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The interacting 2D Bose gas and nonlinear Gibbs measures
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During the MFO workshop "Gibbs measures for nonlinear dispersive equations", we have announced a new theorem bearing on high-temperature 2D Bose gases. The purpose of this note is to state the result in a concise manner. Background, details, generalizations, discussion, references and proofs will appear elsewhere shortly.

Hilbert space and state space. We consider the grand-canonical picture of the homogeneous 2D Bose gas. We assume periodic boundary conditions and thus particles live in the 2D unit flat torus T 2 . The particle number is not fixed: we work in the bosonic Fock space

F = C ⊕ L 2 (T 2 ) ⊕ . . . ⊕ L 2 sym T 2 n ⊕ . . . (1) 
where L 2 sym T 2 n is the usual n-particle bosonic space of symmetric square-integrable wavefunctions (identified with the n-fold symmetric tensor product of L 2 (T 2 ) with itself).

We denote

S (F) := {Γ self-adjoint operator on F, Γ 0, Tr F [Γ] = 1} (2) 
the set of all (mixed) quantum states on the bosonic Fock space F. For any state Γ ∈ S(F) of the form Γ = Γ 0 ⊕ Γ 1 ⊕ . . . ⊕ Γ n ⊕ . . .

we define its reduced k-body density matrix, a positive trace-class operator on L 2 sym T 2 k , by the formula

Γ (k) := n k n k Tr n+1→k [Γ n ] .
The partial trace Tr n+1→k is taken on nk variables, no matter which by symmetry.

Hamiltonian. We are interested in the equilibrium states of

H λ = H 0 + λW, H 0 = n 1 n j=1 -∆ j (3) 
with λ > 0 a coupling constant and

W = n 2 1 i<j n w(x i -x j ), w 0
where w : T 2 → R is even and w is its Fourier transform (sequence of its Fourier coefficients). Equivalently,

H λ = k |k| 2 a † k a k + λ 2 k,p,q w(k)a † p+k a † q-k a p a q
with annihilation a k and creation a † k operators associated to the Fourier modes e ik•x , annihilating/creating a particle with momentum k ∈ (2πZ) 2 .
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Quantum Gibbs state. We investigate the minimizer, amongst states Γ ∈ S(F), of the free-energy functional at temperature T and chemical potential ν, setting an energy reference E 0 :

F λ,T [Γ] := Tr F [(H λ -νN ) Γ] + T Tr F [Γ log Γ] + E 0 . (4) 
Here N = n 0 n = k a † k a k is the particle number operator. The minimum free-energy is achieved by the Gibbs state

Γ λ,T := 1 Z λ,T exp - 1 T (H λ -νN ) ( 5 
)
where the partition function Z λ,T fixes the trace equal to 1. The minimum free-energy is then

F λ,T = -T log Z λ,T + E 0 .
Nonlinear Gibbs measure. Let κ > 0 and µ 0 be the gaussian measure with covariance (-∆ + κ) -1 . This is a probability measure supported on the negative Sobolev spaces s<0 H s (T 2 ). Let P K be the orthogonal projector on the span of the Fourier modes with |k| K. Consider then an interaction energy with local mass renormalization

E int K [u] = 1 2 T 2 ×T 2 |P K u(x)| 2 -|P K u(x)| 2 µ0 w(x-y) |P K u(y)| 2 -|P K u(y)| 2 µ0 dxdy. (6) 
Here . µ0 denotes expectation in the measure µ 0 . One can show that the sequence

E int K [u] converges to a limit E int [u] in L 1 (dµ 0 ) and that dµ(u) := 1 z exp -E int [u] dµ 0 (u), (7) 
with 0 < z < ∞ a normalization constant, makes sense as a probability measure.

Result: the high-temperature/mean-field limit. Let κ > 0 and denote

N 0 (T ) := k∈(2πZ) 2 1 e |k| 2 +κ T -1
the expected particle number of the non-interacting quantum Gibbs state (λ = 0) at temperature T and chemical potential -κ. This number is easily seen to be of order T log T for large T and fixed κ. Assume that w(k) 0 for all k ∈ (2πZ) 2 and

k 1 + |k| 2 1/2 w(k) < ∞.
Then, we have the following Theorem (High-temperature/mean-field limit of the 2D Bose gas).

Set, for some κ > 0,

ν = w(0)λN 0 (T ) -κ and E 0 = 1 2 λ w(0)N 0 (T ) 2 . ( 8 
)
Then, in the limit T → ∞, λT → 1 we have

F λ,T -F 0,T T → -log z. (9) 
Moreover, for every k 1 and p > 1

Tr k! T k Γ (k) λ,T -|u ⊗k u ⊗k |dµ(u) p → 0. ( 10 
)
Finally

Tr 1 T Γ (1) λ,T -Γ (1) 0,T -|u u| (dµ(u) -dµ 0 (u)) → 0. ( 11 
)
Comments. A detailed discussion is postponed to a future paper, that will also contain the proof of the theorem. The following remarks are thus intentionally kept to a bare minimum.

1. The 1D analogue of this theorem was proved first in [START_REF] Lewin | Derivation of nonlinear Gibbs measures from many-body quantum mechanics[END_REF], see also [START_REF]Gibbs measures based on 1D (an)harmonic oscillators as mean-field limits[END_REF] and [START_REF] Fröhlich | Gibbs measures of nonlinear Schrödinger equations as limits of quantum many-body states in dimensions d 3[END_REF][START_REF]A microscopic derivation of time-dependent correlation functions of the 1D cubic nonlinear Schrödinger equation[END_REF]. No renormalization is necessary to define the limit object in this case. The 2D and 3D cases are investigated in [START_REF] Fröhlich | Gibbs measures of nonlinear Schrödinger equations as limits of quantum many-body states in dimensions d 3[END_REF] where the analogue of the above result is proved for some modified Gibbs state instead of the minimizer of the free-energy functional.

2. The construction of the nonlinear Gibbs measure µ requires renormalization because the natural interaction 1 2

T 2 ×T 2 |u(x)| 2 w(x -y)|u(y)| 2 dxdy
does not make sense on the support of the gaussian measure. The renormalized version ( 6) is relatively simple to control because w 0. Positivity of the interaction is then preserved: E int K [u] 0 for all u. In more involved cases one can rely on tools from constructive quantum field theory, see [START_REF] Dereziński | Mathematics of Quantization and Quantum Fields[END_REF][START_REF] Glimm | Quantum Physics: A Functional Integral Point of View[END_REF][START_REF] Simon | The P (Φ) 2 Euclidean (quantum) field theory[END_REF][START_REF]Constructive quantum field theory: The 1973 Ettore Majorana international school of mathematical physics[END_REF] for reviews.

3. Gibbs measures related to µ are known [START_REF] Bourgain | Invariant measures for the 2D-defocusing nonlinear Schrödinger equation[END_REF][START_REF]Invariant measures for the Gross-Pitaevskii equation[END_REF][START_REF] Oh | A pedestrian approach to the invariant Gibbs measures for the 2D defocusing nonlinear Schrödinger equations[END_REF] to be invariant under suitably renormalized nonlinear Schrödinger flows. They also appear as long-time asymptotes for stochastic nonlinear heat equations, see [START_REF] Mourrat | Global well-posedness of the dynamic Φ 4 model in the plane[END_REF][START_REF] Röckner | Ergodicity for the stochastic quantization problems on the 2D-torus[END_REF][START_REF] Tsatsoulis | Spectral gap for the stochastic quantization equation on the 2-dimensional torus[END_REF] and references therein for recent results.

4.

The above theorem is part of the more general enterprise of gaining mathematical understanding on positive-temperature equilibria of the interacting Bose gas. The ground state and mean-field dynamics of this system are now well-understood, but rigorous works showing the effect of temperature seem rather rare [START_REF] Betz | Critical temperature of dilute Bose gases[END_REF][START_REF] Deuchert | Bose-Einstein condensation in a dilute, trapped gas at positive temperature[END_REF][START_REF] Seiringer | A correlation estimate for quantum many-body systems at positive temperature[END_REF][START_REF]Free energy of a dilute Bose gas: Lower bound[END_REF][START_REF] Seiringer | Rigorous upper bound on the critical temperature of dilute Bose gases[END_REF][START_REF] Yin | Free energies of dilute Bose gases: Upper bound[END_REF].

5.

In the physics literature, classical field theories [START_REF] Zinn-Justin | Quantum Field Theory and Critical Phenomena[END_REF] of the type we rigorously derive are used as effective descriptions at criticality, i.e. aroung the BEC phase transition, to obtain the leading order corrections due to interaction effects [START_REF] Arnold | BEC transition temperature of a dilute homogeneous imperfect Bose gas[END_REF][START_REF] Baym | The transition temperature of the dilute interacting Bose gas[END_REF][START_REF]Bose-Einstein transition in a dilute interacting gas[END_REF][START_REF] Holzmann | Condensate density and superfluid mass density of a dilute Bose-Einstein condensate near the condensation transition[END_REF][START_REF] Kashurnikov | Critical temperature shift in weakly interacting Bose gas[END_REF]. Results of these papers are not easy to relate to our theorem, in particular because we work in 2D where there is no phase transition in the strict sense of the word. However [START_REF] Glimm | Quantum Physics: A Functional Integral Point of View[END_REF] is reminiscent of methods for calculating the critical density/critical temperature of the Bose gas in presence of interactions.
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