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THE INTERACTING 2D BOSE GAS AND NONLINEAR GIBBS MEASURES

MATHIEU LEWIN, PHAN THÀNH NAM, AND NICOLAS ROUGERIE

During the MFO workshop “Gibbs measures for nonlinear dispersive equations”, we have an-
nounced a new theorem bearing on high-temperature 2D Bose gases. The purpose of this note is
to state the result in a concise manner. Background, details, generalizations, discussion, references
and proofs will appear elsewhere shortly.

Hilbert space and state space. We consider the grand-canonical picture of the homogeneous
2D Bose gas. We assume periodic boundary conditions and thus particles live in the 2D unit flat
torus T2. The particle number is not fixed: we work in the bosonic Fock space

F = C⊕ L2(T2)⊕ . . .⊕ L2
sym

((
T
2
)n)

⊕ . . . (1)

where L2
sym

((
T2

)n)
is the usual n-particle bosonic space of symmetric square-integrable wave-

functions (identified with the n-fold symmetric tensor product of L2(T2) with itself).
We denote

S (F) := {Γ self-adjoint operator on F, Γ > 0, TrF[Γ] = 1} (2)

the set of all (mixed) quantum states on the bosonic Fock space F. For any state Γ ∈ S(F) of the
form

Γ = Γ0 ⊕ Γ1 ⊕ . . .⊕ Γn ⊕ . . .

we define its reduced k-body density matrix, a positive trace-class operator on L2
sym

((
T2

)k)
, by

the formula

Γ(k) :=
∑

n>k

(
n

k

)
Trn+1→k [Γn] .

The partial trace Trn+1→k is taken on n− k variables, no matter which by symmetry.

Hamiltonian. We are interested in the equilibrium states of

Hλ = H0 + λW, H0 =
⊕

n>1

n∑

j=1

−∆j (3)

with λ > 0 a coupling constant and

W =
⊕

n>2

∑

16i<j6n

w(xi − xj), ŵ > 0

where w : T
2 7→ R is even and ŵ is its Fourier transform (sequence of its Fourier coefficients).

Equivalently,

Hλ =
∑

k

|k|2a†kak +
λ

2

∑

k,p,q

ŵ(k)a†p+ka
†
q−kapaq

with annihilation ak and creation a
†
k operators associated to the Fourier modes eik·x, annihilat-

ing/creating a particle with momentum k ∈ (2πZ)2.
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Quantum Gibbs state. We investigate the minimizer, amongst states Γ ∈ S(F), of the free-energy
functional at temperature T and chemical potential ν, setting an energy reference E0:

Fλ,T [Γ] := TrF [(Hλ − νN ) Γ] + T TrF [Γ log Γ] + E0. (4)

HereN =
⊕

n>0 n =
∑

k a
†
kak is the particle number operator. The minimum free-energy is achieved

by the Gibbs state

Γλ,T :=
1

Zλ,T
exp

(
−

1

T
(Hλ − νN )

)
(5)

where the partition function Zλ,T fixes the trace equal to 1. The minimum free-energy is then

Fλ,T = −T logZλ,T + E0.

Nonlinear Gibbs measure. Let κ > 0 and µ0 be the gaussianmeasure with covariance (−∆+ κ)
−1

.
This is a probability measure supported on the negative Sobolev spaces

⋂
s<0 H

s(T2). Let PK be the
orthogonal projector on the span of the Fourier modes with |k| 6 K. Consider then an interaction
energy with local mass renormalization

E int
K [u] =

1

2

∫∫

T2×T2

(
|PKu(x)|2 −

〈
|PKu(x)|2

〉
µ0

)
w(x−y)

(
|PKu(y)|2 −

〈
|PKu(y)|2

〉
µ0

)
dxdy. (6)

Here 〈 . 〉µ0
denotes expectation in the measure µ0. One can show that the sequence E int

K [u] converges

to a limit E int[u] in L1(dµ0) and that

dµ(u) :=
1

z
exp

(
−E int[u]

)
dµ0(u), (7)

with 0 < z < ∞ a normalization constant, makes sense as a probability measure.

Result: the high-temperature/mean-field limit. Let κ > 0 and denote

N0(T ) :=
∑

k∈(2πZ)2

1

e
|k|2+κ

T − 1

the expected particle number of the non-interacting quantum Gibbs state (λ = 0) at temperature T
and chemical potential −κ. This number is easily seen to be of order T logT for large T and fixed κ.
Assume that

ŵ(k) > 0 for all k ∈ (2πZ)2 and
∑

k

(
1 + |k|2

)1/2
ŵ(k) < ∞.

Then, we have the following

Theorem (High-temperature/mean-field limit of the 2D Bose gas).
Set, for some κ > 0,

ν = ŵ(0)λN0(T )− κ and E0 =
1

2
λŵ(0)N0(T )

2. (8)

Then, in the limit T → ∞, λT → 1 we have

Fλ,T − F0,T

T
→ − log z. (9)

Moreover, for every k > 1 and p > 1

Tr

∣∣∣∣
k!

T k
Γ
(k)
λ,T −

∫
|u⊗k〉〈u⊗k|dµ(u)

∣∣∣∣
p

→ 0. (10)

Finally

Tr

∣∣∣∣
1

T

(
Γ
(1)
λ,T − Γ

(1)
0,T

)
−

∫
|u〉〈u| (dµ(u)− dµ0(u))

∣∣∣∣ → 0. (11)
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Comments. A detailed discussion is postponed to a future paper, that will also contain the proof
of the theorem. The following remarks are thus intentionally kept to a bare minimum.

1. The 1D analogue of this theorem was proved first in [14], see also [15] and [9, 10]. No renormal-
ization is necessary to define the limit object in this case. The 2D and 3D cases are investigated
in [9] where the analogue of the above result is proved for some modified Gibbs state instead of the
minimizer of the free-energy functional.

2. The construction of the nonlinear Gibbs measure µ requires renormalization because the natural
interaction

1

2

∫∫

T2×T2

|u(x)|2w(x − y)|u(y)|2dxdy

does not make sense on the support of the gaussian measure. The renormalized version (6) is
relatively simple to control because ŵ > 0. Positivity of the interaction is then preserved: E int

K [u] > 0
for all u. In more involved cases one can rely on tools from constructive quantum field theory,
see [7, 11, 22, 24] for reviews.

3. Gibbs measures related to µ are known [5, 6, 17] to be invariant under suitably renormalized
nonlinear Schrödinger flows. They also appear as long-time asymptotes for stochastic nonlinear heat
equations, see [16, 18, 23] and references therein for recent results.

4. The above theorem is part of the more general enterprise of gaining mathematical understanding
on positive-temperature equilibria of the interacting Bose gas. The ground state and mean-field dy-
namics of this system are now well-understood, but rigorous works showing the effect of temperature
seem rather rare [4, 8, 19, 20, 21, 25].

5. In the physics literature, classical field theories [26] of the type we rigorously derive are used as
effective descriptions at criticality, i.e. aroung the BEC phase transition, to obtain the leading order
corrections due to interaction effects [1, 2, 3, 12, 13]. Results of these papers are not easy to relate
to our theorem, in particular because we work in 2D where there is no phase transition in the strict
sense of the word. However (11) is reminiscent of methods for calculating the critical density/critical
temperature of the Bose gas in presence of interactions.
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