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STEIN’S METHOD FOR DIFFUSIVE LIMITS OF
QUEUEING PROCESSES

E. BESANCON, L. DECREUSEFOND, AND P. MOYAL

ABSTRACT. Donsker Theorem is perhaps the most famous invariance
principle result for Markov processes. It states that when properly nor-
malized, a random walk behaves asymptotically like a Brownian motion.
This approach can be extended to general Markov processes whose driv-
ing parameters are taken to a limit, which can lead to insightful results
in contexts like large distributed systems or queueing networks. The
purpose of this paper is to assess the rate of convergence in these so-
called diffusion approximations, in a queueing context. To this end, we
extend the functional Stein method introduced for the Brownian approx-
imation of Poisson processes, to two simple examples: the single-server
queue and the infinite-server queue. By doing so, we complete the re-
cent applications of Stein’s method to queueing systems, with results
concerning the whole trajectory of the considered process, rather than
its stationary distribution.

Diffusion approximation, Queueing systems, Stein’s method

1. INTRODUCTION

The Markovian analysis of queueing systems often leads to stochastic pro-
cesses with an intricate evolution, for which the classical approach, which
for instance requires the computation of the stationary distribution, is in-
tractable. To gain some insights on the behavior of the process, it is then
customary to push the parameters to their limit and analyze the limiting
process which hopefully will reveal the inner structure of the model under
analysis. Diffusion approximations, as they are called, have been and still
are the subject of numerous papers (see [15, 19] and references therein to get
a glimpse of the very rich literature on the subject). The most naive exam-
ple which comes to mind is the convergence of a normalized Poisson process
to a Brownian motion B: Letting N* be a Poisson process of intensity \,
we have that

(1) N> (:; t %(Nk(t) - )\t)) % B,

where the convergence holds in distribution on the Skorokhod space as A
goes to infinity. As the convergence in distribution is induced by a metric
over the set of probability measures, Eqn. (1) just says that the distance
between the distribution of N* and the distribution of B over Dy tends to
zero. The next step is to determine the rate at which this limit holds. The
first study addressing this issue was due to Barbour in the 90’s [1]. Since
then, no papers on this subject appeared until [6, 13, 16]. These four papers
share the same common ground, relying on the so-called Stein method (SM)
[18], see Section 4.1 for a modern introduction. It is based on the fact that
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the topology of convergence in distribution over a separable metric space y
can be defined through the distance

d(p,v) = S </Xf dp — /Xf dV) :

where Lip —1 is the set of Lipschitz continuous function: f : y — R such
that

|f($) - f(y)| S dX(xay)’ vxay € X-

An important avenue of literature has been dedicated to Stein’s method in
the case x = R. Close to the class of models we have in mind, let us mention
the fruitful recent applications of the SM, to assess the rate of convergence
of the stationary distributions of various processes involved in queueing:
Erlang-A and Erlang-C systems in [5]; a system with reneging and phase-
type service time distributions (in which case the target distribution is the
stationary distribution of a piecewise Ornstein-Uhlenbeck process) in [4],
single-server queues in heavy-traffic in [12].

When y is no longer R, however, the development of the SM is much more
involved. The main contribution of this work is to present applications of
the Stein’s method to estimate the rate of convergence in functional CLT’s
arising in queueing. Specifically, we complete existing functional Central
Limit Theorems of classical queueing systems (namely the M/M/1 queue
and the 'pure delay’ M/M /oo system) by assessing the rate of convergence to
the diffusion limit, using Stein’s method at the level of the whole stochastic
process. These two examples thus provide good illustrations of how the
SM can be fruitfully applied in a queueing context, at the process level. By
completing two classical asymptotic results with a simple rate of convergence
estimate, for classes of functions that have a practical meaning, the present
work can thus constitute a promising starting point for similar development
regarding a larger class of queueing systems.

This paper is organized as follows. In Section 2, we state our main re-
sults for the diffusion approximation of the M/M/1 and M/M/oco queues.
In Section 3, we introduce the intermediate processes, i.e. the affine inter-
polation of both the Markov process under study and the limit Brownian
motion. Then, we estimate the error done by replacing the original pro-
cesses by their affine interpolations. Section 3 is devoted to the functional
Stein method with which we control the distance between the distributions
of the interpolations defined above. The specific calculations for the M/M/1
queue are done in Section 5 and in Section 6 for the M/M /oo system. The
Appendix contains the proofs of two technical lemmas.

2. THE RESULTS

In this section we present our main results. In Theorems 2.1 and 2.2
below, we provide bounds for the speed of convergence in the diffusion ap-
proximation of two standard queueing systems: the single-server and the
infinite server queues, respectively. In what follows, for any 7" > 0, D := Dp
denotes the Skorokhod space of cAidlAdg functions from [0,7] to R. (We

omit the dependance in T for notational simplicity.) The functional space
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>, to be properly defined in Definition 4.2 below, is a subspace of the space
of 1-Lipschitz continuous from D to R. We denote for any U,V in D,

(2) ds (U, V) = sup [E[F (U)] - E[F (V)]].

Fey
The distance dy, is then the appropriate tool to introduce the results to
come.

2.1. The M/M/1 queue. We first consider the classical My/M,, /1 queue,
that is, a single server with infinite buffer, where the arrival is Poisson of
intensity A, and the service times are i.i.d. from the exponential law &(u).
For all t > 0, we let LT(¢) denote the number of customers in the system
(including the one in service, if any) at time ¢. The process L' is clearly
birth and death, and is ergodic if and only if A/u < 1. If the initial size of
the system is # € N, then L' obeys the SDE

t
@ 0=+ MO - [ e Nads), 120

for two independent Poisson processes Ny and N,,. This process is rescaled
by accelerating time by a factor n, while multiplying the initial value, and
then dividing the number of customers in the system at any time by the same
factor. For all n € N*, the resulting normalized process LT then satisfies

- Noa(t)  Nun(t) 1 ¢
T () — nA ©
Lhit) = = + - 4= /0 Lyt sy WNa(s). €20,

n n n

It is a well established fact (see e.g. Proposition 5.16 in [15]) that the
sequence <LIL n > 1) converges in probability and uniformly over compact

sets, to the deterministic function
Lt it (x4 X —put)T,

and that the process

n —— _
Zl i t— vn (LTt—LTt)
converges in distribution in ID to the standard Brownian motion.

We can control the speed of the latter convergence. For that purpose,
we bound for any fixed n and any horizon T', the Y-distance between these
processes, defined by (2). We have the following result,

Theorem 2.1. Suppose that A < p and let T < u—f/\ Then, there exists a
constant cp such that for all n € N,

log n
de (7t B) < L 08"
E( i ) ~ loglogn /n’

where B is a standard Brownian motion.

The proof of Theorem 2.1 is deferred to Section 5.
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2.2. The infinite server queue M/M/oo. We now turn to the classi-
cal “infinite server” My /M, /oo queue: a potentially unlimited number of
servers attend customers that enter the system following a Poisson process
of intensity A, requesting service times that are exponentially distributed of
parameter p (where A, u > 0).

Assuming throughout that the system is initially empty, let LF(¢) denote
the number of customers in the system at time ¢. The process Lf is a.s. an
element of D; this is an ergodic Markov process which obeys the SDE

+00 .t )
LH(E) = Ny(t) — Z/O 1(pse oy Ni(ds), £ 0,
=1

where Ny is a Poisson process of intensity A and the N, li’s are independent

Poisson processes of intensity . The classical scaling of the process Lf goes
as follows; we accelerate time by a factor n € N* and divide the size of the
system by n. The corresponding n-th rescaled process is then defined by

ALY, )\n /

Lt N (ds).

(s)>L} #

It is a well known fact (see e.g. Theorem 6.13 in [15]) that the sequence of
processes (L_gb, n > 0 ) converges in L' and uniformly over compact sets to
the deterministic function

(4) LE:t—s p— pe ™,

where p = A/u. Moreover, if we define for all n the process
9 Zi+ t— Vi (I - TH0))

then the sequence (Z,ﬁl n > O) converges in distribution to the process Z*
defined by

(6) ZF ot Z8t) = Z8(0)e M + /0 t e Mt=3) /h(s) dB(s)

where h(t) = X (2 — e #) for all t > 0; see e.g. [2] or Theorem 6.14 in [15].
We have the following result,

Theorem 2.2. For any T > 0, there exists a constant cr > 0 such that for

alln > 1,
crlogn

loglogn f
We defer the proof of Theorem 2.2 to Section 6.

ds (2%, 2%) <

2.3. Consequences. Let us quote a few functionals which are often encoun-
tered in queueing analysis, and which are regular enough to be elements of
¥ (see Definition 4.2 below). This is the case, first, for the function F, that
is defined for any mild enough function f and 7" > 0, by

D

Fy x:(xt,tE[O,T]) b—>%/0Tf(xS)ds,



observing that Fy (X) goes to Ex [f] for large T" whenever the Markov process
X is ergodic of invariant probability w. The proof is deferred to Remark 2
below. Similarly, for M > 0 and p > 2,

D —R
Furyp e T 1/p
P e n—></ ]ws/\M\pds> .
0

also belongs to the set of admissible test functions. Observe that for M and
p large enough, Fir,(x) can be considered as an ersatz to sup,<qp |2s|.

For any of these functionals F', if d(Px,,Px) tends to 0 as n~®, then the
distribution of the random variables (F(X,), n > 1) converges in the sense
of a damped Kantorovith-Rubinstein distance at a rate n=%:

E[o(Fe0)] - B [o(F0)]| < en7e,

sup
et

where C,‘(f is the set of three times differentiable functions from R to R with
bounded derivatives of any order. Note that this kind of result is inaccessible
via the standard Stein’s method in dimension 1, since we usually cannot

achieve the first step of the SM, which consists in devising a functional
characterization of the distribution of F(X).

3. INTERPOLATION OF MARKOV PROCESSES

To prove Theorems 2.1 and 2.2, we will be led to bound the distance be-
tween the affine interpolation of the Markov process under consideration (Z
in the first case, Z* in the second), and that of a (time-changed) Brownian
motion, on a finite horizon T > 0.

For fixed T' > 0 and n € N*, let us denote throughout this paper, by
t?, i = 0,...,n, the points of the discretization of [0,7] of constant mesh
T /n, namely ¢ = ¢T'/n for all i = 1,...,n. For a function f € D, denote by
I1, f its affine interpolation on the latter grid, that is, for all ¢ € [0,77], for

k=1,...,n such that t € [ Z_l,tﬂ,

(7) I, f(t) = (f (tr) = f (th1)) (¢ = ti_y) + f (1) -

An immediate computatlon then shows that for all t < T and for k as above,
we have that

k—1
n.s0 = () - f(tZ1))(t—tZ1)+Z(f(t?)—f(?1))%>+f(0)
i=1

T <@:1 F &) 1) /0 Ln  my(8) ds) + £(0)

(i () — F () hm)) +10),

=1

(9) ey = / ds, i=1,...,n.
z 1’

M:

%

n
T



In what follows, B denotes a standard one dimensional Brownian motion
and observe that I, B and B,, defined by (16) below, are equal in law. Let
us define the space

(10) W := Wp = {continuous mappings from [0,7] to R},

which, furnished with the sup norm || . || defined for all f € W by || f ||=
supgeo,r) |.f(2)], is a Banach space.

The Proposition 13.20 in [11] states that for all 7' > 0, for some ¢ > 0,
we have that

(11) E|[|I1,B — B |w] < cn™ Y2, for all n € N*,

We now estimate the distance between the sample-paths of Birth-and-
Death processes and their interpolation. Specifically,

Lemma 3.1. Let T > 0, n € N*, and let X be a N-valued Markov jump
process on [0,T] of infinitesimal generator <. Suppose that there exist two
constants J € N and a > 0 such that

e the magnitude of the jumps of X is bounded by J > 0, i.e. for all
i,j €N, &/(i,5) = 0 whenever |j —i| > J;
e the intensities of the jumps of X are bounded by na, i.e. for all
i,jeEN,i#7, d(i,j) < na.
Then,
log n
E[| X —IL,X w] <2J —>"
loglogn
Proof. Fix n € N and within this proof, set for ¢} = % for i =0,...,n. For
any ¢ € [0,7T], for i < n such that ¢ € [t ;,{"] we have that

i—17 %%
_ % (b= 7)) (X () = X ( ’31))‘
<2 [S;lp q | X(t) — X (6]

=174

rxm+MMm:kw—Xwﬂ

so that

(12) E[| X —1I,X [|w] <2E

max sup | X(t) — X (¢t .
i€0n—1] te[t?_l;tﬂ | ( ) ( [ 1)|

But for any ¢ and any ¢ € [t |,t"], we have that

i—10 g
[X() = X ()| < T (4], +D3).

where Al and D} denote respectively the number of up and down jumps of
the process X within the interval [t ;,¢}"]. In turn, by assumption A?, + D},
is stochastically dominated by a Poisson r.v., say P?, of parameter anLl =

aT. All in all, we obtain with (12) that "
EWX—HMWMgzmﬂgﬁpﬂ
1€|l,n

and we conclude using Proposition A.1. O O
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4. A FUNCTIONAL STEIN METHOD

4.1. Stein’s method in a nutshell. Say that we want to compare a dis-
tribution » on R™, ¢ > 1, to the standard Gaussian distribution on R",
denoted by p,. Consider the processes

t
(13) t X(z,t) =e ‘o + \/5/ e~ dB"(s), x eR",
0

where B" is an ordinary Brownian motion in R™. For all z, it is a Gaussian
process whose distribution at time ¢ is a Gaussian law of mean e 'z and
covariance matrix (1 — e~2)Id,. For t > 0, z € R", let

QS (@) = BLf(X(@0)] = [ (e +Biy) dpnly),
where 8; = v/1 — e~2t. The dominated convergence theorem entails that
Qr f(z) £ / fdpn, xeR™
]R?’L

Moreover, the Dynkin Lemma and the ItAf formula entail (see [10]) that

1) QU@ - @)= [ Q@ s, seR 120,
where for f regular enough
d
A"f(z) = Qi f)(@)| = (2, duf(2))gn — Anf(2).
t=0

The notation d, f represents the usual gradient of f : R™ — R and A, f is
its Laplacian. Integrate both sides of (14) with respect to v to obtain the
so-called Stein-Dirichlet representation: for any f in a well chosen functional
space F (i.e. we must at least require that the previous limits do exist and

that A"Q" f is well defined and integrable for f € F),

(15) dr (v, py) = sup/n/ A"QY f(x) ds dv(z).

fer

This formula is the first step of the modern approach to the Stein’s method,
see [8].

4.2. Generalization to infinite dimension. As we mentioned above, the
proofs of Theorems 2.1 and 2.2 critically rely on bounding the distance be-
tween the affine interpolations of the Markov processes under consideration
and their diffusion approximations. For this, we need to go to a functional
setup, that is, to bound a similar expression to (15) when the target measure
is that of a Gaussian process, instead of a d-dimensional Gaussian random
variable. This is done in the main result of this section, Theorem 4.5.

Fix T > 0 and an integer n > 1. Recall (9), and define the following
subspace of W,

Wn — Span{h_?,j = 15 e an}a

equipped with the sup-norm || . ||y. Now define the process
n
(16) Bn =) Y;h,
j=1
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where (Y}, j =1,--- ,n) is a Gaussian vector of distribution p,. Clearly, B
belongs to W, Wlth probablhty 1, thereby defining a Gaussian dlstrlbutlon,
denoted by m,, on W,. We also need a space to define the gradients. For
this, we now consider the space

H, = Span{h?’j =1, ,TL}

equipped with the scalar product

T
(b by, = | W(9)g'(s) ds, hg. € H
Remark 1. Distinguishing between the spaces H,, and W, may seem spuri-
ous, as these are algebraically the same set, and only differ by their norms.
Actually, Wy, (respectively, Hy,) is the image by the map I1,, defined by (7),
of the set W defined by (10) (resp., of the Banach set H - dense in W - that
is defined by (23) below). An intuitive explanation of our need to introduce
the space H is as follows: As mentioned above, the control of the properties
of the solution of the Stein equation requires dealing with the derivative of
this function. In functional spaces, the usual notion of derivative is replaced
by that of FrAlchet differential: A function F from W into R is FrAlchet
differentiable whenever for any w,w' € W, the function

e— F(w+ew')

is differentiable with respect to € in a neighbor of 0. For technical reasons,
which are detailed in [7], assuming that F is FrAlchet differentiable in a
probabilistic context is too stringent a condition. It turns out that the notion
of weak differentiability, i.e. the function

e— F(w+¢eh)

is differentiable with respect to € in a neighbor of 0 for any w € W and
h € H is sufficient for what we aim to do, and do not put too strong a
constraint on F'. Hence the necessity of considering W (the space into which
the sample-paths of our processes take place) and H (the set of the admissible
directions of differentiation), and thus to distinguish between the spaces W,
and H, at the level of the interpolated processes.

The space HS? (2) is then the vector space
H®) = span {1} @ bt = ((s1,2) — B} (s1)hf(s2)), G,k = L, o,

equipped with the scalar product: For any h, g € HY (2),

T 82 829
h . 9) a®® = / / 881382 ,52) m(ShSQ) dsy dss.

For a regular enough function f : W,, = R, we denote by D, f its differen-
tial, i.e. for any w € W, for any h € H,,

a7) (Do f(w), By, = - Fw+h)

8
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We even need to iterate this definition and consider the second order differ-
ential, for any w € W, for any hy, he € H,,
32

(18) <Dr(12)f(w)’ (hl’h2)>H$§’(2) - Oe10¢e,

f(w + €1h1 + €2h2)
e1=€2=0
The map
R™ — W,
n
T, :
" W yn) Yy Y

is a morphism of probability spaces, i.e. it is linear, continuous and preserves
the probability measures: the image measure of u, by 7T, is actually m,.
Then, we can generalize the construction we just followed on R™ to the
finite dimensional space W,,. The family of maps (P[*, t > 0) is defined as
follows: Py = Id and for all ¢ > 0,

LY(m,) — L(m,)
B { f — (w'—>P”f / fle™w + BiC) d”n(())

Since T, is linear and since m, is the image of u, by T, we easily see that
for any t > 0

QF(foTh) = (P'f) o Tn,

which can be written

(19) Pl f=Qi(foTn)o Ty
Thus, (P/*, t > 0) is a semi-group such that

Pt"f(w)H—“>/ fdm, weW,.
Wn

From (19), we also infer that for f : W,, — R twice differentiable,
d

L= SRR = Ar(foT) o T,
=0
Hence, we have that
¢
(20  PMf(w) — f(w) = / L"Prf(w) ds, w € W, t >0,
0
where for f regular enough
n (2 n n
L f(w) = (Duf (w), wyy, = 3 (DPf(w), b ) o
j=1 "
Thus, for any measure v, on W,
(21) dz, (vn, ™) = sup / / L"P! f(w) ds dvy(w),
fEFn n

where F,, is a space of regular enough test functions from W,, into R. We
can now precise which kind of test functions we are going to consider. In
view of (21), it must contains twice differentiable functions but for technical
reasons, we need more than that.

9



Definition 4.1. A function f : W, — R is said to belong to the class %y,
whenever it is 1-Lipschitz continuous, twice differentiable in the sense of
(18), and we have

(22)

sup
’wEWn

for any g € Wy, h,k € Hy,.

<D7(12)fn(w) - Dg)fn(w +9), h® k>H®(2)

< llgllw lIAllz2l[Fl 2,

Actually, in the definition of the distance between distributions of pro-
cesses, the test functions are defined on the whole space W. Hence, we must
find a class of functions whose restriction to W,, belong to 3, for any n > 1.
This involves the notion of H-differential on W. Let

(23)  H= {h, W € L2([0,T]) such that h(t) = /Ot B (s) ds}.

It is an Hilbert space when equipped with the scalar product

(hg) = /OT h'(s)d'(s) ds.

A function f : W — R is said to be twice H-differentiable whenever for any
w € W, for any h € H, the function

R —R
{ e +— f(w+eh)

is twice differentiable in a neighbor of 0. We denote by Df and D® f its
first and second order gradient, defined by

(D (@), Wy = £ F+<h)

2

H®®?) Oe10¢e9

)

e=0

(DD f(z), b @ ho) Fw + e1hy + e2hs)

e1=e2=0

Definition 4.2. The class 3 is the set of 1-Lipschitz continuous, twice H -
differentiable functions such that

Sup ‘<D(2)f(w) ~DOf(w+g), h® k>
we

foranyge W, h,k € H.

< llgllw lIAllz2[F 2,

H®(2)

For f : W — R, let f, = fjw,. If f is once H-differentiable, then, we
have that for any w,, € W, any j € {0,--- ,n — 1},

d .
= — fo(wy, + b,
e=0 dt ( ) e=0

= <ann(wn), hil>H )

n

(24) (Df(e(wn), h), = % flelw + <))

H

Thus, it is straightforward that if f belongs to % then f, belongs to ¥,, for
any n > 1.
10



Remark 2. We can now show how to prove that the functionals mentioned
in the introduction do belong to . Consider the first one :

1 T
Fya) =7 [ () ds.
Then, for any x,y € W,
|Fy(z) = Fr(y)| < llz —yllw

provided that f is Lipschitz continuous. Moreover, a classical computation
shows that

(DO Fy(@+9) - DD f(@), hok)

T
= | ("t (o)) = )k, ds

Hence Fy belongs to ¥ as long as f" does exist and is Lipschitz continuous.
The other cases are handled similarly.

4.3. Functionals of Poisson marked point processes. Let N, be a
marked point process on E = [0,7] x R* whose jump times are denoted
by (T,,,n > 1), and jumps magnitude by (Z,,n > 1). It is said to be a
Poisson marked point process of (diffuse) control measure v whenever for
any function u = (u(s, 2), s € [0,T], z € RT) in L?(v), the process

t— (Vou)(t) = T;tu(Tn, Zn) — /Ot /]R+ u(s, z) dv(s, z)
is a square integrable martingale. We set
(25) Viu = (Vyu)(T).
Consider the so-called discrete gradient [9, 14],
Ve f(Ny) = f(Ny +es2) = f(N), s €[0,T], z € RT,

where N, + €, represents the sample-path NV, to which we add an atom
at time s of size z. Since v is diffuse, there is a zero probability that an
atom at time s already exists in N,. Similarly, we denote by N, — ¢, . the
sample-path IV, to which we remove the atom ¢, , provided it is present in
N, otherwise N, remains unchanged.

<m}.

Definition 4.3. We define the domain of V as
Lemma 4.4. For u € L?(v), for f € dom 'V, we have that

domV =< f, E / ’V&Zf(Ny)’Q dv(s, z)
[0,T| xR+

We then have the integration by parts formula [9]:

JTIXRF

(26) E[f(N,) V,ul| =E [/[ Vs f(Ny)u(s, 2) du(s,z)] .
0
For the sake of completeness, we reproduce the proof of this identity,
which is a mere rewriting of the Campbell-Mecke formula for Poisson pro-
cesses.
11



Proof. By the very definition of V,

E [/ Vs f(Ny)u(s, z) du(s, z)}
—E[/fN—i—esz) (s,z) dv(s, z}— {/f z) du(s, z)}

The Campbell-Mecke formula for Poisson processes says that

(28) E[ /E F(N, + e )uls, 2) du(s, z)] = E|fN) Y Ty Z,)

T,<T

Plug (28) into the right-hand-side of (27) to obtain (26). O O

Remark 3. If we have an unmarked Poisson process of intensity dv(s) =
v ds, then (26) still holds by suppressing all occurrences of the z variable.

We are now equipped to prove the cornerstone theorem of our paper. For

u?, j=1,---,n a family of elements of L?([0,T] x R, v), set
(s,2,1) Zu S, %) ) and V u"(t) = sz(u”) R (t)
j=1

For any j € {1,--- ,n}, let

(29) in = /OT /]R+ ugb(s,z)2 dv(s, 2)

and consider
Le, = diag(gin, j=1,--,n).

Furthermore, take Y = (Y}, j > 1) a family of independent standard Gauss-
ian random variables and let

(30) Be, (1) Zé} n Yj I (2).

Theorem 4.5. Assume that (u}, j =1,---,n) is an orthogonal family of
elements of L?>(v). Then, for any fn € Xn,

B [fu(Be,)) = B [fu(Vo)
n-3/272 ™
ST Y Gkt [ (e (s ) (s 2)] (o),

gk i=1 1xR
where V3, is defined by (25).

Proof. For the sake of notational simpicity, we remove the suffix n as it is
fixed along the proof. Note that in view of (24), there is no ambiguity to
denote D,, as D since they coincide on W,,. To shorten the equations, F
stands for [0,7] x R* and = = (s, 2) is a generic point of E.

12



Dividing each u} by &;,, j > 1, it is sufficient to prove the result for
&n=1,7>1. Now recall (16). First, in view of (20),

31) E[f(B))]-E[f Z/ [Viu; (DPF(Viu), hy),] dt

+ Z/O E (DO Pf(Viu), hy@hy) ] dt.
j=1

According to the integration by parts formula (26) and to the fundamental
theorem of calculus, we get that

> E[Viu; (hj, DP.f(Viu)) )

=1
_SE [ [ ) (DRS(Tiu+ ulw) = DRV 1), du<x>]
j=1 U¥F
n 1
= MZlE l/E/O wj(x)ug () <D(2)Ptf(vl’iu +ru(z), h; ® hk)>H®(2) dr dl/(ﬂ:)] )

But as the uy’s are orthonormal,

HM:

< AP f(Viu), hj®hj>

H®?)

n 1
=E le/E/o wj(x)ug(x) <D(2)Ptf(vl’ju) ,hi ® hk>H dr dl/(ﬂ:)] .

Since f belongs to ¥,,, the right-hand-side of (31) becomes

)y L / DOPf(Vyutru(z) ~ DPPf(Viw) by @ hi) |

7,k=1

X wj(z)ug(x) dr dv(z) dt
T 00
< 3% Illelielis | bl ol avio) ([T rar) ([T ).
j,k=1 0 0
Observing that
lu(@)llw < > [u@)| [Pllw =02 Jw(w)
=1 1=1

the result follows by recalling that |||z < n~Y2 for all j € {1,--- ,n}.

] ]

5. PROOF OF THEOREM 2.1

We now turn to the proof of Theorem 2.1. Fix T < ﬁ Then for all
n € N* we readily have that
(82)  dw (2], B) <ds (2], 1,2}) + ds(11, 2}, 11, B) + dx(IL, B, B).
13



First observe that the function LT is affine, and hence coincides with Hnﬁ
on [0,T]. Moreover, the operator I, is linear and the elements of ¥ are
1-Lipschitz-continuous, thus we have that for all n,

As(Z), W 20) < B[ 2, =12} Iw] € s B I L = L], ]
clogn

~ loglogn/n’

where the last inequality follows from applying Lemma 3.1 to the Markov

(33)

processes (LIL tn > 1) for J =1 and a = AV u. Now, for any n € N*  if we
let 78 = inf{t > 0, L (t) = 0}, for any F € ¥ we have that

(34) E HF (m.2}) - F (HnB)H
=B [|F (0,2]) - F (I1,B)| 1rep ]
+E HF (m.zf) - F (HnB)‘ Lrsmy) -
We first prove that for some ¢ > 0,

(35) E|[|F (1L,2)) = F(I,B)| 1yz<mpy] < % neN*,

Fix n € N*. On the event {T' < 7'}, for any ¢ € [0,T") we have that

+ _ 1 Nn)x(t) . nt) — Nn,u(t) _ n
Zn(t)_m<\/X( T \/)\_t) \/ﬁ<7\/m \/,u_t>>

—. \/>\1+—u (2.0 - 2},.0) .

To apply Theorem 4.5, it is useful to represent the processes Z.

n’

n > 1 as
marked Poisson processes. For this, we fix n € N*, and let N;E(A i) be the

marked Poisson point process on [0,7] x {—1,1} of control measure
A
€ 1( dT’) +
i

1
A+ A+u€*1(dr))’

that is, an ordinary Poisson process on the positive half-line with intensity
n(A + u), such that each atom is assigned a mark +1 or —1, independently
of everything else, with respective probability A(A + )1 and p(\ + )~ L.
By the thinning property of Poisson processes, the point process counting
the atoms of N;i()ﬁw
n\ (respectively nu). For any t € [0,T7], let

0,7] x {-1,1} — R
Vt (S,T) — \/n(l)\——I—u) Tl[O,t)(s)a

and define for all i =1,--- | n,

n 1
u;-r(s,r) = \/;(vty(s,r) — Ut?_1(5’r)) = \/ﬁ Tl[t?ﬂ?t?)(s).

Then, it is easily checked that

dvl(s,r) =n\+p) ds ® (

) with mark +1 (respectively —1) is Poisson of intensity

ZH(t) B A v, t < T,
14



which, recalling (8) and (9), yields to
. n
M,2], > Al b
i=1
It is then clear that for all 7,7 < n,

/ u;r(s,r)u;r-(s,r) dl/;rl( r) = 6ij,
[0,T)x{-1,1}

SO {u;r i = 1,---,n} is an orthogonal family. Moreover, comparing (8)
) (30) we readily obtain that II,,B dist Bt when letting f;m =1 for all
j=1,--+,n. Consequently, (35) follows from Theorem 4.5 and the fact that

n
|uuuT| du! / nds = ———
]1;1/ R T3/2,/A+ Z i T+ 1)
Regarding the second term on the right-hand side of (34), observe that F is
in particular bounded, so there exists a constant ¢’ such that for all n € N*,
E[|P(11,2]) = F(IL,B)| 1{rsmgy] < cPT> 7).

But P [T > 7] tends to 0 with exponential speed from Theorem 11.9 of [17]:
if p <1, foranyx>0andanyy<0

lim * log P [To < —+y] i),
i

n—oo n A
where f is strictly positive on (0,00). This shows that for some ¢”,
E|[|F(Z}) - F(B)| 1(rsmpy] < e

for all n which, together with (35) in (34), shows that for some constant c,
for all n € N*,

dx (11,2}, 11,,B) <

=k

This, together with (33) and (11) in (32), concludes the proof.

6. PROOF OF THEOREM 2.2

We now turn to the speed of convergence in the diffusion approximation
of the infinite server queue. Fix T > 0 throughout this section.

6.1. An integral transformation. We know from eq. (6.23) of [15] that
the sequence of processes (Y,g in > 1) defined for all n > 1 by

(36) ts YE(E) = ZE () — Z8(0) + /O " Zi(s) ds

converges in distribution to the time-changed standard brownian motion
B o, where

(37) y(t) = 2Xt — %(1 —e My, t>0.

This integral transformation of the processes Z%, n > 1 will turn out to be

useful to bound the rate of convergence of {Z%} to the Ornstein-Uhlenbeck

process Z* defined by (6). Specifically, as will be shown below, the latter
15



rate of convergence is in fact bounded by that of {Y !} to the time-changed
brownian motion B o v. First observe that

Proposition 6.1. The mapping
D — R x D%
° { £ (10, 50 = 70+ [ F(s)ds)
0

is linear, continuous (for the Skorohod topology on D), and one to one.

Proof. Let us fix n € ID)% and consider the following integral equation of
unknown function z,

z(t) — 2(0 =—u/ ) ds +n(?).

We clearly have for all ¢ > 0,

(6 = 200 4 (e~ [ €70 n(s) ds,

hence © is bijective and for all (z,7) € R x DY,

¢
(38) © Yz, n) = (t — xze M 4 n(t) — ,u/o e M3 (s) ds) .
Linearity and continuity are then straightforward. O U

Also,

Lemma 6.2. On the subset of {0} x (D) whose image by O~ 1 is in D,
O~ is linear and continuous.

Proof. For all n, w € ©(D) and all t < T, we have that

©71(0,n)(t) — O7H(0,w)(t) = n(t) —w(t) — p /Ot e =) ((s) — w(s)) ds.

Hence, by an immediate change of variable we get that

10740 ~ 00,0 lw<lln = w +a lw =l [ 20 s,
so that for some positive constant k,
10~ (z,m) — 07 (y,w) lw< kI n—wlw .
This completes the proof. O O
We obtain the following,

Corollary 6.3. These exists a positive constant ¢ such that that for all
n € N*,
dsy (I, 2%, Z%) < ¢ ds(I1, Y, B o).

16



Proof. In view of the weak convergence Z! = B o v, the linearity and con-
tinuity of © and the Continuous Mapping Theorem, we have the weak con-
vergence

O(Z}) = (0,Y;}) = (0,B o).
However, expression (6.34) in [15] shows that for all ¢, © (Zﬁ) = (0,Bov)

which, together with the linearity of ® and of the operator II, for all n,
concludes the proof. O

6.2. Alternative representation. With Corollary 6.3 in hand, we are ren-
dered to assess the rate of convergence of (er 'n > O) to the time-changed
brownian motion B o ~. For that purpose, we aim at applying again Theo-
rem 4.5 and, as above, it is useful for this to view the processes L?l, n>1
as simple functions of marked Poisson processes.

Specifically, following Section 7.2 of [15], we have the following alterna-
tive representation of the process Lf: A point (z,z) represents a customer
arriving at time x and requiring a service of duration z, and we let Ny , be
a Poisson process on Rt x RT of control measure A dz ® pe #* dz. At any
time ¢ > 0, the number of busy servers at ¢t equals the number of points
located in the shaded trapeze bounded by the axes of equation z = 0 and
x =t, and above the line z =t — x: in other words,

Lﬁ(t) = dN)\,M(va)’ t > 0’
Ct
where
(39) Ci={(z,2),0<zx<t,z>t—x}.
z
Lit) =2
Q\
\\\\ Q\
z3 ‘\ \\ \\
z=t—x \\\ \\ \\\\
N . \\\\ Q\ \\ .
Q\ \\\ \\ \\ \\
\\ \\Q \\ \\ \\
T3 t [ T x

T3 + 23
= exit time of the 3rd customer

FIGURE 1. Representation of the M /M /oo queue

Fix a positive integer n throughout this section. After scaling, for all

t > 0 we get that

Lh ()

1
= EN)\n,,u(Ct)-
17



Let us denote for all (x, z) in the positive orthant by
dvi (z,2) == An dz @ pe™* dz,

the control measure of N,y ;. As readily follows from (4), the fluid limit Lt
can be written as

1
TE () = — / 1o, (x,2) dvk(z,2), t > 0,
n

in a way that

(40) Z4(t) f/lct ANy — dvi), ¢ >0,
for C; defined by (39). We deduce that for all ¢ > 0,
(41)

1 ‘o
ViD= o / 10, (AN — dod) /0 = / 1, ( ANy, — dof) du

1 _, N
= \/ﬁ v)\n,u(lct) + :U‘/O \/ﬁv)\n,ll«(lcu) du,
where V3, is defined by (25).

6.3. Reduction to the finite dimension. Fix n € N* and recall (8). It
follows from (41) that

t
= Z \/— <v)\nu (]'Ctn ]'Ct?l) + :u’/tn v)\n,u(lcu) du) h?
i—1
= Y Vi) b
=1

where for all i = 1,--- ,n and all (z,2) € R?

tm

" 1e, (7, 2) du) .

(42) ug(x,z) = % (10,5? (x,2) — 1(;%1 (x,2) +p

Let us denote for any i =1,--- ,n,

&= \/7 () = (t?_l)-

The following result is proven in appendix B,

Proposition 6.4. For any n, the family (uf, 1=1,--- ,n) has the following
properties:

(i) It is orthogonal in L* (Vﬁ),

(ii) For some constant ¢ independent of n,

n n

Y wiutu| dvt < ne.
SN [ juduiad] v

i=1j=1k=1
(iii) For any i€ {1,--- ,n},



Notice that for a large enough n, for all ¢ > 0,

n
n €,)
We thus have the following result,

2 ity 7/ (t) and for a fixed i, % (53771)2 2% A(0).

Proposition 6.5. For some ¢, for all positive integer n, the respective in-
terpolations of Y;* and B o~y satisfy

ds(I1,Y{, 11, (B o)) <

Bk

Proof. Fix n € N*. It is an immediate consequence of (8) and (30) that
dist
Ta(Bov) ¥ YV} = B,
j=1

where (Ykﬁ, k=1,--- ,n) is a family of independent centered Gaussian ran-

dom variables such that Var(Ykﬁ) = ({2)2 for all k. From assertion (i) of
Proposition 6.4, we can apply Theorem 4.5 : for any f € ¥,

n P $ ful 1!
E[f(Bs)] —E[f(V3,0))]| < =—— X /E b o] dv,
g,k l=1
Assertions (ii) and (iii) of Proposition 6.4 allow us to conclude. O

6.4. Proof of Theorem 2.2. We are now in position to prove Theorem
2.2. For all n € N*,. We have that

(43)  dx(Z5, 2%
<dx(Z},11,7}) + ds(11, 28, Z%)
<dx(Z8,10,2%) + cds (I, Y5, Bo~)
<ds(Z8,0,28) + cds (I, Y}, 11, B o y) + cds(Il,Bo~, Bo~),

where we applied Corollary 6.3 in the second inequality. Now define the
stopping times

T8 =inf{t >0 : Nya(t) > 2\nT}, n € N*.
Then, as all functions of ¥ are bounded and Lipschitz continuous we obtain
that for all n,
(44) dy (28,11, 23)

<swB [P (2) = F (1.2) |1, )| + P [ 7]

<E [|| Z8 11,78 ||lw 1{T<T£}] +cP [T > Tg}

<E [|| Z5 (ATE) =T (ZE (A7) llw 1{T<Tu}} +cP [T > 7]
On the one hand, from Tchebychev inequality we have that for all n,

(45) P [T > Tﬂ =P [N,\(T) > 2\nT] < % < %
19



Also, for any n, on {T < 75} we have that

Lt (t A Tg) < Noa(t) < 2nT,

therefore the Markov process Lf, ( /\Tfl) satisfies to the Assumptions of

Lemma 3.1 for J =1 and a = AV (uT'). Thus we obtain as in (33) that for
all n,

(46) E {II Z5 (nrh) =1, (25 (A7) llw 1{T<r£}}
< SB[ T~ T ]+ v | =TI

_ clogn _
~ loglogn v/n’
where, recalling (4), we use the fact that
Vi | LF =T, L ||lw < 2y/n_max sup ‘6_’“ ek

i€[0,n—1] te [t"- (i+1)T]
7 b

n

< zﬁ(e*% —1) < %

Finally, gathering (46) with (45) in (44) entails that for all n,
clog n
Vn

which, together with with Proposition 6.5 and (11) in (43), concludes the
proof.

ds (28,11, 2%) <

APPENDIX A. MOMENT BOUND FOR POISSON VARIABLES

By following closely Chapter 2 in [3], we show hereafter a moment bound
for the maximum of n Poisson variables. (Notice that, contrary to Exercise
2.18 in [3] we do not assume here that the Poisson variables are independent.)

Proposition A.1. Let n € N and let X;, i =1,--- ,n be Poisson random
variables of parameter v. Then for some ¢ depending only on v we have that
1
(47) E [ max XZ} < c— 80
i=1,n log logn

Proof. Denote for all 7, Z; = X; — v, and by ¥z the moment generating
function of Z;. By Jensen’s inequality and the monotonicity of exp(.) we get
that

exp (uB | max 2]) < B[ max exp(uz)] < S Blexp(uZ))] < nexp (U, (u).

i=1,--,n i=1,-,n :
=1

After a quick algebra, this readily implies that

u

U _ logn4+v(iet= —1—W(a)—1
E[ max Zl-] < inf (logn—{—y(e Y 1)) = ( Wia) (@ ),
i=1,-,n ueR 1+ W(a)
20



where W is the so-called Lambert function, solving the equation W(ﬂ:)ew(gﬁ) =

x over [—1/e,o0], and a = log(:#. This entails in turn that
a log (n/e")

E X < — = .

Li?f‘.’.‘,n } SV YT T Wlog(n/en) fen)

We conclude by observing that W(z) > log(z) — loglog(z) for all z > e.
Therefore there exists ¢ > 0 such that for n > exp (e**! +v),

log (n/e”) logn
E X; <
L_r]%ax,n ] ~ log(log(n/e¥)/e¥) — loglog(log(n/e¥)/e¥) — clog logn’

which completes the proof. O

APPENDIX B. PROOF OF PROPOSITION 6.4

Fix n throughout this section, and denote for all ¢ = 0,...,m — 1 and
(z,2) € R?,

25
aile,2) =lop(ez), Gi2) = [T le (@2 du

n
7

Proof of (i). Recall (42), and fix two indexes 0 < i < j < n — 1. We have

that
//ui‘uﬁ dvf, = //(Oéz‘+1 — ;) (a1 — ;) v

+M//ﬁz (aj1 — ) d’/liﬂ’ﬂ//ﬁj (qip1 — o) dVﬁJrMZ//ﬂjﬂj dvf,

=1+ Ia+ I3+ Iy,
where straightforward computations show that

Iy = Mn (26_“(t7_t¢) oMLt y) _ ou(ty —t 1))

( TR e ) e_u(ty_t?*l)) - A (e_’“?ﬂ - e_“t?) ;
i
_An (—2e#85 ) 4 mHE ) gt )
i
)\_TL ( _N(tn tn) +e M( 7,+1) + e_ﬂ(t?_t?fl)) + A (e_ﬂt7+1 _ e_ﬂt?) .
i
Adding up the above in (48) yields the result. O O
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Proof of (ii). For all 0 <1i,j,k <n— 1 we write

(49)

Jaﬁk:::h/‘\u bl v < [ Nass = ao)(agsn — )t — ap)] v
+/\ (i1 — ai)(@j1 — aj)ufy| dv +/! ajyr = aj) (a1 — ar)pfs] v,
+/| g1 — o) (o1 — g )pBj| v, +/‘ Qip1 — Q) 5;[%‘ dv}

+ / ’(O‘j+1 — o)y’ ﬁzﬂk dvi + / }(O‘k—i-l —ag) jt 51'5]'} v}

8

+ [ |t sio avh= 31
=1
It can be easily retrieved that

A A _uT it1 )\
Bu=n(2-2(1-e%) (1-er¥)) <2

n u
I}=0, 1<i<j<k<m
2
- )\n (eutzﬂ eut?) (e—utZ _ e—ﬂtzﬂ) < )‘l i=j<k
i1,k = ’ ’
K pn

and the other cases can be treated similarly. Also, simple computations
show that if ¢ < 7,

/| ity — ai) (o1 — o) Brl dvd < A (e“tzﬂ e“t?) (ef’“&? — efﬂt?“) < —
whereas if i = j, the above integral is upper bounded by

212
n

22T (2 +oeTHb L el 267%) il iy 2

-1

It readily follows that in all cases, I? ik I i and I ;i are less than cn

for some constant c¢. Reasoning similarly, we also obtaln that for all 4, j, k,

/‘ Qi1 — Q)L ﬁ]/ﬁk‘ dl/ %2 (% - % (1 — e_%) (1 e“TZH)) < ﬁT,

so that in all cases the I ok If] . and I ik ’s are less than ¢n =2 for some c.
Finally, observing that for all u, v, w,

//1Cu10v 1Cw)\,ueiﬂy de dy = i(eﬁu(max(u,v,w)fmin(u,v,w))_efumax(u,v,w))
1

we can similarly bound IS ik by a ¢n~2 for all i, j, k. To summarize, all the

I; i ’s are less than cn™2 for some c, except for the I} i S, @ =1,...,n, which

are bounded by a constant but are only n in number and all terms where

one index appears twice, which are less than ¢n ™! for some ¢, but are only
n? in number. Hence (ii).

U (]
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Proof of (iii). We have for all 0 <i<n —1,

(50) //ufuii dvf = //Oéi+1 dv? —}—//ai dvf — 2//0zi+1ai dvt
+2ﬂ//@%ﬂd%—ﬂﬂ//@%d%+ﬂ?//&@d%

=1+ o+ J3+ Jy+ J5 + Jg,

where straightforward calculations show that

A n A n
le—n(l—ef“tiﬂ); J2:—n(1—67“ti);
7 7
A n A n
J3 = o2 (efyn_T - ef“tﬂrl) ;o = 2_n(1 - efun_T) — 2\ M,
7 u
A A n n
Js = _2_n(1 - 67%) - 2—n(67“ti+1 — e MY,
7 7
n 2 n n _
Js = A (2 +2eHt 4 T (e emhtE T 1)) :
W

Recalling (37), adding up the J;’s, j = 1,...,6, concludes the proof. 0O O
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