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Numerical study of unsteady rarefied gas flow through an
orifice

M.T. Ho, I. Graur
Aiz Marseille Université, IUSTI UMR CNRS 7348, 13453, Marseille, France

Abstract

Transient flow of rarefied gas through an orifice caused by various pressure ratios
between the reservoirs is investigated for a wide range of the gas rarefaction,
varying from the free molecular to continuum regime. The problem is studied
on the basis of the numerical solution of unsteady S-model kinetic equation. It
is found that the mass flow rate takes from 2.35 to 30.37 characteristic times,
which is defined by orifice radius over the most probable molecular speed, to
reach its steady state value. The time of steady flow establishment and the
steady state distribution of the flow parameters are compared with previously
reported data obtained by the Direct Simulation Monte Carlo (DSMC) method.
A simple fitting expression is proposed for the approximation of the mass flow
rate evolution in time.

Keywords: rarefied gas, kinetic equation, orifice, transient flow

1. Introduction

The nonequilibrium flows of gases appear in different technological domains
like the vacuum equipment, high altitude aerodynamics and in a relatively new
field as the microelectromechanical systems (MEMS). The deviation of a gas
from its local equilibrium state can be characterized by the Knudsen number,
which present the ratio between the molecular mean free path and the charac-
teristic length of the problem. For the relatively large values of the Knudsen
number the classical continuum approach fails to describe the gas behavior and
the kinetic equations, like the Boltzmann equation or model kinetic equations,
must be solved to simulate the gas flows.

The gas flow through a thin orifice is a problem of a large practical interest
for the design of the vacuum equipment, space or the microfluidic applications.
The under-expanded jets through the orifices are predominately used by par-
ticle analyzer systems to separate and isolate molecules, ions of substances for
analyzing their physical and chemical properties. The time dependent charac-
teristics of these jets are important for the investigation of the response time
of the vacuum gauges developed for the measurements of the rapid pressure
changes [1].
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The steady state flows through the orifice, slit and short tube have been
successfully studied applying the DSMC method and the kinetic equations [2],
[3], [4], 5], 6], [7], [8], [9]. However, only a few results on the transient rarefied
flows through an orifice [10], a short tube [11], a long tube [12] or a slit [13]
may be found in open literature. The flow conditions in [10] are limited to
high and moderate Mach number owing to significant statical noise of DSMC
method at low Mach number. The authors of [1] also studied experimentally and
numerically the transient gas flow, but between two tanks of the fixed volumes.
The rapid high amplitude pressure changings in time are examined and their
characteristic time was found to be of the order of few seconds.

The aim of this work is to analyze the transient properties of gas flow through
an orifice induced by various values of the pressure ratio over a broad range of
gas rarefaction. The unsteady nonlinear S-model kinetic equation is solved
numerically by Discrete Velocity Method (DVM) to obtain the mass flow rate
and macroscopic parameters as a function of time. The time to reach the steady
state conditions for the mass flow rate is also estimated. An empirical expression
for evaluation of time-dependent mass flow rate is proposed.

2. Problem formulation

Consider an orifice of radius Ry contained in an infinitesimally thin wall,
which isolates two infinite reservoirs. Both the upstream and downstream reser-
voirs are filled with a monatomic gas but maintained at different pressures pg
and pq, respectively, with pg > p;. The temperatures of the wall and of the gas
in the reservoirs are equal to Ty. At time ¢t = 0, the orifice is opened instantly
and the gas starts to flow from the upstream reservoir to the downstream one.

Let us introduce a cylindrical coordinate system (r',4,2’) with the origin
positioned at the center of the orifice and the Oz’ axis directed along the axis of
the reservoirs (see the lateral section shown in Fig. 1). We assume that the flow
is cylindrically symmetric and does not depend on the angle 1 and therefore the
problem may be considered as two dimensional in the physical space with the
position vector s’ = (1, 2').

The gas-surface interaction has a very small impact on an orifice flow [14];
consequently, this flow is governed by two principal parameters: the pressure
ratio p1/po and gas rarefaction J determined as

ROPO QkTO
= ) Vo
HoVo m

d

: (1)

where g is the viscosity coefficient at the temperature Tj, vy is the most prob-
able molecular speed at the same temperature; m is the molecular mass of the
gas; k is the Boltzmann constant. It is to note that the gas rarefaction param-
eter is inversely proportional to the Knudsen number; i.e., when ¢ varies from
0 to oo, the flow regime changes from the free molecular to the hydrodynamic
regime.

It is convenient to define the characteristic time tg of the flow as follows



R
tg = —2.

(2)

o5 The unsteady S-model kinetic equation [15] is used to simulate the tran-
es sient rarefied gas flow through the orifice. The conservative formulation of this
ez equation [16], [17] is implemented

9
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(3)
es The main unknown is the molecular velocity distribution function f'(¢',s’,v),
o v = (Upcosp,vUpsing,v,) is the molecular velocity vector representing the
7o molecular velocity space. The polar coordinates are introduced in a plane
n (vr,vy) and v, ¢ are the magnitude and orientation of the molecular velocity
72 vector in this (v,,vy) plane. The molecular collision frequency v’ is supposed
73 to be independent on the molecular velocity and can be evaluated [15] by

V=L (4)

7a  The equilibrium distribution function ' [15] in eq. (3) is defined in as

/ / 2mVq [(mV? 5 / m \3/2 mV?
S M M l
ol D] ) e (i)
f f [ + 15n (kT)2 (Qk‘T/ 9 f n kT exp kT’
, (5)
7 where fM is the local Maxwellian distribution function, V = v — u/ is the pe-

ze culiar velocity vector, u’ = (ul.,0,u}) is the bulk velocity vector, ¢’ = (¢..,0,q.)
7z is the heat flux vector, n’ is the gas numerical density.

78 It is useful to define the dimensionless variables as follows
t/ s’ v u’ n'
t=—,8=—, Cc=—,u=—, Nn=—,
to Ry Vo Vo ng (6)
T/ pl ql M/ f/US)
T:?7p:77q: 7”277]0:77
0 Po Povo Mo no

7o with the help of the state equation pg = nokTy. In relations (6), the dimension-
s less molecular velocity vector c is equal to (¢, cos ¢, ¢psing, ¢;).
81 In this study, the inverse power law potential is employed as the molecu-
sz lar interaction potential; therefore, viscosity can be calculated by power law
ss temperature dependence as

w="T, (7)
sa  where w is the viscosity index, which is equal to 0.5 for Hard Sphere model and
es 1 for the Maxwell model [18].
86 Incorporating dimensionless quantities (6) into S-model kinetic equation (3),
sz the dimensionless conservative form of governing equation is obtained

0
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The above equation is subjected to the following boundary conditions. The
distribution function of outgoing from the axis molecules f¥ is calculated from
the distribution function of incoming to the axis molecules f~ taking into ac-
count the axisymmetric condition as

f;rzo (t,Z,T‘, Sovcpa Cz) = f;:o (tv 2, T, T — Qoa va Cz) ) (9)

where the superscripts + and — refer to the outgoing and incoming molecules,
respectively. It is supposed that the computational domain is large enough for
obtaining the equilibrium far-field. Hence, we assume that the molecules enter-
ing the computational domain are distributed according to the Maxwellian law
with the parameters determined by the zero-flow at the pressure and tempera-
ture corresponding to each reservoir as follows

— _ 1
fT:RL (t,Z,T,gO,Cp,CZ) = fz:—ZL (tvzara(pvcp?cz): 3/2 eXp( ]29 Cg) )
n (10)
2
P

f;:RR (t, 2,70, Cp, ;) = f;:ZR (t, 2,70, Cp, ;) = ];;2 exp ( Cg) )
here Ry, Rr and Zg, Z; are the radial and axial dimensions of the left and
right reservoirs, respectively.
Since the influence of the gas-wall interaction on the flow is week (see Ref.
[14]) , the fully diffuse scattering is implemented for the molecules reflected from
both sides of the wall, which separates the two reservoirs, i.e.

:F
nt
fj:0;7r>1 (t,z,r0,cp, ;) = 3/2 exp( CIQ) - cﬁ) , (11)

where the superscripts F refers the left (—) and the right (+) sides of the wall.
The unknown values of the number density at the wall surfaces n, are found
from the impermeability conditions

oo T oo

ni,z:0¥,r>l (t,Z,T) = i4ﬁ///czfj::0¥ (t7Z,T,QD,Cp7CZ) dC, (12)
0 0 O

where dc = cpdepdpde,,.
The dimensionless macroscopic flow parameters are defined through the dis-
tribution function as follows

oo T o

tzer///fdc T(t,z,71) ///C’fdc
—o0 0

(t,z,7) ///cpcosgofdc (t,z,7) ///czfdc
7000 fooO

(t,z,7) —2///cpcoscp0fdc q (t,z,7) —2///CZCfd@,3
—oo 0 —oo 0
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where C' = (¢, cos © — u,)> + (¢ sing)? + (¢ — uz)>.

The mass flow rate is practically the most significant quantity of an orifice
flow and can be calculated as

Ry
M) = Qﬂm/n’ t',0,7" ) u, (t',0,7")r'dr. (14)
0

The steady state mass flow rate into vacuum p; /pgp = 0 under the free molecular
flow conditions (§ = 0) was obtained analytically in Refs. [19], [20], [18] as

. R\ /7
iy, = VT (15)
Ug
and this quantity is used as reference value for the reduced mass flow rate
(16)

The dimensionless mass flow rate is obtained by substituting egs. (6), (14), (15)
into eq. (16)

1
W (t) = 4ﬁ/n(t,o,r> w. (£,0,7) rdr. (17)
0

Initially the upstream and downstream reservoirs, separated by a diaphragm, are
maintained at the pressures pg and p1, respectively, and at the same temperature
Ty At time ¢t = 0, just after the diaphragm opening, the mass flow rate is equal
to W =1—pi1/po.

In the next sections we present the numerical approach for the solution of
the kinetic equation (8).

3. Method of solution

Firstly, the discrete velocity method (DVM) is used to separate the contin-
uum molecular magnitude velocity spaces ¢, = (0,00), ¢, = (—00,00) in the
kinetic equation (8) into discrete velocity sets ¢, , ¢,,, which are taken to be
the roots of Hermite polynomial. The polar angle velocity space ¢ = [0, 7] is
equally discretized into set of ;. Next, the set of independent kinetic equations
corresponding to discrete velocity sets ¢, , ¢, is discretized in time and space
by Finite difference method (FDM).

For each reservoir its radial and axial dimensions are taken here to be equal
(R, = Z;, and Rr = ZR), and equal to D, and Dg, respectively. The influence
of the dimensions Dj and Dpi on the macroscopic parameters distribution is
discussed in Section 4.6. In the physical space, the uniform grid (2No * No)
with square cells is constructed near the orifice (z = (—1,1),r = (0,1)), where
Np is the number of the grid points through the orifice. At the remaining com-
putational domain (z = (=Zr,—1) U (1,Zg),r = (1, Ry r)), the non-uniform



discretization using increasing power-law of 1.05 is implemented for both radial
and axial directions, as it is illustrated in Fig. 1.

The spacial derivatives are approximated by one of two upwind schemes:
the first-order accurate scheme or second-order accurate TVD type scheme.
The time derivative is approximated by the time-explicit Euler method. The
combination of a second-order spatial discretization with forward Euler time-
marching is unstable, according to a linear stability analysis [21]. However the
presence of the non-linear limiter keeps it stable [21], [22]. The details of the
implemented approximations are discussed in Section 4.1.

As an example the second-order accurate TVD upwind scheme with the
time-explicit Euler approximation is given for the case of cosy; > 0, sinp; > 0
and ¢,, > 0, when the kinetic equation (8) is replaced by the set of independent
discretized equations

k+1 k k _ ok
iji,j,l,m,n - iji,j,l,m,n " Fz’,j+1/2,l,m,n Fi,j71/2¢l,m,n
- Cp,, COS Q]
At 0.5 (T‘j+1 — Tj—l)
k . k ; k _ ok
c fz‘,j,l+17m,n S Pr41/2 — fi,j,l,mm S P1—1/2 B Fi+1/2,j,l,m,n Fi71/2,j,l,m,n
— tpm . Zn
2sin(Ay;/2) 0.5 (zi41 — #i-1)
_ k E\1-w S k k
= r;oni; (T7;) (( iibmn) fi,j,l,m,n> )
(18)
k _ k k _ tk+1 _ 4k _
where fF;, ., = f(t ,zi,rj,gol,cpm,czn), AtF = tFTL —tF Az = 2 — 21,

Arj=rj—rj_1, Apr = ¢1 —@i—1. In eq. (18), the approximation of derivative
of axisymmetric transport term (with respect to ) is implemented with trigono-
metric correction [23], which helps to reduce considerably the total number of
grid points IV, in the polar angle velocity space ¢.

The second-order edge fluxes in the point of physical space i, j are computed
as

k _ sk ) k _ rk
Fi:tl/2,j,l,m,n - fi:tl/Q,j,l,m,nTJ’ Fi,jil/z,l,m,n - fi,j:tl/Q,l,m,nrjil/Q (19)

k . .
k ) ) mn 0502 p1minmod(Diy 12 j.1mons Dic1/2,50mm) i ez, >0
i+1/2,5,l,mmn — k . .
i+1,5,l,mm 0'5Azi+1mland(Di+3/2,j,l,m,n7 Di+1/2,j,l,m,n) if Cz, < 07

k

k _ i,7,l,m,n
fi,j+1/2,l,m,n T sk ; :
fi,j+1,l,m,n — 0.5A7; . minmod(D; ;1 3/2,1,m,ns Dij+1/2,0,mm) if cosgr < 0.

(20)

+ O.5Arj+1minmod(Diyijl/Q,l’m_’n, Di,jfl/Q,l,m,n) if cos @1 > 0

where 741/ = 0.5(r; +7;41) and

k _ fk k _ fk
Dii1/9.11 _ i+1,5,l,m,n ,5,l,m,n D ii1/o4 _ i,j+1,1,m,n z',j,l,m,n.
i+1/2,5,l,m,n Az ’ i,j+1/2,l,m,n A’I‘j+1
(21)
The slope limiter minmod introduced in [24], [21] is given by
minmod(a, b) = 0.5(sign(a) + sign(b)) min(|a|, |b]). (22)



Table 1: Numerical grid parameters

Phase space \ Reservoir \ Total number of points
. Left _ N, X Ny =96 x 96
Physical space z,r Right No =40 N., x N.. = 101 x 101

Molecular velocity space ¢, c,, ¢, | Left & Right Ny X Nep X Ne =40 x 16 x 16

167

The details of computational grid parameters are given in Table 1.

Concerning the temporal discretization, the time step should satisfy the
classical Courant-Friedrichs-Lewy (CFL) condition [25] and must also be smaller
than the mean collision time, or relaxation time, which is inverse of the collision
frequency v. Consequently, the time step must satisfy the following criterion

C C C
At < CFL Pm_ . _TPm__ i) i) 23
- /z,gnllgnx,n (A’/’j + TlAgOl + Azz v ’j> ( )

As the mass flow rate is the most important characteristic of the flow through
an orifice the convergence criterion is defined for this quantity as follows

w tk+1 - W tk
| (W@)kmtk( < (24)

where ¢ is a positive number and it is taken equal to 1076, It is to note that this
convergence criterion differs from that used in Ref. [13], where the transient flow
through a slit is simulated. Here we introduce the time step in the expression of
the convergence criterion. It allows us to have the same convergence criterion
when the size of the numerical grid in the physical space and consequently the
time step according to the CFL condition (23) change. The expression of the
convergence criterion (24) may be considered as the criterion on the velocity
of the mass flow rate changes. The time moment, when the criterion (24) is
achieved, is notified as ¢. and the corresponding mass flow rate as W = W (t.).
It is to underline that the mass flow rate was chosen here as the convergence
parameter, as it is the most important and useful characteristic of the flow.
However the calculation were conducted in the most cases, except py/pg = 0.9
and 6 = 10, until time equal to 40, when the criterion (24) was already satisfied,
in order to observe the steady state flow establishment in the flow field far from
the orifice. The comments on the whole steady state flow field establishment
are given in Section 4.3.

The numerical method is implemented as follows. First, the distribution
function fﬁ;?l{mm in the internal grid points at the new time step k + 1 is
calculated explicitly by eq. (18) from the data of the current time step k.
At the boundaries, the distribution function is calculated using the boundary
conditions (9) - (11). Once the distribution function is known, the values of
the macroscopic parameters for the new time step are obtained by evaluating
the integrals in egs. (13). To do that, the Gauss-Hermite quadrature formulas
are applied to calculate the integrals over c,,c, spaces, while the trapezoidal
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rule is used for the approximation of the integrals over ¢ space. After that, the
mass flow rate for the new time step is evaluated by applying the trapezoidal
rule for the integral in eq. (17). The macroscopic parameters and the mass
flow rate are recorded as a function of time. This procedure is iterated until the
convergence criterion (24) is met; i.e., steady flow conditions for the mass flow
rate are reached.

It is to be noticed that the problem is six dimensional in the phase space:
two variables in the physical space, three variables in the molecular velocity
space and the time. In order to obtain the reasonable computational time the
numerical code in parallelized by using the OpenMP technology. From the
resolution of system (18) the velocity distribution function f can be calculated
at the new time level separately for each value of the molecular velocity, so
these calculations are distributed among the separated processors units. The
final results on the macroscopic parameters are obtained by the summation of
the corresponding quantities over all processors.

The parallelization gives the opportunity to run the program code on multi-
core processor. To have an estimation about computational effort and speedup,
the wall-clock times for executing the numerical code are recorded. The second-
oder accurate TVD scheme requires 434 seconds for the first 100 time steps with
8 cores of processors AMD 8435 2600MHz and 4Gb of memory for each core,
whereas the first-order accurate scheme takes 242 seconds for the same task.
These wall-clock times are 2585 and 1518 seconds for second-oder accurate TVD
scheme and first-order accurate scheme, respectively, when only 1 core is used.

4. Numerical results

The numerical simulations are conducted for four values of the pressure
ratio p1/pp = 0,0.1,0.5,0.9 which correspond to flow into vacuum, flow of
strong, medium and weak non-equilibrium. For each value of pressure ratio
p1/po the calculations are carried out with four values of rarefaction parameter
6 = 0.1,1,10,100; i.e., from the near free molecular to hydrodynamic flow
regimes.

4.1. Different approximations of the spatial derivatives

Two numerical schemes are implemented for the approximation of the spatial
derivatives: the first-order accurate scheme and the TVD scheme with minmod
slope limiter. The CFL number for both schemes was equal to 0.95. The
computational time per time step by using the same computational grid is in
70% longer for TVD scheme than for the first-order accurate scheme. However,
in order to reach the same uncertainty of the mass flow rate the four times
larger number of grid points in each dimension of physical space is needed for
the first-order accurate scheme, No = 160, instead of 40 for the TVD scheme.
Therefore all simulations are carried out by using the TVD scheme.

After the various numerical tests the optimal dimensions of the numerical
grid are found (shown in Table 1), which guarantee the numerical uncertainty for



Table 2: Dimensionless flow rate W (17) vs rarefaction parameter § and pressure ratio p1/po.
Present results W = W (t.), the results from Ref. [5] (W?), where the steady BGK-model
kinetic equation was solved using the fixed point method, the results obtained in Ref. [14]
(W?) by the DSMC technique.

w we WP 44 WP w we w? w we WP
0.1 | 1.020 1.020 1.014 | 0919 0.91 | 0.515 0.515 0.509 | 0.1039 0.105 0.1025
1. 1.150 1.152 1.129 | 1.054 1.032 | 0.636 0.635 0.613 | 0.1356 0.140 0.1297
10. | 1.453 1.472 1.462 | 1.427 1435 | 1.188 1.216 1.188 | 0.4009 0.432 0.4015
100. | 1.527 1.508 1.534 | 1.519 1.524 | 1.339 1.325 1.344 | 0.6725 0.669 0.6741

the mass flow rate of the order of 1%. The time step, determined by eq. (23),
depends crucially on the classical CFL condition subjected to the additional
restriction for the time step to be smaller than the mean collision time. However,
for the chosen numerical grid in the physical space, see Table 1, the latter
restriction is satisfied automatically. Therefore a unique time step At = 0.1543 x
10~ is used for all the presented here cases.

4.2. Mass flow rate

The steady-state values of the mass flow rate W = W (t.) are presented
in Table 2. These values are in good agreement with the results of Refs. [5],
[14], obtained from the solution of the stationary BGK-model kinetic equation
by the fixed point method [5] and by applying the DSMC approach [14]. The
discrepancy is less than 5% for all considered cases.

The values of mass flow rate W (t) at several time moments, from ¢ = 0 to
~ 40, are given in Table 3. The column (¢.) corresponds to the time needed to
reach the convergence criterion (24).

To have an estimation of the computational efforts required to achieve the
convergence criterion (24) the corresponding dimensionless time ¢. and the num-
ber of the time steps are presented in Tables 3 and 4, respectively. The time
evolution of the residual, defined according to eq. (24), is shown on Fig. 2 for
different pressure ratios to illustrate the convergence velocity of the numerical
technique. The slowest convergence rate for p;/py = 0 and 0.1 is corresponding
to hydrodynamic regime, whilst that for p;/py = 0.5 and 0.9 is in slip regime.
Nevertheless, the fastest convergence rate is observed at transitional regime for
all pressure ratios.

The evolution of the mass flow rate W(t) to its steady state value (given in
Table 3) is also demonstrated in Fig. 3 for different pressure ratios. The time
interval shown in Fig. 3 is restricted to the time equal to 40 even if the flow
does not completely establish for this time moment in the case of pressure ratio
equal to 0.9. The common behavior is observed for the pressure ratios 0 and
0.1 with relatively rapid mass flow rate establishment. It is to note that, in the
hydrodynamic regime, the slope of the mass flow rate evolution reduces sharply
for the both pressure ratios near the time equal to 3 whilst this slope reduction
is smooth for other pressure ratios. We can observe anew the longer time of the



steady state flow establishment for p; /py = 0.9 in whole range of the rarefaction
parameter, see Fig. 3d).

In the hydrodynamic flow regime the mass flow rate has a maximum, than
it decreases to reach after its steady state value from above. This tendency is
visible in the hydrodynamic regime, but the same trend appears in all other
regimes, though there it is less apparent because the amplitude of the mass flow
rate changes is smaller. The non monotone behavior of the residual, see Fig.
2, confirms the oscillatory character of the mass flow rate conducting in time.
This behavior is related to the propagation of the initial perturbations created
by the orifice opening toward the boundary of the computational domain. It is
to note that the similar behavior of the mass flow rate was observed also in Ref.
[11].

To characterize the mass flow rate evolution in time we introduce also the
time ¢; as a last time moment when the mass flow rate differs by 1% from
its steady state value W(t.). The values of ¢4 for various pressure ratios and
the rarefaction parameters are provided in Table 3. The two main trends for
time t5, column (ts) in Table 3, are found: for the pressure ratios 0, 0.1 and
0.5 the longest time to reach the steady state is needed under the transitional
flow regime (§ = 1), whilst for the pressure ratio 0.9 this maximum of time ¢
appears in the slip flow regime (§ = 10). For the all considered pressure ratios
the minimum of ¢s corresponds to the near free molecular flow regime (6 = 0.1).
It is to note that the exceptionally long time to steady state flow establishment
is found in the case p;/po = 0.9 and (6 = 10).

The time to steady state mass flow rate establishment, ¢,, is compared to
the corresponding quantity ¢%, obtained by DSMC method in Ref. [11], see the
last column of Table 3. The values of ¢¥ provided in Ref. [11] are slightly smaller
than those obtained in the present simulations. The largest difference between
two values in more than 2 times, corresponds to the pressure ratio equal to 0.5
in the near hydrodynamic regime (§ = 100), see Table 3. It is noteworthy that
due to the statistical scattering of the DSMC technique the estimation of the
time to establish the steady flow is more difficult from the DSMC results than
by applying the DVM method.

From dimensionless time tg provided in Table 3, one can calculate easily
the dimensional time t; needed to obtain the steady-state mass flow rate by
using eqs. (1), (2), (6). For example, He at room temperature Top = 300K has
the most probable molecular speed vg = 1116.05m/s and viscosity coefficient
po = 1.985 x 1075Nsm~2 (provided in [18]) . If one consider an orifice of
the radius Ry = 0.5mm and pressure in the upstream reservoir py = 44.31Pa,
the gas flow is in transitional regime (6 = 1.). The dimensionless time of the
expansion into vacuum (case p1/pg = 0 in Table 3) is equal to 6.95 and the
corresponding dimensional time is 3.11us.

The mass flow rate as a function of time was fitted using the following model

W(t) = Wizo + (Wi=i. — Wi=o) (1 — exp (=t/7)), (25)

where the value at the time moment ¢ = 0 is calculated as Wi—o = 1 —p1 /po and
Wi=¢, is the value of the mass flow rate corresponding to the time moment ¢ = ¢,

10



Table 3: Mass flow rate W for different time moments. The time ts of the steady state flow
establishment as a function of the rarefaction parameter ¢ and the pressure ratio pi/po; t%
corresponds to the data from Ref. [11]. Time ts is here the dimensionless value, obtained
using egs. (2) and (6).

W

] T 5 10 20 40 te ts £
01 | 1.0 1.003 1016 1019 1.020 1.020 | 19.71 2.35

0 1. | 1.0 1.028 1126 1.146 1.149 1.148 | 15.77 6.95

10, | 1.0 1120 1423 1455  1.453 1456 | 20.60 6.15
100. | 1.0 1171 1511 1528  1.522  1.527 | 35.26 5.07
01 | 0.9 0903 0915 0918 0919 0919 | 2048 2.61

o1 L | 09 0928 1027 1049 1054 1053 | 1687 T84 6.4

' 10. | 0.9  1.035 1.383 1.427 1427 1429 | 2094 7.05 7.3
100. | 09 1.145 1.500 1.520 1514 1.519 | 26.94 524 44
01 | 0.5 0503 0512 0514 0515 0515 | 22.39 3.64

05 L | 05 0523 0607 0629 0635 0635 | 1876 991 87

' 10. | 05 0623 1.060 1.177 1.191 1.189 | 26.94 984 9.1
100. | 05 0756  1.309 1.351  1.339  1.342 | 2359 554 14.0
0.1 | 0.1 01007 0.1030 0.1036 0.1039 0.1039 | 22.82 4.44

09 L | 01 01059 01275 01338 0356 01354 | 19.20 1083

' 10. | 0.1 0.1292 0.2602 0.3396 0.3893 0.3991 | 152.6 30.37
100. | 0.1 0.1571 04248 0.6222 0.6943 0.6727 | 36.10 12.28

Table 4: Number of time steps to satisfy convergence criterion (24)

Total number of time steps N (x100)

0.1 1277 1327 | 1451 1479
1. 1022 1093 | 1216 1244
10. 1335 1357 | 1746 9889
100. 2285 1746 | 1529 1339
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where the convergence criterion (24) is achieved. Both the values are given in
Tables 2 and 3. The fitting parameter (characteristic time) 7 for various pressure
ratios and rarefaction parameters are provided in Table 5 with the corresponding
uncertainty. It is to note that very similar values of 7 are found for the pressure
ratios 0 and 0.1 for all rarefaction range. For the pressure ratios 0.5 and 0.9
and for the high level of gas rarefaction also the similar values of the fitting
parameter 7 are found. However in the slip and hydrodynamic flow regimes
these values become larger, see Table 5.

Figure 4 demonstrates that the exponential representation in form of eq.
(25) gives the good estimation for the time evolution of the mass flow rate.
The coefficient of determination R? of the fitting curve is equal, for example, to
0.990 for the case p1/po = 0.9 and § = 1 and decreases to 0.973 for p;/py = 0.9
and § = 100. The maximal difference between the values of the mass flow rate,
given by the fitting curve and by the numerical solution of the S-model kinetic
equation, is less than 5% for the case p;/po = 0.9 and § = 100 and it is of the
order of 0.3% for the same pressure ratio and 6 = 1.

Table 5: Characteristic time 7 with 99% confidence interval obtained from fit model eq. (25)

5 Characteristic time 7
p1/po = 0. \ 0.1 \ 0.5 \ 0.9
0.1 | 3.415+0.029 | 3.484 +0.028 | 3.546 +0.024 | 3.561 £ 0.023
1. 2.940 £0.034 | 3.112 +0.031 | 3.429 +0.028 | 3.551 £+ 0.028
10. | 2.286 +0.032 | 2.393 = 0.030 | 3.269 £ 0.039 | 6.459 + 0.013
100. | 1.879+0.032 | 1.731 +£0.019 | 2.072 +0.037 | 5.597 + 0.083

4.3. Flow field

After the diaphragm opening the gas starts to flow toward the downstream
reservoir. However, even in the upstream reservoir the flow field becomes per-
turbed from its initial state. From the near free molecular (6 = 0) to the slip
flow regime (6 = 10) for all considered pressure ratios p;/po = 0 — 0.9 the time
behavior of the macroscopic parameters are very similar. The two typical ex-
amples of the macroscopic parameters variation in time are presented in Fig. 5
for the cases p1/po = 0.1 and 0.5 and § = 1. The number density n smoothly
changes from its value in the upstream reservoir to its downstream value. The
temperature drops through the orifice due to the flow acceleration and increases
up to its initial value far from the orifice in the downstream reservoir. The
temperature drop is larger for the smaller values of the pressure ratio: the tem-
perature decreasing just after the orifice is of the order of 25% for p;/pg = 0.1
and 0 = 1 and it becomes very small (less than 1%) when the pressure ratio
increases up to 0.9. The macroscopic flow velocity increases through the ori-
fice and its rise depends also on the pressure ratio: for the smaller value of
the pressure ratio the flow acceleration is higher. Far from the orifice in the
upstream and downstream reservoirs the flow velocity goes down to zero. It is
to note that for the larger pressure ratio p;/pp = 0.9 even in the case of the
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near hydrodynamic flow regimes, 6 = 100, the time dependent behaviors of the
macroscopic parameters are similar to the previously described.

The results obtained in Ref. [26] by using the DSMC technique are also
shown in Fig. 5. The provided here DSMC data correspond to the steady state
solution. Its is clear that the both techniques give very similar results. Only
the temperature behaviors for p;/pp = 0.5 are slightly different which can be
related to the influence of the boundary conditions in the downstream reservoir.

4.4. Near hydrodynamic regime

Completely different behavior is observed for the all considered pressure
ratios, except the case of p;/py = 0.9, in the near hydrodynamic flow regime
(6 = 100). For the pressure ratio p1/pp = 0.5, see Fig. 6, the shock wave
appears in the right reservoir and it moves toward the downstream boundary.

For the pressure ratio (p;/po = 0.1) the particular flow behavior is observed:
the spatial cell structure of axisymmetric mildly under-expanded jet appears,
formed by the system of incident and reflected shock and compression waves,
see Fig. 7. The distribution of the macroscopic flow parameters for this case
is shown on Fig. 8. In contrast with the previous case, the first cell shock
structure does not move and the second shock wave forms after the first one
with time. The shock wave position may be determined by the maximum of the
number density gradient which is located at zp;/Ro = 4.31. This position can
be estimated also from the empirical relation [27]

za/Ro = 1.34v/po/p1, (26)

which predicts the Mach disk location at zps/Rog = 4.24 from the orifice, so very
good agreement is found between the numerical result and empirical relation
(26).

The streamlines for the case p;/py = 0.1 are provided in Fig. 9. It can
be seen that the flow field is non symmetric and that the streamlines are not
parallel to the axis of symmetry.

In the case of the gas expansion into vacuum (p;/pg = 0) the shock wave
does not appear any more. Expression (26) predicts also that the shock wave
position tends to infinity (zps/Ro — o0). In this case the flow velocity reach its
maximal value, which depends only on the gas temperature in the inlet reservoir.
Under the hypothesis of the adiabatic expansion and the energy conservation
the following expression for the macroscopic velocity was obtained in Ref. [28]:

kT,
T ST (27)
m

The numerical value of the maximal macroscopic velocity is equal to 1.588 which
is very close to that predicted by eq. (27).

4.5. Chocked conditions

It is well known that a chocked flow is a limiting condition which occurs
when the mass flow rate will not increase with a further decrease in the down-
stream pressure environment while upstream pressure is fixed [29]. Under the
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conditions p1/po < (p1/po),, where (p1/po), is the critical pressure ratio, the
further decrease in the downstream pressure reservoir does not lead to the in-
crease of the mass flow rate and the flow becomes "chocked". However, for the
case of the flow through a thin orifice the flow never becomes "chocked". For
the first time it was discovered in Ref. [30] in the case of the flow through a thin,
square-edged orifice. Finally the physical point at which the choking occurs for
adiabatic conditions is that the exit plane velocity is at sonic conditions. But
in the case of the thin orifice flow the "sonic surface" has a convex shape and
located in the downstream reservoir, see Fig. 10, where two cases of the pres-
sure ratio p;/pp = 0 and 0.1 are shown. Therefore the flow is not sonic through
the orifice and it does not becomes really chocked: the mass flow rate continue
to increases when pressure ratio decreases, see Table 3 and Fig. 11, especially
for the low values of the rarefaction parameter. The evaluation in time of the
temperature and Mach number profiles in the orifice section are shown on Fig.
12, where one can see that the flow remains subsonic through the orifice with
the maximum velocity near the orifice wall.

4.6. Influence of the computational domain dimensions

The study of an influence of the computational domain dimensions on the
numerical results is carried out and the optimal dimensions of the left and right
reservoirs are found as Dy = 8 and Dgi = 10, respectively.

Fig. 13 shows the comparison of the macroscopic profiles evolution in time
along the symmetrical axis for p;/po = 0.1 and 6 = 100 obtained for two sizes
of the downstream reservoir Drp = 10 and 20. It is clear from these results
that the both solutions coincide until distance z/Ry ~ 8 from the orifice and
that the mass flow rate evolution is not affected at all by the dimension of the
right computational domain. It is interesting to note that in the case of the
flow through a slit much more larger computational domain must be chosen to
obtain the numerical solution independent from the size of the computational
domain.

5. Conclusion

Transient flow of rarefied gas through an orifice is studied on the basis of
nonlinear S-model kinetic equation. The simulations are conducted from the free
molecular to hydrodynamic regimes for four values of pressure ratio between
reservoirs. The mass flow rate evolution in time is analyzed and it is found
that the time to reach the steady state mass flow rate depends essentially on
the pressure ratio between the reservoirs and on the gas flow regime in the left
reservoir. It needs from 2.35 to 30.37 characteristic times to obtain the steady
state mass flow rate, the maximal time to reach the steady state is found in the
slip regime for the largest pressure ratio 0.9. The simple fitting formula for the
time dependence of the mass flow rate is proposed. It is shown numerically that
the flow through the thin orifice never becomes really chocked.
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Figure 1: Lateral section and computational domain of the flow configuration
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p1/po = 0.9 (d)
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Figure 3: The time evolution of mass flow rate W (solid line) and steady state solution (dashed
line) for p1/po = 0. (a), p1/po = 0.1 (b), p1/po = 0.5 (c), p1/po = 0.9 (d)
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Figure 4: The time evolution of mass flow rate W (solid line) obtained from S-model and fit
model eq. (25) for p1/po = 0.,6 = 1. (a), p1/po = 0.,6 = 100. (b), p1/po = 0.9,6 = 1. (c),
p1/po = 0.9, = 100. (d)
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Figure 5: Distribution of density number (a,b), axial velocity (c,d), temperature (e,f) along
the axis at several time moments for p1/pg = 0.1,6 = 1. (a,c,e) and p1/po = 0.5,0 = 1. (b,d,f).
The hollow circles correspond to the results obtained in [10] by DSMC method.
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Figure 6: Distribution of density number (a), axial velocity (b), temperature (c) along the

axis at several time moments for p1/po = 0.5,6 = 100.
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Figure 8: Distribution of density number (a), axial velocity (b), temperature (c), Mach number

(d) along the axis at several time moments for p1/pg = 0.1, = 100.
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Figure 9: Stream lines at time moment ¢t = 20 for p1/po = 0.1, = 100.
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Figure 10: Mach number iso-lines at time moment ¢t = 20 for p1/po = 0.1,6 = 100. (a),
p1/po = 0.,6 = 100. (b)
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Figure 11: Dimensionless mass flow rate as a function of pressure ratio p1/po at different
rarefaction parameters ¢
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Figure 12: Distribution of temperature (a,c), Mach number (b,d) along the orifice at several
time moments for p1/po = 0.1,8 = 100. (a,b), p1/po = 0.,8 = 100. (c,d)
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Figure 13: Distribution of density number (a), axial velocity (b), temperature (c) along the axis
at time moments ¢ = 5,10, 20 for p; /po = 0.1, = 100. with different computational domain
sizes Drp = 10,20. The time evolution of mass flow rate W with different computational
domain sizes D = 10,20 (d)
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