal difference between the values of the mass flow rate,323

given by the fitting curve and by the numerical solution of the S-model kinetic324

equation, is less than 5% for the case p1/p0 = 0.9 and δ = 100 and it is of the325

order of 0.3% for the same pressure ratio and δ = 1.

Table 5: Characteristic time τ with 99% confidence interval obtained from fit model eq. (25)

δ
Characteristic time τ

p1/p0 = 0. 0.1 0.5 0.9

0.1 3.415± 0.029 3.484± 0.028 3.546± 0.024 3.561± 0.023
1. 2.940± 0.034 3.112± 0.031 3.429± 0.028 3.551± 0.028
10. 2.286± 0.032 2.393± 0.030 3.269± 0.039 6.459± 0.013
100. 1.879± 0.032 1.731± 0.019 2.072± 0.037 5.597± 0.083

326

4.3. Flow field327

After the diaphragm opening the gas starts to flow toward the downstream328

reservoir. However, even in the upstream reservoir the flow field becomes per-329

turbed from its initial state. From the near free molecular (δ = 0) to the slip330

flow regime (δ = 10) for all considered pressure ratios p1/p0 = 0− 0.9 the time331

behavior of the macroscopic parameters are very similar. The two typical ex-332

amples of the macroscopic parameters variation in time are presented in Fig. 5333

for the cases p1/p0 = 0.1 and 0.5 and δ = 1. The number density n smoothly334

changes from its value in the upstream reservoir to its downstream value. The335

temperature drops through the orifice due to the flow acceleration and increases336

up to its initial value far from the orifice in the downstream reservoir. The337

temperature drop is larger for the smaller values of the pressure ratio: the tem-338

perature decreasing just after the orifice is of the order of 25% for p1/p0 = 0.1339

and δ = 1 and it becomes very small (less than 1%) when the pressure ratio340

increases up to 0.9. The macroscopic flow velocity increases through the ori-341

fice and its rise depends also on the pressure ratio: for the smaller value of342

the pressure ratio the flow acceleration is higher. Far from the orifice in the343

upstream and downstream reservoirs the flow velocity goes down to zero. It is344

to note that for the larger pressure ratio p1/p0 = 0.9 even in the case of the345
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near hydrodynamic flow regimes, δ = 100, the time dependent behaviors of the346

macroscopic parameters are similar to the previously described.347

The results obtained in Ref. [26] by using the DSMC technique are also348

shown in Fig. 5. The provided here DSMC data correspond to the steady state349

solution. Its is clear that the both techniques give very similar results. Only350

the temperature behaviors for p1/p0 = 0.5 are slightly different which can be351

related to the influence of the boundary conditions in the downstream reservoir.352

4.4. Near hydrodynamic regime353

Completely different behavior is observed for the all considered pressure354

ratios, except the case of p1/p0 = 0.9, in the near hydrodynamic flow regime355

(δ = 100). For the pressure ratio p1/p0 = 0.5, see Fig. 6, the shock wave356

appears in the right reservoir and it moves toward the downstream boundary.357

For the pressure ratio (p1/p0 = 0.1) the particular flow behavior is observed:358

the spatial cell structure of axisymmetric mildly under-expanded jet appears,359

formed by the system of incident and reflected shock and compression waves,360

see Fig. 7. The distribution of the macroscopic flow parameters for this case361

is shown on Fig. 8. In contrast with the previous case, the first cell shock362

structure does not move and the second shock wave forms after the first one363

with time. The shock wave position may be determined by the maximum of the364

number density gradient which is located at zM/R0 = 4.31. This position can365

be estimated also from the empirical relation [27]366

zM/R0 = 1.34
√
p0/p1, (26)

which predicts the Mach disk location at zM/R0 = 4.24 from the orifice, so very367

good agreement is found between the numerical result and empirical relation368

(26).369

The streamlines for the case p1/p0 = 0.1 are provided in Fig. 9. It can370

be seen that the flow field is non symmetric and that the streamlines are not371

parallel to the axis of symmetry.372

In the case of the gas expansion into vacuum (p1/p0 = 0) the shock wave373

does not appear any more. Expression (26) predicts also that the shock wave374

position tends to infinity (zM/R0 →∞). In this case the flow velocity reach its375

maximal value, which depends only on the gas temperature in the inlet reservoir.376

Under the hypothesis of the adiabatic expansion and the energy conservation377

the following expression for the macroscopic velocity was obtained in Ref. [28]:378

uzmax
=

√
5kT0
m

. (27)

The numerical value of the maximal macroscopic velocity is equal to 1.588 which379

is very close to that predicted by eq. (27).380

4.5. Chocked conditions381

It is well known that a chocked flow is a limiting condition which occurs382

when the mass flow rate will not increase with a further decrease in the down-383

stream pressure environment while upstream pressure is fixed [29]. Under the384

13



conditions p1/p0 < (p1/p0)∗, where (p1/p0)∗ is the critical pressure ratio, the385

further decrease in the downstream pressure reservoir does not lead to the in-386

crease of the mass flow rate and the flow becomes "chocked". However, for the387

case of the flow through a thin orifice the flow never becomes "chocked". For388

the first time it was discovered in Ref. [30] in the case of the flow through a thin,389

square-edged orifice. Finally the physical point at which the choking occurs for390

adiabatic conditions is that the exit plane velocity is at sonic conditions. But391

in the case of the thin orifice flow the "sonic surface" has a convex shape and392

located in the downstream reservoir, see Fig. 10, where two cases of the pres-393

sure ratio p1/p0 = 0 and 0.1 are shown. Therefore the flow is not sonic through394

the orifice and it does not becomes really chocked: the mass flow rate continue395

to increases when pressure ratio decreases, see Table 3 and Fig. 11, especially396

for the low values of the rarefaction parameter. The evaluation in time of the397

temperature and Mach number profiles in the orifice section are shown on Fig.398

12, where one can see that the flow remains subsonic through the orifice with399

the maximum velocity near the orifice wall.400

4.6. Influence of the computational domain dimensions401

The study of an influence of the computational domain dimensions on the402

numerical results is carried out and the optimal dimensions of the left and right403

reservoirs are found as DL = 8 and DR = 10, respectively.404

Fig. 13 shows the comparison of the macroscopic profiles evolution in time405

along the symmetrical axis for p1/p0 = 0.1 and δ = 100 obtained for two sizes406

of the downstream reservoir DR = 10 and 20. It is clear from these results407

that the both solutions coincide until distance z/R0 ∼ 8 from the orifice and408

that the mass flow rate evolution is not affected at all by the dimension of the409

right computational domain. It is interesting to note that in the case of the410

flow through a slit much more larger computational domain must be chosen to411

obtain the numerical solution independent from the size of the computational412

domain.413

5. Conclusion414

Transient flow of rarefied gas through an orifice is studied on the basis of415

nonlinear S-model kinetic equation. The simulations are conducted from the free416

molecular to hydrodynamic regimes for four values of pressure ratio between417

reservoirs. The mass flow rate evolution in time is analyzed and it is found418

that the time to reach the steady state mass flow rate depends essentially on419

the pressure ratio between the reservoirs and on the gas flow regime in the left420

reservoir. It needs from 2.35 to 30.37 characteristic times to obtain the steady421

state mass flow rate, the maximal time to reach the steady state is found in the422

slip regime for the largest pressure ratio 0.9. The simple fitting formula for the423

time dependence of the mass flow rate is proposed. It is shown numerically that424

the flow through the thin orifice never becomes really chocked.425
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Figure 2: The time evolution of residual for p1/p0 = 0. (a), p1/p0 = 0.1 (b), p1/p0 = 0.5 (c),
p1/p0 = 0.9 (d)
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Figure 7: Flow field of density number (a), axial velocity (b), temperature (c) at time moment
t = 20 for p1/p0 = 0.1, δ = 100.
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Figure 8: Distribution of density number (a), axial velocity (b), temperature (c), Mach number
(d) along the axis at several time moments for p1/p0 = 0.1, δ = 100.
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Figure 9: Stream lines at time moment t = 20 for p1/p0 = 0.1, δ = 100.
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Figure 10: Mach number iso-lines at time moment t = 20 for p1/p0 = 0.1, δ = 100. (a),
p1/p0 = 0., δ = 100. (b)
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Figure 11: Dimensionless mass flow rate as a function of pressure ratio p1/p0 at different
rarefaction parameters δ
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Figure 12: Distribution of temperature (a,c), Mach number (b,d) along the orifice at several
time moments for p1/p0 = 0.1, δ = 100. (a,b), p1/p0 = 0., δ = 100. (c,d)
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Figure 13: Distribution of density number (a), axial velocity (b), temperature (c) along the axis
at time moments t = 5, 10, 20 for p1/p0 = 0.1, δ = 100. with different computational domain
sizes DR = 10, 20. The time evolution of mass flow rate W with different computational
domain sizes DR = 10, 20 (d)
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