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STEIN’S METHOD FOR DIFFUSIVE LIMITS OF MARKOV

PROCESSES

EUSTACHE BESANÇON, LAURENT DECREUSEFOND, AND PASCAL MOYAL

Abstract. Donsker Theorem is perhaps the most famous invariance princi-
ple result for Markov processes. It states that when properly normalized, a
random walk behaves asymptotically like a Brownian motion. This approach
can be extended to general Markov processes whose driving parameters are
taken to their limits, which can lead to insightful results in contexts like large
distributed systems or queueing networks. The purpose of this paper is to

assess the rate of convergence in these so-called diffusion approximations. To
this end, we extend the functional Stein method introduced for the Brown-
ian approximation of Poisson processes to two simple examples of queueing
models. By doing so, we complete the recent applications of Stein’s method
in the queueing context, with results concerning the whole trajectory of the
considered process, instead of its stationary distribution.

1. Motivations

It is usually said that the Central Limit Theorem (CLT for short) indicates that
the rate of convergence in the Law of Large Numbers is of the order of 1/

√
n because

one can informally write

1

n

n
∑

j=1

Xj ≃ E [X1] +
1√
n
N (0, 1).

Going further, one can then investigate the rate of convergence in the CLT itself.
For this, one needs to define a suitable notion of distance between laws of random
variables (r.v.’s for short). In the present context, we will be led to use an alternative
distance to the classical Prohorov one, inducing the same topology whenever the
state-spaceE of the considered r.v.’s is a separable metric space. Specifically, denote
by Lip1(E), the set of 1-Lipschitz continuous functions from E to the real line
R. The so-called Kolmogorov-Rubinstein distance (sometimes called Wasserstein
distance) between two probability measures P and Q on E is then defined by

dKR(P,Q) = sup
F∈Lip1(E)

(∫

E

F dP−
∫

E

F dQ

)

.

In Theorem 11.3.3 of [17], it is shown that
(

dKR(P,Qn)
n→∞−−−−→ 0

)

⇐⇒
(

Qn converges in dist. to P
)

.

This formulation is particularly well suited to be estimated via Stein’s method (SM
for short).

The SM was first introduced in an article by Stein [29] to quantify the rate of
convergence in the Central Limit Theorem and was soon extended to the Poisson
distribution by Chen [10]. In its first step, the method involves characterizing the
target distribution with a functional operator A such that EQ [AF ] = 0 for any F
in a sufficiently large set of test functions F , if and only if Q = P. Barbour [2] then
introduced the generator interpretation that made possible the extension of Stein’s
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method to many other probability distributions: in many cases this functional
operator A can be viewed as the infinitesimal generator of a Markovian semi-group
(Pt, t ≥ 0) whose stationary measure is P. This means that we can write

(1) dF(P, Q) := sup
F∈F

∣

∣

∣

∣

EP [F ]−EQ [F ]

∣

∣

∣

∣

= sup
F∈F

∣

∣

∣

∣

EQ

[∫ ∞

0

APtF dt

]∣

∣

∣

∣

.

If we choose F to be Lip1, we have an interesting representation of the Kolmogorov-
Rubinstein between P and Q. The function

x ∈ E 7−→
∫ ∞

0

APtF (x) dt

is one possible expression of the solution of the so-called Stein equation. If P

is the Gaussian distribution on R, then (Pt, t ≥ 0) is known as the Ornstein-
Uhlenbeck semi-group whose regularizing properties induce that the solution of the
Stein equation has bounded first and second order derivatives. This observation is
the first step of the numerous papers on the SM (see [3] and references therein).

A very important breakthrough was made by Nourdin and Peccati [21] who
showed that alternatively, the right-hand-side of (1) could be transformed and
amenable to further simplifications, by using integration by parts in the Malliavin
calculus sense. This was the starting point of a bunch of articles with a wide area
of applications: Berry-Esseen theorem, iterated-logarithm theorem (see [20] and
references therein), limit theorems on manifolds, Poisson approximation [23], etc.
As a result of these almost fifty years of intense activity, a huge number of Gaussian
or Poisson convergence results have been quantified. Closer to the class of models
we have in mind, let us mention the fruitful recent applications of the SM, to assess
the rate of convergence of the stationary distributions of various processes involved
in queueing: Erlang-A and Erlang-C systems in [7]; a system with reneging and
phase-type service time distributions (in which case the target distribution is the
stationary distribution of a piecewise OU process) in [8].

The literature is much more restricted when it comes to cases where the lim-
iting distribution is that of a whole stochastic process, like a Brownian motion
or a (marked) Poisson point process. The first work in that direction is due to
Barbour [2] which established the first quantified version of Donsker Theorem, re-
sorting to ideas closely related to Malliavin calculus. In [11], a different technique
was used to estimate the convergence rate of the normalized Poisson process to the
Brownian motion. The paper of Shih [27] extends the original approach of the SM
in abstract Wiener spaces. Besides the technical points which are evidently more
involved, the main difference between convergence to random variables and conver-
gence to random processes is that for the latter, we generally have a large choice of
functional spaces of reference. For instance, a Brownian motion can be seen either
as a square integrable process, as a continuous process, as an α-Hölder continuous
process for any α < 1/2, or even as an element of a fractional Sobolev spaces as
defined below. Changing the topology modifies the admissible test functions: The
evaluation of the trajectory at time t0 is Lipschitz continuous on a Hölder space but
it is not defined on the space of square integrable functions. Moreover, as already
seen in [11], the convergence rate may also depend on the chosen space.

So far, the trajectorial version of Stein’s method has been applied to estimate
the convergence rate of explicit processes towards the Brownian motion or Poisson
point processes [16]. This does not represent all kinds of situations where we know
that a sequence of processes converges to a diffusion process. Here, we have in mind
the vast literature on diffusion approximations, allowing to efficiently simulate an
asymptotic version of the process under consideration, or assess the order of the
fluctuations around its fluid limit or its mean field, along the various applications.
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The most basic example is that of the M/M/1 queue with initial condition nx0,
arrival rate λn and service rate µn. It is well known (see e.g. Section 5.7 in [25])
that if L†

n denotes the process which counts the customers in the system, then

(2) Z†
n =

√
n

λ+ µ

(L†
n

n
− L†

)

=⇒ B,

on the time interval [0, x0(µ − λ)], where ”⇒” denotes the weak convergence of

processes, B is a standard Brownian motion and L† is the solution of the equation

L†(t) = x0 + λt− µ

∫ t

0

1
{L†(s−)>0}

ds, t ≥ 0.

The convergence holds in distribution over D, the Skorohod space of continuous-
on-the-right-with-left-limits functions. The principle of the proof is to show that
the sequence of processes

(

Z†
n : n ≥ 1

)

is tight in the convenient topology and that

the finite dimensional distributions of Z†
n converge to that of the Brownian motion.

One approach is to view L†
n as the solution of a stochastic differential equation

driven by a finite number of independent Poisson processes on the real line:

(3) L†
n(t) = x0 +Nλn(t)−

∫ t

0

1{L†
n(s−)>0} dNµn(s),

where for any α > 0, Nα denote a Poisson process on R
+ of intensity α. This yields

an implicit definition of L†
n which, using martingale convergence, is sufficient to

prove the tightness of
(

Z†
n : n ≥ 1

)

. However, due to the reflection term in (3) the

process L†
n is not well suited to a straightforward development of the SM. But it is

easily seen that until the first time τ†n when it reaches 0, L†
n is the difference of two

independent Poisson processes. We can thus proceed in two steps: deducing from a
a classical large deviation result, the existence of a strictly positive horizon T such
that the probability of

{

τ†n ≤ T
}

decays exponentially, and on the complement,
adapting the results in [11] on the convergence rate of (linear combinations of)
conveniently normalized independent Poisson processes to a Brownian motion. This
an interesting and original extension of the SM.

Another canonical example of a diffusion limit arising in queueing is the rescaled
M/M/∞ queue, whose limiting process is an Ornstein-Uhlenbeck process (see [4]
and Section 6.6 in [25], or [14] regarding non-exponential service times), for which
we do not know a priori a characterizing operator as in Eqn. (1). To circumvent
this difficulty we first apply an integral transformation to the process counting
the number of busy servers, so that we are reduced to prove the convergence to a
time-changed Brownian motion. Then, via a representation by a Marked Poisson
process and an interpolation, it is sufficient to estimate the convergence rate in a
finite dimensional functional space.

The two models thus involve very different techniques, therefore a generaliza-
tion of our results can be envisioned only on a case by case basis. Although it
is frustrating, this fact is not so surprising, as it is reminiscent of most diffusion
approximation results themselves which, within a well establish general procedure
(tightness and convergence of fidi distributions, martingale convergence), often also
resort in detail to ad-hoc arguments.

The paper is organized as follows. In Section 2, we explain the functional frame-
work and introduce the Malliavin calculus for Brownian motion and marked Poisson
point process. In Section 3, we show that the distance we aim to compute can be
split into three parts, each one we handle differently. In particular, in subsection
3.3, we develop our approach of the Stein method. It is an extension to the func-
tional setting of [23, Theorem 3.1]. In Section 4, we apply the previous results to
the M/M/1 and to the M/M/∞ queue in Section 5.
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2. Preliminaries

2.1. Functionals spaces. We need to introduce several spaces of functions. Through-
out the whole paper, we fix a time horizon T > 0.

Definition 2.1. The Skorohod space D([0, T ]) is the space of right continuous with
left limits (rcll) functions from [0, T ] into R. It is usually equipped with the distance

(4) dD(f, g) = inf
φ∈HomT

(

max
(

‖Id− φ‖L∞([0,T ]), ‖f − g ◦ φ‖L∞([0,T ])

))

where HomT is the space of increasing homeomorphisms from [0, T ] into itself.

It contains C, the space of continuous functions on [0, T ], as well as E , the set
of step-wise functions. In C, it is interesting to focus on the Hölder continuous
functions: f ∈ Hol(η) whenever

‖f‖Hol(η) = sup
s6=t∈[0,T ]

|f(t)− f(s)|
|t− s|η <∞.

As in [13, 19], we consider the fractional Sobolev spacesWη,p defined for η ∈ (0, 1]
and p ≥ 1 as the closure of C1 functions with respect to the norm

‖f‖pη,p =
∫ T

0

|f(t)|p dt+

∫∫

[0,T ]2

|f(t)− f(s)|p
|t− s|1+pη dt ds.

For η = 1, W1,p is the completion of C1 for the norm:

‖f‖p1,p =
∫ T

0

|f(t)|p dt+

∫ T

0

|f ′(t)|p dt.

They are known to be Banach spaces and to satisfy the Sobolev embeddings [1, 18]:

Wη,p ⊂ Hol(η − 1/p) for η − 1/p > 0

and

Wη,p ⊂Wα,q for 1 ≥ η ≥ α and η − 1/p ≥ α− 1/q.

As a consequence, since W1,p is separable (see [6]), so does Wη,p. We need to
compute the Wη,p norm of primitive of step functions.

Lemma 2.2. Let 0 ≤ s1 < s2 ≤ T and consider

hs1,s2(t) =

∫ t

0

1[s1,s2](r) dr.

There exists c > 0 such that for any s1, s2, we have

(5) ‖hs1,s2‖Wη,p
≤ c |s2 − s1|1−η.

Proof. Remark that for any s, t ∈ [0, T ],

|hs1,s2(t)− hs1,s2(s)| ≤ |t− s| ∧ (s2 − s1).

The result then follows from the definition of the Wη,p norm. �

We also need to introduce the Besov-Liouville spaces of fractional derivatives.
For f ∈ L1([0, T ]; dt), (denoted by L1 for short) the left and right fractional
integrals of f are defined by :

(Iα0+f)(x) =
1

Γ(α)

∫ x

0

f(t)(x− t)α−1dt , x ≥ 0,

(IαT−f)(x) =
1

Γ(α)

∫ T

x

f(t)(t− x)α−1dt , x ≤ 1,
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where α > 0 and I00+ = I0T− = Id. For any α ≥ 0, p, q ≥ 1, any f ∈ Lp and g ∈ Lq

where p−1 + q−1 ≤ α, we have :

(6)

∫ T

0

f(s)(Iα0+g)(s) ds =

∫ T

0

(IαT−f)(s)g(s) ds.

The Besov-Liouville space Iα0+(L
p) := I+

α,p is usually equipped with the norm :

(7) ‖Iα0+f‖I+
α,p

= ‖f‖Lp.

Analogously, the Besov-Liouville space IγT−(L
p) := I−

γ,p is usually equipped with
the norm :

‖I−αT−f‖I−
α,p

= ‖f‖Lp.

These spaces are particularly interesting in view of their relationships with the
spaces of Hölder continuous functions.

Theorem 2.3 (Sobolev embeddings, [18, 26]). We have the following embedding
properties.

(1) If 0 < α < 1, 1 < p < 1/α, then Iα0+ is a bounded operator from Lp into Lq

with q = p(1− αp)−1.
(2) For any 0 < α < 1 and any p ≥ 1, I+

α,p is continuously embedded in
Hol(α− 1/p) provided that α− 1/p > 0.

(3) For any α′ ≥ α and p, p′ such that α′ − 1/p′ ≥ α− 1/p, Iα′,p′ ⊂ Iα,p.
(4) For 1 ≥ α > η > ζ > 0, the following embeddings are continuous (even

compact)
Wα,p ⊂ I+

η,p ⊂Wζ,p.

It may be useful to keep in mind the following diagram where all arrows represent
continuous embeddings. For any η > 0, any ǫ ∈ (0, η),

Wη,1/(η−ǫ) Hol0(ǫ) C0 C D

Wη,1/(η+ǫ) E E0
where D0 (respectively C0, Hol0, E0) represents the elements of D (respectively C,
Hol, E) which are null at time 0.

2.2. Wiener space. Since we want to compare some measure with the distribu-
tion of the Brownian motion, sometimes called the Wiener measure, we need to
construct precisely the functional framework. We refer to [22, 24, 30] for details
about Malliavin calculus in the Gaussian setting.

Let B = (B(t), t ∈ [0, T ]) be a standard one-dimensional Brownian motion.
Since it has Hölder continuous sample-paths of any order less than 1/2, we can
say that almost-surely, B belongs to I+

η,p for any

(η, p) ∈ Λ =
{

(η, p) ∈ R
+ × R

+, 0 < η − 1/p < 1/2
}

.

We denote by Pη,p, the distribution of B over I+
η,p. The spaces I+

η,p are Banach

spaces, for which there exists the notion of Fréchet derivative. For F : I+
η,p → R,

it is differentiable whenever

(8) lim
ε→0

ε−1
(

F (x+ εh)− F (x)
)

exists for any h ∈ I+
η,p and defines an element of (I+

η,p)
∗,

lim
ε→0

ε−1
(

F (x+ εh)− F (x)
)

= 〈DF (x), h〉(I+
η,p)∗,I

+
η,p
.

In particular, as in finite dimension, Fréchet differentiability implies continuity. In
the present context, the functions we are going to consider are random variables,
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meaning that they are defined up to a negligible set, so that no hypothesis of
continuity can be enforced. Moreover, as Eqn. (8) suggests, if F = G almost-surely,
we must be sure that F (.+ h) = G(. + h) almost-surely for any h ∈ Wη,p, i.e. the
push-forward measure of Pη,p by the map τh : x 7→ x+ h is absolutely continuous
with respect to Pη,p. For this property to hold, the Cameron-Martin theorem says

that we must restrict the perturbation h to belong to I+
1,2.

Theorem 2.4 (Cameron-Martin). For any h ∈ I+
1,2, for any bounded functional

F : Wη,p → R

(9) E [F (B + h)] = E

[

F (B) exp

(

∫ T

0

ḣ(s) dB(s)− 1

2
‖h‖2

I+
1,2

)]

,

where ḣ is the time derivative of h ∈ I+
1,2, so that ḣ belongs to L2([0, T ]) and the

stochastic integral has to be taken in the Itô sense.
Otherwise stated, Eqn. (9) means that the distribution of B + h is absolutely

continuous with respect to Pη,p and that its Radon-Nykodim derivative is given by
the exponential factor of the RHS of (9).

Because of this theorem, the space I+
1,2 plays a crucial role in the stochastic

calculus of variations. We have the following scheme

W ∗
η,p (I+

1,2)
∗

L2 I+
1,2 Wη,p

i
∗
η,p

≃

I1
0+ iη,p

The map iη,p is the embedding from I+
1,2 into Wη,p. The pivotal space, i.e. the

Hilbert space identified to itself, is, in this context, the space I+
1,2 and not L2 as it

often happens. This means that i∗η,p is the adjoint of iη,p after this identification.
We can now introduce the concept of Gross-Sobolev or weak derivative.

Definition 2.5. A function F : Wη,p → R is said to be cylindrical if it is of the
form

(10) F = f
(

δBh1, · · · , δBhk
)

where f belongs to the Schwartz space on R
k, h1, · · · , hk belong to I+

1,2 and δBh is

the Itô integral of ḣ:

δBh =

∫ 1

0

ḣ(s) dB(s).

Remark that if u̇ belongs to L2, then

∫ s

0

u̇(s) d(B + h)(s) =

∫ s

0

u̇(s) dB(s) +

∫ s

0

u̇(s)ḣ(s) ds

=

∫ s

0

u̇(s) dB(s) +
〈

u̇, ḣ
〉

L2
=

∫ s

0

u̇(s) dB(s) + 〈u, h〉I+
1,2
.

Hence, if F is cylindrical

d

dε
F (B + εh)

∣

∣

∣

∣

ε=0

=
k
∑

j=1

∂jf
(

δBh1, · · · , δBhk
)

〈hj , h〉I+
1,2

This motivates the following definition
6



Definition 2.6. For F as in (10), let ∇F be the element of L2(Wη,p; I+
1,2) defined

by

∇F =

k
∑

j=1

∂jf
(

δBh1, · · · , δBhk
)

hj

and let ∇(2)F be the element of L2(Wη,p; I+
1,2 ⊗ I+

1,2)

∇(2)F =
k
∑

j,l=1

∂
(2)
jl f

(

δBh1, · · · , δBhk
)

hj ⊗ hl.

Consider the norm

‖F‖22,2 = ‖F‖2L2 +E
[

‖∇F‖2
I+
1,2

]

+E
[

‖∇(2)F‖2
I+
1,2⊗I+

1,2

]

,

where

‖∇F‖2
I+
1,2

=

∫ 1

0





k
∑

j=1

∂jf
(

δBh1, · · · , δBhk
)

ḣj(s)





2

ds

and

‖∇(2)F‖2
(I+

1,2)
⊗2 =

∫ 1

0

∫ 1

0





k
∑

j,l=1

∂
(2)
jl f

(

δBh1, · · · , δBhk
)

ḣj(s)ḣk(s)





2

ds dr.

The set D2,2 is the completion of the set of cylindrical functions with respect to the
norm ‖ ‖2,2.

Remark 1. Note that if h belongs to I±
2,2 = (I10+ ◦ I11−)(L2) ⊂ I+

1,2 then

∇f(δBh) = f ′(δBh) h

belongs to L2(Wη,p; I±
2,2). This means that for such a functional, its gradient is

more regular, in the sense that it belongs to a smaller space, than for ordinary
elements of D2,2.

Since we identified I+
1,2 with its dual, the space I±

2,2 is in duality with L2: For

h ∈ I±
2,2, there exists ḧ ∈ L2 such that h = I10+(I

1
1−(ḧ)). Hence for k ∈ I+

1,2, we
have

∣

∣

∣
〈h, k〉I+

1,2

∣

∣

∣
=

∣

∣

∣

∣

∫ 1

0

I11−(ḧ)(s)k̇(s) ds

∣

∣

∣

∣

=

∣

∣

∣

∣

∫ 1

0

ḧ(s)I10+(k̇)(s) ds

∣

∣

∣

∣

=

∣

∣

∣

∣

∫ 1

0

ḧ(s)k(s) ds

∣

∣

∣

∣

≤ ‖ḧ‖L2‖k‖L2.

Since I+
1,2 is dense in L2, we can extend this duality pairing to h ∈ I±

2,2 and k ∈ L2.

This leads to the following definition.

Definition 2.7. A function F : Wη,p → R is said to belong to the class Ση,p
whenever it belongs to Lip1(Wη,p), belongs to D2,2 and satisfies

(11)

∣

∣

∣

∣

〈

∇(2)F (x)−∇(2)F (x+ g), h⊗ k
〉

I+
1,2

∣

∣

∣

∣

≤ ‖g‖Wη,p
‖h‖L2‖k‖L2,

for any x ∈Wη,p, g ∈ I+
1,2, h, k ∈ L2. This means that ∇(2)F is an element of the

space Lip1(Wη,p; (I±
2,2)

⊗2).
7



If F : Wη,p → R is thrice differentiable in the direction of I+
1,2 and such that

sup
x∈Wη,p

‖∇(3)F‖(I±
2,2)

⊗3 <∞

then by the fundamental theorem of calculus
∣

∣

∣

∣

〈

∇(2)F (x)−∇(2)F (x+ g), h⊗ k
〉

I+
1,2

∣

∣

∣

∣

≤ ‖∇(3)F‖L∞(Wη,p;(I
±
2,2)

⊗3)‖g‖L2 ‖h‖L2‖k‖L2.

Since Wη,p is continuously embedded in L2,

‖∇(3)F‖−1

L∞(Wη,p;(I
±
2,2)

⊗3) F ∈ Ση,p.

Our main results below will be more easily expressed for test functions in the
following set,
(12)
Lη,p = {bounded functions of Lip1(D) whose restriction to Wη,p belongs to Ση,p.} .
Let us also define the following distances and norm: for any two processes U and
V in the convenient spaces,

dΣη,p
(U, V ) = sup

F∈Ση,p

|E [F (U)]−E [F (V )]| ;(13)

dLη,p
(U, V ) = sup

F∈Lη,p

|E [F (U)]−E [F (V )]| ;(14)

‖ V − U ‖∞,T = sup
t∈[0,T ]

|V (t)− U(t)| a.s..(15)

2.3. Poisson point process. We now introduce the minimum framework to get
an integration by parts for Poisson point processes. For details, we refer to [15, 24]
Let E be a complete and separable metric space equipped with a σ-finite measure ν.
Let NE be the space of locally finite configurations on E, i.e. the set of at most
denumerable subsets of E with no accumulation point. Such a set φ can be described
as a set or as a sum of atomic measures:

φ ≃
∑

x∈φ

εx,

where εx is the Dirac measure at x, so that for any ψ : E → R,
∫

E

ψ dφ =
∑

x∈φ

ψ(x).

For ν a σ-finite measure on E, a Poisson point process of control measure ν is an
NE-valued random variable, say Nν , such that for any ψ : E → R, with compact
support,

E

[

exp
(

−
∑

x∈Nν

ψ(x)
)

]

= exp
(

−
∫

E

1− e−ψ(x) dν(x)
)

.

The multivariate Campbell-Mecke formula states that for any integer k ≥ 1, for
any non-negative F : Ek ×NE ,

(16) E





∑

x1,··· ,xk∈N
6=
ν

F (x1, · · · , xk, Nν)





=

∫

Ek

E



F
(

x1, · · · , xk, Nν +
k
∑

j=1

εxj

)



⊗kj=1 dν(xj),
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where the sum in the left-hand-side runs through the k-uples of distinct points of
the configuration Nν . We say that F : E → R belongs to domD whenever

E

[∫

E

(

F (Nν + εx)− F (Nν)
)2

dν(x)

]

<∞

and we set, for any x ∈ E,

DxF (Nν) = F (Nν + εx)− F (Nν − εx),

where Nν − εx is to be understood as Nν whenever x /∈ Nν . Let

dom δν =
{

u : NE × E → R, E

[∫

E

∣

∣u(Nν, x)
∣

∣

2
dν(x)

]

<∞
}

.

Then, for F ∈ domD and u ∈ dom δν , the multivariate Campbell-Mecke formula
entails that

(17) E [F δνu] = E

[∫

E

DF (x)u(Nν , x) dν(x)

]

,

where

δνu =

∫

E

u(Nν − εx, x) dNν(x)−
∫

E

u(Nν, x) dν(x).

Note that if u is deterministic,

(18) δνu =

∫

E

u(x) ( dNν(x) − dν(x)) and Dxδνu = u(x).

Moreover,

(19) E [δνu] = 0 and E
[

(

δνu
)2
]

=

∫

E

|u(x)|2 dν(x).

3. Distances between probability distributions

3.1. Distances on functional spaces. Two measures are comparable only if they
are supported on the same space. For real or multivariate random variables, their
distribution is canonically supported either by N, R or Rn, etc. When dealing with
functional spaces, a given process can naturally belong to several metric spaces.
The sample-paths of continuous time Markov chains are piecewise constant, thus
(see [11]) belong to Wη,p for any (η, p) such that η− 1/p < 0 and also to D. On the
other hand, trajectories of diffusion processes belong toWη,p for η−1/p < 1/2. This
means that two factors may contribute to the distance between the distribution of
a CTMC and that of a diffusion process: the difference between the dynamics and
the gap of regularity; the latter being in some sense of lesser importance for the
probabilist. In an effort to see the importance of each of these terms, we consider
an intermediate process which has at least the regularity of the diffusion and a
stochastic behavior similar to that of the stochastic process under study.

For f ∈ D, we consider its affine interpolation on [0, T ] of mesh T/n:

πnf : [0, T ] −→ R(20)

t 7−→
n−1
∑

i=0

n

T

(

f

(

(i+ 1)T

n

)

− f

(

iT

n

))

I10+
(

1[ iTn , (i+1)T
n )

)

(t).

Remark that a stochastic process and its affine interpolation have similar dynamics
since they coincide at each point of the subdivision, whose mesh tends to 0. In
these conditions, it is meaningful to evaluate the distance between the distribution
of some stochastic process Ln and the distribution of its affine interpolation, the
distance between πnLn and πnB where B is a standard Brownian motion, and then
the distance between πnB and B. In view of what we said earlier, these distances
are evaluated for the topology of the fractional Sobolev spacesWη,p for η−1/p < 0,
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η − 1/p < 1 and η − 1/2 < 0 respectively. In the end, by the triangular inequality
we get the distance between the distribution of Ln and the Gaussian measure in the
smallest spaces Wη,p for η− 1/p < 0 but in passing we obtain some insights on the
different factors which lead to the discrepancy. The distance between Ln and πnLn
and the distance between πnB and B are due to the gap of regularity between the
sample-paths, whereas the difference between the laws of πnLn and πnB is due to
the dissimilarity of their stochastic behavior.

3.2. Distance between sample-paths. In what follows, N is the set of positive
integers. As mentioned above, we need to estimate the distance between the dis-
tribution of Ln and of πnLn and the distance between the laws of πnB and of
B.

Regarding the latter, since πnB and B are defined on the same probability space,
we can resort to a more precise result, Proposition 13.20 in [19], claiming that for
some c,

E
[

‖πnB −B‖Wη,p

]

≤ c n−(1/2−η), n ∈ N,

for any η < 1/2. Then, recalling (13) we immediately get

(21) E
[

dΣη,p
(πnB, B)

]

≤ c n−(1/2−η), n ∈ N.

We can also estimate the distance between the sample-paths of Birth-and-death
processes and their interpolation. Specifically,

Lemma 3.1. Let n ∈ N, and let X be a N-valued Markov jump process on [0, T ]
of infinitesimal generator A . Suppose that there exists two constants J ∈ N and
α > 0 such that

• the amplitude of jumps of X is bounded by J > 0, i.e. for all i, j ∈ N,
A (i, j) = 0 whenever |j − i| > J ;

• the intensities of jumps of X are bounded by nα, i.e. for all i, j ∈ N, i 6= j,
A (i, j) ≤ nα.

Then,

E [‖ Xn − πnXn ‖∞,T ] ≤ 2J
log n

log logn
·

Proof. Fix n ∈ N. For any t ∈ [0, T ] we have that

|Xn(t)− πnXn(t)|

=

∣

∣

∣

∣

Xn(t)−Xn

(

iT

n

)

− n

T

(

t− iT

n

)(

Xn

(

(i+ 1)T

n

)

−Xn

(

iT

n

))∣

∣

∣

∣

≤ 2 sup
t∈[ iTn ; (i+1)T

n ]

∣

∣

∣

∣

Xn(t)−Xn

(

iT

n

)∣

∣

∣

∣

,

so that

(22) E [‖ Xn − πnXn ‖∞,T ] ≤ 2E



 max
i∈[0,n−1]

sup
t∈[ iTn ;

(i+1)T
n ]

∣

∣

∣

∣

Xn(t)−Xn

(

iT

n

)∣

∣

∣

∣



 .

But for any i and any t ∈
[

iT
n ; (i+1)T

n

]

we have that

∣

∣

∣

∣

Xn(t)−Xn

(

iT

n

)∣

∣

∣

∣

≤ J
(

Ain +Di
n

)

,

where Ain and Di
n denote respectively the number of up and down jumps of the

process Xn within the interval
[

iT
n ; (i+1)T

n

]

. In turn, by assumption Ain + Di
n is
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stochastically dominated by a Poisson r.v., say P i, of parameter αnTn = αT . All
in all, we obtain with (22) that

E [‖ Xn, πnXn ‖∞,T ] ≤ 2J E

[

max
i∈[0,n−1]

P i
]

,

and we conclude using Proposition A.1. �

3.3. Functional Stein method. For ξ = (ξk, k = 1, · · · , n) a finite sequence of
positive real numbers, consider Y = (Yk, k = 1, · · · , n) a family of independent
centered Gaussian random variables such that var(Yk) = ξ2k and

Bξ :=

n
∑

j=1

Yj h
n
j ,

where for 0 ≤ i ≤ n− 1,

hni :=

√

n

T
I10+
(

1
[ iT

n
, (i+1)T

n
)

)

.

Set

T nη,p : Rn −→Wη,p

(y1, · · · , yn) 7−→
n
∑

j=1

yj h
n
j .

On R
n, put µnξ the Gaussian measure of density:

(y1, · · · , yn) 7−→
1

(2π)n/2
∏n
j=1 ξj

exp



−1

2

n
∑

j=1

y2j
ξ2j



 ·

For any k = 1, · · · , n, consider the R-valued process, damped Ornstein-Uhlenbeck
process:

Xξk(x, t) = e−tx+ ξk
√
2

∫ t

0

e−(t−s) dB(s),

where B is an ordinary Brownian motion. Xξk can alternatively be described as
the solution of the stochastic differential equation

dX(t) = −Xt dt+ ξk
√
2 dB(t), X(0) = x

The Itô formula easily entails that if we set

P ξkt f(x) = E
[

f(Xξk(x, t))
]

and Lξkf(x) = −xf ′(x) + ξ2kf
′′(x),

then, for f ∈ L1(µ1
ξk
),

(23)
d

dt
P ξkt f(x) = LξkP ξkt f(x) = P ξkt Lξkf(x) and (P ξkt f)′(x) = e−tP ξkt f ′(x).

Moreover, the distribution of Xξk(x, t) is Gaussian with mean e−tx and variance
ξ2k(1 − e−2t), hence

(24) P ξkt f(x) =

∫

R

f(e−tx+
√

1− e−2ty) dµ1
ξk
(y).

It is then straightforward that

P ξkt f(x)
t→∞−−−→

∫

R

f dµ1
ξk .

Combine (23) and (24) to obtain

(25)

∫

R

f dµ1
ξk

− f(x) =

∫ ∞

0

LξkP ξkt f(x) dt.
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We now transfer this construction onto Wη,p. Let Pnη,p be the push-forward of µnξ
by the map T nη,p. Remark that Pnη,p is supported by Wn = span(hnj , j = 1, · · · , n)
and that for any (η, p) ∈ Λ,

Wn ⊂ I+
1,2 ⊂Wη,p.

We denote by In1,2, the space Wn equipped with the scalar product of I+
1,2 and

by Wn
η,p, the space Wn with the norm induced by Wη,p. The space Wn is finite

dimensional so that the distinction between the norms may seem spurious but it
is still mandatory to keep track of the underlying infinite dimensional setting. For
y ∈ R

n, X is the Wn
η,p-valued process defined by

X(T nη,py, t) =

n
∑

j=1

Xξj(yj , t)h
n
j .

For y ∈ R
n, let

PtF (T
n
η,py) = E

[

F (X(T nη,py, t))
]

.

By tensorization of the previous construction (or more directly using the general
theory of abstract Wiener spaces [9, 12, 27]), we see that Pnη,p is the stationary and
invariant measure of the Markov process X, whose generator is given by

LF (T nη,py) = −
n
∑

j=1

yj
〈

hnj ,∇F (T nη,py)
〉

Wn
η,p,(W

n
η,p)

∗

+
n
∑

j=1

ξ2j

〈

hnj ⊗ hnj , ∇(2)F (T nη,py)
〉

(I+
1,2)

n
.

This means in particular that (25) holds true in the new form:

(26)

∫

R

F dPnη,p − F (T nη,py) =

∫ ∞

0

LP
ξ
tF (T

n
η,py) dt.

We can now state and prove the functional Stein’s theorem which is the cornerstone
of the following. In spirit, it is the multidimensional version of Theorem 3.1 of [23].
For (uj , j = 1, · · · , n) ∈ L2(E,Rn), set

u =

n
∑

j=1

uj ⊗ hnj and δνu =

n
∑

j=1

δνuj h
n
j .

Theorem 3.2. Assume that (uk, k = 1, · · · , n) is an orthogonal family of elements
of L2(ν). For any k ∈ {1, · · · , n}, let

(27) ξ2k =

∫

E

uk(x)
2 dν(x).

Consider Y = (Yk, k = 1, · · · , n) a family of independent centered Gaussian random
variables such that var(Yk) = ξ2k and let

Bξ =

n
∑

j=1

Yj h
n
j

For any F ∈ Ση,p,

(28) |E [F (Bξ)]−E [F (δνu)]|

≤ 1

2
n−3/2+η

n
∑

j=1

n
∑

k=1

n
∑

l=1

∫

E

|uj(x)uk(x)| |ul(x)| dν(x).
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Remark 2. If we compare Theorem 3.2 with Theorem 3.1 of [23], we retrieve
a third order moment. It is not surprising that we have crossed moments since
we need to control how the correlations between the different coordinates of δu do
vanish as n tends to infinity. We already know that each of the components tend
to a Gaussian distribution, the only point at stake is then to show that they become
more and more independent as the size of the vector increases.

At last, remark that there is no term involving the second order moments, this
is due to the hypothesis of orthogonality.

Proof of Theorem 3.2. According to (26), we have

(29) E [F (Bξ)]−E [F (δνu)] = E

[∫ ∞

0

LPtF (δνu) dt

]

.

According to the integration by parts formula and to the fundamental theorem of
calculus, we get

n
∑

j=1

E
[

δνuj
〈

hnj , ∇PtF (δνu)
〉

I+
1,2

]

=
n
∑

j=1

E

[

∫

E

uj(x)
〈

hnj , ∇PtF
(

δνu+ u(x)
)

−∇PtF
(

δνu
)〉

I+
1,2

dν(x)

]

=
n
∑

j,k=1

E

[

∫

E

∫ 1

0

uj(x)uk(x)
〈

hnj ⊗ hnk ,∇(2)
PtF

(

δνu+ r u(x)
)

〉

I+
1,2

dr dν(x)

]

.

Since the uk’s are orthogonal, in view of Eqn. (27),

E





n
∑

j,k=1

∫

E

∫ 1

0

uj(x)uk(x)
〈

hnj ⊗ hnk ,∇(2)
PtF

(

δνu
)

〉

I+
1,2

dr dν(x)





= E





n
∑

j=1

ξ2j

〈

hnj ⊗ hnj ,∇(2)
PtF

(

δνu
)

〉

I+
1,2



 .

Hence

E [LPtF (δνu)]

=

n
∑

j,k=1

∫

E

∫ 1

0

E

[

〈

hnj ⊗ hnk , ∇(2)
PtF

(

δνu+ ru(x)
)

−∇(2)
PtF

(

δνu
)

〉

I+
1,2

]

× uj(x)uk(x) dr dν(x).

Recall that ‖hnj ‖L2 ≤ n−1/2 and note that

‖u(x)‖Wη,p
≤

n
∑

l=1

|ul(x)| ‖hnl ‖Wη,p
= n−(1/2−η)

n
∑

l=1

|ul(x)|.

Since F belongs to Ση,p

(30) |E [LPtF (δνu)]| ≤ n−3/2+η e−2t
n
∑

j,k,l=1

∫ 1

0

|uj(x)uk(x)||ul(x)| dν(x).

Plug (30) into (29) yields (28). �
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4. The M/M/1 queue

The M/M/1 queue consists in a single server with infinite queue, where the
service times are independently and identically distributed, according to an expo-
nential distribution of parameter µ. The customers arrive at the time epochs of
a Poisson process of intensity λ > 0. Let L†(t) denote the number of customers
in the system (including the one in service, if any) at time t ≥ 0. The process
(

L†(t), t ≥ 0
)

counting the number of customers in the system is clearly a birth
and death process, that is ergodic if and only if λ/µ < 1. If the initial size of the
system is x ∈ N, then L† obeys the SDE

L†(t) = x+Nλ(t)−
∫ t

0

1{L(s−)>0}Nµ(ds),

for two independent Poisson processes Nλ and Nµ. This process is rescaled by
accelerating time by an arbitrarily large factor n, while multiplying the number of
customers in the initial state by the same factor, and then dividing the number of
customers in the system at any time by n: with obvious notation, for all t ≥ 0 we
obtain

L†
n(t) = x+

Nnλ(t)

n
− Nnµ(t)

n
+

1

n

∫ t

0

1{L†
n(ns−)=0} dNnµ(s).

It is a well established fact (see e.g. Proposition 5.16 in [25]) that the sequence
(

L†
n : n ≥ 1

)

converges in probability and uniformly over compact sets, to a deter-

ministic process

L† : t 7−→ L†(t) = (x+ λt− µt)+ ,

and that

Z†
n(t) :=

√
n√

λ+ µ

(

L†
n(t)− L†(t)

)

=

√
n√

λ+ µ

[

(

Nnλ(t)

n
− λt

)

−
(

Nnµ(t)

n
− µt

)

]

+

√
n√

λ+ µ

(

1

n

∫ t

0

1
{L†

n(s−)=0}
dNnµ(s)−

∫ t

0

1
{L†(s)=0}

ds

)

converges in distribution on D to the standard Brownian motion B.
We aim at controlling the speed of the latter convergence. For that purpose, we

bound for any fixed n and any horizon T , the Lη,p-distance between these processes,
defined by (14). We have the following result,

Theorem 4.1. Suppose that λ < µ and let T ≤ x
µ−λ . Then, for all n ∈ N we have

that

dLη,p

(

Z†
n, B

)

≤ c log n

log logn
√
n
,

where B is a standard Brownian motion.

Proof. Fix T ≤ x
µ−λ . Then for all n ∈ N, recalling (13) and (20), by the very

definition of the set Lη,p in (12) we have that

(31) dLη,p

(

Z†
n, B

)

≤ dLη,p

(

Z†
n, πnZ

†
n

)

+ dΣη,p
(πnZ

†
n, πnB) + dΣη,p

(πnB,B).

First observe that the function L† is affine hence πnL† on [0, T ]. Moreover, the
operator πn is linear and the elements of Lη,p are 1-Lipschitz-continuous, thus we
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have that for all n,

dLη,p
(Z†

n, πnZ
†
n) ≤ E

[

‖ Z†
n − πnZ

†
n ‖∞,T

]

≤ 1
√

n(λ+ µ)
E
[

‖ L†
n − πnL

†
n ‖∞,T

]

≤ c logn

log logn
√
n
,(32)

where the last inequality follows from applying Lemma 3.1 to the Markov processes
(

L†
n : n ≥ 1

)

for J ≡ 1 and α ≡ λ ∨ µ. Now, for any n ∈ N, if we let τn0 = inf{t >
0, L†

n(t) = 0}, for any F ∈ Ση,p we have that

(33) E
[∣

∣F
(

πnZ
†
n

)

− F (πnB)
∣

∣

]

= E
[∣

∣F
(

πnZ
†
n

)

− F (πnB)
∣

∣1{T<τn
0 }

]

+E
[∣

∣F
(

πnZ
†
n

)

− F (πnB)
∣

∣1{T≥τn
0 }

]

.

We first prove that for some c > 0,

(34) E
[∣

∣F
(

πnZ
†
n

)

− F (πnB)
∣

∣ 1{T<τn
0 }

]

≤ c√
n
, n ∈ N.

Fix n ∈ N. On the event {T ≤ τn0 }, for any t ∈ [0, T ) we have that

Z†
n(t) =

1√
λ+ µ

(√
λ

(

Nnλ(t)√
λn

−
√
λnt

)

−√
µ

(

Nnµ(t)√
µn

−√
µnt

))

=:
1√
λ+ µ

(

Z†
λ,n(t)− Z†

µ,n(t)
)

.

Consider N †
n(λ+µ) the marked Poisson point process of control measure

dν†n(s, r) = n(λ+ µ) ds⊗
( λ

λ+ µ
ε1(dr) +

µ

λ+ µ
ε−1(dr)

)

.

That is to say, N †
n(λ+µ) is constructed as an ordinary Poisson process on the positive

real line with intensity n(λ + µ) and each atom is assigned a mark +1 or −1,
independent of the atom location and of the other marks, with respective probability
λ(λ + µ)−1 and µ(λ + µ)−1. By the thinning property of Poisson processes, the

point process which counts the atom N †
n(λ+µ) with mark +1 (respectively −1) is a

Poisson process with intensity nλ (respectively nµ). For any t ∈ [0, T ], let

vt : [0, T ]× {−1, 1} −→ R

(s, r) 7−→ 1
√

n(λ+ µ)
r 1[0,t)(s).

Then, we have

Z†
n(t)

dist
= δν†

n
(vt)

and

πnZ
†
λ,n

dist
=

n−1
∑

i=0

n

T
δν†

n

(

v(i+1)T/n − viT/n
)

I10+
(

1[ iTn , (i+1)T
n )

)

.

For i = 1, · · · , n, let

u†i (s, r) =

√

n

T

(

v(i+1)T/n(s, r)− viT/n(s, r)
)

=
1

√

T (λ+ µ)
r 1[iT/n, (i+1)T/n)(s),

so that

πnZ
†
λ,n

dist
=

n−1
∑

i=0

δν†
n
(u†i ) h

n
i .
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It is clear that
∫

[0,T ]×{−1,1}

u†i (s, r)u
†
j(s, r) dν

†
n(s, r) =

{

0 if i 6= j

1 if i = j.

Moreover,

n
∑

j=1

n
∑

k=1

n
∑

l=1

∫

E

|u†ju†ku
†
l | dν†n =

1

T 3/2
√
λ+ µ

n
∑

i=1

∫ iT/n

(i−1)T/n

n ds =
n

√

T (λ+ µ)
·

Let ξ† = (1, k = 1, · · · , n). Since πnB = Bξ† , as a consequence of Theorem 3.2, we
obtain (34).

Regarding the second term on the right-hand side of (33), fix n ∈ N and observe
that F is in particular bounded, so there exists a constant c such that

E
[∣

∣F (πnZ
†
n)− F (πnB)

∣

∣ 1{T>τn
0 }

]

≤ cP [T > τn0 ] .

But P [T > τn0 ] tends to 0 with exponential speed from Theorem 11.9 of [28]: if
ρ < 1, for any x > 0 and any y < 0

lim
n→∞

1

n
log P

[

τn0 ≤ x

λ− µ
+ y

]

= −f(y),

where f is strictly positive on (0,∞). This shows that

E
[∣

∣F (Z†
n)− F (B)

∣

∣ 1{T>τn
0 }

]

≤ ce−n

for some d, which, together (34) in (33), shows that for some constant c,

dΣη,p
(πnZ

†
n, πnB) ≤ c√

n
, n ∈ N.

This, together with (32) and (21) in (31), concludes the proof. �

5. The M/M/∞ queue

We consider an M/M/∞ queue: a potentially unlimited number of servers at-
tend customers that enter the system following a Poisson process of intensity λ,
requesting service times that are exponentially distributed of parameter µ (where
λ, µ > 0).

If L♯(t) denotes the number of customers in the system at time t, L♯ is an ergodic
Markov process which obeys the SDE

L♯(t) = x0 +Nλ(t)−
+∞
∑

i=1

∫ t

0

1{L♯(s−)≥i}N
i
µ(ds), t ≥ 0,

where Nλ is a Poisson process of intensity λ, the N i
µ’s are independent Poisson

processes of intensity µ, and x0 is the initial number of customers at time 0. For
simplicity, we assume throughout this Section that the system is initially empty,
i.e.

(35) x0 = 0.

The process L♯ is then rescaled by accelerating time by a factor n ∈ N, and dividing
the size of the system by n. From (35), the corresponding n-th rescaled process is
thus defined by

L♯n : t 7−→ Nλn(t)

n
− 1

n

+∞
∑

i=1

∫ t

0

1
{L♯

n(s−)> i
n
}
N i
µ(ds).
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It is a well known fact (see e.g. [4] or Theorem 6.14 in [25]) that the sequence

of processes
(

L♯n, n ≥ 0
)

converges in L1 and uniformly over compact sets to the

deterministic function

(36) L♯ : t 7−→ L♯(t) = ρ− ρe−µt,

where ρ = λ/µ. Moreover, if we define for all n the process

(37) Z♯n : t 7−→ Z♯n(t) =
√
n
(

L♯n(t)− L♯(t)
)

,

the sequence
(

Z♯n : n ≥ 0
)

converges in distribution to the process X♯ defined by

(38) X♯ : t 7−→ X♯(t) = X♯(0)e−µt +

∫
t

0

e−µ(t−s)
√

h(s) dB(s),

where h(t) = λ (2− e−µt) for all t ≥ 0 and B is the standard Brownian motion.
The following result is shown in [25] (eq. (6.23) in Chapter 6),

Proposition 5.1. The sequence of processes
(

Y ♯n : n ≥ 0
)

defined by

(39) t 7→ Y ♯n(t) = Z♯n(t)− Z♯n(0) + µ

∫ t

0

Z♯n(s) ds

converges in distribution to B ◦ γ, where
(40) γ(t) = 2λt− ρ(1− e−µt) for all t ≥ 0.

This section is devoted to assessing the rate of convergence in Proposition 5.1, on
any fixed time interval [0, T ], where T > 0 is fixed throughout.

5.1. An integral transformation. The processX♯ defined in (38) is an Ornstein-
Uhlenbeck process which can be analyzed by introducing a one to one mapping
between the space of rcll functions and R× D0.

Proposition 5.2. The mapping

Θ :







D([0, T ]) −→ R× D0([0, T ])

f 7−→
(

f(0) , f(.)− f(0) + τ

∫ .

0

f(s)ds

)

is linear, continuous and one to one.

Proof. Let us fix η ∈ D0([0, T ]) and consider the following integral equation of
unknown function z,

z(t)− z(0) = −τ
∫ t

0

z(s) ds+ η(t).

We clearly have for all t ≥ 0,

z(t) = z(0)e−τt + η(t)− τ

∫ t

0

e−τ(t−s)η(s) ds,

hence Θ is bijective and for all (x, η) ∈ R× D0([0, T ]),

Θ−1(x, η) =

(

t 7−→ xe−τt + η(t)− τ

∫ t

0

e−τ(t−s)η(s) ds

)

.(41)

Linearity and continuity are straightforward. �

Lemma 5.3. On the subset of {0} ×Θ(I+
α,2) whose image by Θ−1 is in I+

α,2, Θ
−1

is Lipschitz continuous.
17



Proof. For all η and ω ∈ Θ(I+
α,2) and all t ∈ [0, 1], we have that

Θ−1(0, η)−Θ−1(0, ω) = η(t) − ω(t)− τ

∫ t

0

e−τ(t−s)(η(s)− ω(s)) ds.

Hence

‖ Θ−1(0, η)−Θ−1(0, ω) ‖α,2< t ‖ η − ω ‖α,2 +τ ‖ η − ω ‖α,2

√

∫ t

0

e−2τ(t−s) ds,

so that for some positive number k,

‖ Θ−1(x, η)− Θ−1(y, ω) ‖α,2< k ‖ η − ω ‖α,2 .
The proof is thus complete. �

As they are either piecewise linear or piecewise constant L♯, Z♯n and Y ♯n all belong
to I+

α,2. And since the I+
α,2 are closed sets, X♯ and B ◦γ also belong to I+

α,2. As the

following corollary demonstrates, the Lipschitz property of Θ−1 enables to reduce
the calculation of the rate of convergence of Z♯n towards X♯ to that of Y ♯n towards
B ◦ γ,
Corollary 5.4. Almost surely, for some positive constant c we have

dΣη,p
(πnZ

♯
n, X

♯) ≤ c dΣη,p
(πnY

♯
n , B ◦ γ).

Proof. From Proposition 5.1, Y ♯n converges in distribution to B ◦ γ. From the
Lipschitz continuity of Θ and the Continuous Mapping Theorem, setting τ = µ
this entails the convergence in distribution

Θ(Z♯n) = (0, Y ♯n) ⇒ (0, B ◦ γ)
However, expression (6.34) in [21] shows that for all t, Θ

(

X♯(t)
)

= (0, B ◦ γ(t))
which, together with the linearity of Θ and of the operator πn for any n, concludes
the proof. �

5.2. Alternative representation. As a consequence of a Corollary 5.4, the rate of
convergence of (Gn : n ≥ 0) towardsX♯ is bounded by that of (Yn : n ≥ 0) towards
B ◦ γ, which we now address.

For that purpose, and following Section 7.2 of [25], an alternative representation
of L♯ in terms of a marked Poisson process will prove useful. A point (x, z) repre-
sents a customer arriving at time x and requiring a service of duration z. Let Nλ,µ
be a Poisson process on R

+×R
+ of control measure λ dx⊗µe−µz dz. At any time

t ≥ 0, the number of busy servers at t equals the number of points located in the
shaded trapeze bounded by the axes of equation x = 0 and x = t, and above the
line z = t− x: in other words

L♯(t) =

∫

Ct

dNλ,µ(x, z),

where

(42) Ct = {(x, z), 0 ≤ x ≤ t, z ≥ t− x}.
Fix a positive integer n throughout this section. After scaling, for all t ≥ 0 we

get that

L♯n(t) =
1

n
Nλn,µ(Ct).

Let us denote for all (x, z) in the positive orthant by

dν♯n(x, z) := λn dx⊗ µe−µz dz,
18
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Figure 1. Representation of the M/M/∞ queue

the control measure of Nnλ,µ. As readily follows from (36), the fluid limit L♯ can
be written for all t ≥ 0 as

L♯(t) =
1

n

∫

1Ct
(x, z) dν♯n(x, z),

in a way that

(43) Z♯n(t) =
1√
n

∫

1Ct

(

dNλn,µ − dν♯n
)

,

for Ct defined by (42). We deduce that for all t ≥ 0,

(44) Y ♯n(t) =
1√
n

∫

1Ct

(

dNλn,µ − dν♯n
)

+ µ

∫ t

0

1√
n

∫

1Cs

(

dNλn,µ − dν♯n
)

du

=
1√
n
δλn,µ(1Ct

) + µ

∫ t

0

1√
n
δλn,µ(1Cu

) du,

where δλn,µ is the compensated integral with respect to the Poisson process Nλn,µ,
see (18).

5.3. Reduction to the finite dimension. Fix n ∈ N and recall (20). It follows
from (44) that

πnY
♯
n =

n−1
∑

i=0

n

T

(

Y ♯n

(

(i+ 1)T

n

)

− Y ♯n

(

iT

n

))

I10+
(

1[ iTn ,
(i+1)T

n )

)

=
n−1
∑

i=0

(

δλn,µ

(

1C (i+1)T
n

− 1C iT
n

)

+ µ

∫
(i+1)T

n

i
n

δλn,µ(1Cu
) du

)

hni

=
n−1
∑

i=0

δλn,µ(u
♯
i)h

n
i ,

19



where for all i and all (x, z) ∈ R
2,

(45) u♯i(x, z) =
1√
T

(

1C (i+1)T
n

(x, z)− 1C iT
n

(x, z) + µ

∫
(i+1)T

n

iT
n

1Cu
(x, z) du

)

.

Let us denote for any i = 0, · · · , n− 1,

ξ♯i :=

√

γ

(

(i+ 1)T

n

)

− γ

(

iT

n

)

.

The following result is proven in appendix B,

Proposition 5.5. For any n, the family
(

u♯i , i = 1, · · · , n
)

has the following prop-

erties:

(i) It is orthogonal in L2
(

ν♯n
)

;
(ii) For some constant c independent of n,

n
∑

i=1

n
∑

j=1

n
∑

k=1

∫

E

|u♯iu♯ju♯k| dν♯n ≤ nc.

(iii) For any i ∈ {1, · · · , n},
∫ ∫

u♯iu
♯
i dν

♯
n =

n

T
(ξ♯i )

2.

Notice that for a large enough n, for all t ≥ 0,

n

t
(ξ♯i )

2 i/n→t−−−−→ γ′(t) and for a fixed i,
n

t
(ξ♯i )

2 n→∞−−−−→ γ′(0).

We thus have the following result,

Proposition 5.6. For some c, for all positive integer n, the respective interpola-
tions of Y ♯n and B ◦ γ satisfy

dΣη,p
(πnY

♯
n , πn(B ◦ γ)) ≤ c√

n
.

Proof. Recall that πn(B ◦ γ) can be represented as

πn(B ◦ γ) dist
=

n
∑

j=1

Y ♯j h
n
j = Bξ♯ ,

where
(

Y ♯k , k = 1, · · · , n
)

is a family of independent centered Gaussian random

variables such that var(Y ♯k ) = (ξ♯k)
2 for all k. From assertion (i) of Proposition 5.5,

we can apply Theorem 3.2 : for any F ∈ Ση,p,

∣

∣E
[

F (Bξ♯)
]

−E
[

F (δλn,µu
♯)
]∣

∣ ≤ 1

2
n−3/2+η

n
∑

i=1

n
∑

j=1

n
∑

k=1

∫

E

|u♯iu♯j| |u♯k| dν♯n.

Assertions (ii) and (iii) of Proposition 5.5 allow us to conclude. �

5.4. Speed of convergence. We can now state our main result of this section,

Theorem 5.7. On the interval [0, T ], let (Gn : n ≥ 1) be the sequence of processes
defined for all n by (37) and X♯ be the process defined by (38). Then there exists a
constant c > 0 such that for all n,

dLη,p
(Z♯n, X

♯) ≤ c logn

log logn
√
n
·
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Proof. For any n ∈ N we have that

(46) dLη,p
(Z♯n, X

♯)

≤ dLη,p
(Z♯n, πnZ

♯
n) + dΣη,p

(πnZ
♯
n, X

♯)

≤ dLη,p
(Z♯n, πnZ

♯
n) + c dΣη,p

(πnY
♯
n , B ◦ γ)

≤ dLη,p
(Z♯n, πnZ

♯
n) + c dΣη,p

(πnY
♯
n , πnB ◦ γ) + c dΣη,p

(πnB ◦ γ,B ◦ γ),

where we applied Corollary 5.4 in the second inequality.
First define the stopping times

τ ♯n = inf {t ≥ 0 : Nnλ(t) ≥ 2λnT } , n ∈ N.

Then, as all functions of Lη,p are bounded and Lipschitz continuous we obtain that
for all n,

(47) dLη,p

(

Z♯n, πnZ
♯
n

)

≤ sup
F∈Lη,p

E
[

∣

∣F
(

Z♯n
)

− F
(

πnZ
♯
n

)∣

∣ 1{T<τ♯
n}
]

+ cP
[

T ≥ τ ♯n
]

≤ E
[

dD
(

Z♯n, πnZ
♯
n

)

1{T<τ♯
n}
]

+ cP
[

T ≥ τ ♯n
]

≤ E
[

‖ Z♯n
(

. ∧ τ ♯n
)

− πn
(

Z♯n
(

. ∧ τ ♯n
))

‖∞,T 1{T<τ♯
n}
]

+ cP
[

T ≥ τ ♯n
]

.

On the one hand, from Tchebychev inequality, we have for all n,

(48) P
[

T ≥ τ ♯n
]

= P [Nnλ(T ) ≥ 2λnT ] ≤ Var (Nnλ(T ))

(λnT )2
≤ c

n
·

Also, for any n on {T < τ ♯n} we have that

L♯n
(

t ∧ τ ♯n
)

≤ Nnλ(t) ≤ 2λnT,

therefore the Markov process L♯n
(

. ∧ τ ♯n
)

satisfies to the Assumptions of Lemma 3.1
for J ≡ 1 and α ≡ λ ∨ (µT ). Thus we obtain as in (32) that for any n,

(49) E
[

‖ Z♯n
(

. ∧ τ ♯n
)

− πn
(

Z♯n
(

. ∧ τ ♯n
))

‖∞,T 1{T<τ♯
n}
]

≤ 1√
n
E
[

‖ L♯n − πnL
♯
n ‖∞,T

]

+
√
n ‖ L♯ − πnL♯ ‖∞,T

≤ c logn

log logn
√
n
·

Recalling (36), we use the fact that

√
n ‖ L♯ − πnL♯ ‖∞,T ≤ 2

√
n max
i∈[0,n−1]

sup
t∈[ iTn ; (i+1)T

n ]

∣

∣

∣e−µt − e−µ
iT
n

∣

∣

∣

≤ 2
√
n
(

e−
µ
n − 1

)

≤ c√
n
.

Finally, gathering (49) with (48) in (47) entails that for all n,

dLη,p
(Z♯n, πnZ

♯
n) ≤

c log n√
n

which, together with with Proposition 5.6 and (21) in (46), concludes the proof. �
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Appendix A. Moment bound for Poisson variables

By following closely Chapter 2 in [5], we show hereafter a moment bound for the
maximum of n Poisson variables. (Notice that, contrary to Exercise 2.18 in [5] we
do not assume here that the Poisson variables are independent.)

Proposition A.1. Let n ∈ N and let Xi, i = 1, · · · , n be Poisson random variables
of parameter ν. Then for some c depending only on ν we have that

(50) E

[

max
i=1,··· ,n

Xi

]

≤ c
logn

log logn
·

Proof. Denote for all i, Zi = Xi − ν, and by ΨZi
the moment generating function

of Zi. By Jensen’s inequality and the monotonicity of exp(.) we get that

exp

(

uE

[

max
i=1,··· ,n

Zi

])

≤ E

[

max
i=1,··· ,n

exp(uZi)

]

≤
n
∑

i=1

E [exp(uZ1)] ≤ n exp (ΨZi
(u)) .

After a quick algebra, this readily implies that

E

[

max
i=1,··· ,n

Zi

]

≤ inf
u∈R

(

logn+ ν (eu − u− 1)

u

)

=
logn+ ν

(

e a
W (a) − 1−W (a)− 1

)

1 +W (a)
,

where W is the so-called Lambert function, solving the equation W (x)eW (x) = x

over [−1/e,∞], and a = log(n/eν)
eν . This entails in turn that

E

[

max
i=1,··· ,n

Xi

]

≤ νe
a

W (a)
− ν + ν =

log (n/eν)

W (log(n/eν)/eν)
·

We conclude by observing that W (z) ≥ log(z)− log log(z) for all z > e. Therefore
there exists c > 0 such that for n ≥ exp

(

eν+1 + ν
)

,

E

[

max
i=1,··· ,n

Xi

]

≤ log (n/eν)

log(log(n/eν)/eν)− log log(log(n/eν)/eν)
≤ c

logn

log logn
,

which completes the proof. �

Appendix B. Proof of Proposition 5.5

Without loss of generality we set T = 1. Fix n throughout this section, and
denote for all i ∈ [1, n] and (x, z) ∈ R

2,

αi(x, z) = 1C i
n

(x, z), βi(x, z) =

∫
i+1
n

i
n

1Cu
(x, z) du.

Proof of (i). Recall (45), and fix two indexes 1 ≤ i < j ≤ n. We have that

(51)

∫ ∫

u♯iu
♯
j dν

♯
n =

∫ ∫

(αi+1 − αi) (αj+1 − αj) dν♯n

+ µ

∫ ∫

βi (αj+1 − αj) dν♯n + µ

∫ ∫

βj (αi+1 − αi) dν♯n + µ2

∫ ∫

βjβj dν
♯
n

=: I1 + I2 + I3 + I4,
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where straightforward computations show that

I1 = λn
(

2e−µ
j−i
n − e−µ

j−i−1
n − e−µ

j−i+1
n

)

;

I2 =
λn

µ

(

2e−µ
j−i
n − e−µ

j−i−1
n − e−µ

j−i+1
n

)

− λ
(

e−µ
j+1
n − e−µ

j
n

)

;

I3 =
λn

µ

(

−2e−µ
j−i
n + e−µ

j−i−1
n + e−µ

j−i+1
n

)

;

I4 =
λn

µ

(

−2e−µ
j−i
n + e−µ

j−i−1
n + e−µ

j−i+1
n

)

+ λ
(

e−µ
j+1
n − e−µ

j
n

)

.

Adding up the above in (51) yields the result. �

Proof of (ii). For all 1 ≤ i, j, k ≤ n we write

(52) Ii,j,k :=

∫

R2

|u♯iu♯ju♯k| dν♯n ≤
∫

|(αi+1 − αi)(αj+1 − αj)(αk+1 − αk)| dν♯n

+

∫

|(αi+1 − αi)(αj+1 − αj)µβk| dν♯n +

∫

|(αj+1 − αj)(αk+1 − αk)µβi| dν♯n

+

∫

|(αi+1 − αi)(αk+1 − αk)µβj | dν♯n +

∫

∣

∣(αi+1 − αi)µ
2βjβk

∣

∣ dν♯n

+

∫

∣

∣(αj+1 − αj)µ
2βiβk

∣

∣ dν♯n +

∫

∣

∣(αk+1 − αk)µ
2βiβj

∣

∣ dν♯n

+

∫

∣

∣µ3βiβjβk
∣

∣ dν♯n =:

8
∑

l=1

I li,j,k.

It can be easily retrieved that

I1i,i,i = n

(

λ

n
− λ

µ

(

1− e−
µ
n

)(

1− eµ
i+1
n

)

)

≤ λ

µ
;

I1i,j,k = 0, 1 ≤ i < j < k ≤ n;

I1i,i,k =
λn

µ

(

eµ
i+1
n − eµ

i
n

)(

e−µ
k
n − e−µ

k+1
n

)

≤ λ

µn
, i = j < k,

and the other cases can be treated similarly. Also, simple computations show that
if i < j,

µ

∫

|(αi+1 − αi)(αj+1 − αj)βk| dν♯n ≤ λ
(

eµ
i+1
n − eµ

i
n

)(

e−µ
j
n − e−µ

j+1
n

)

≤ λ

n2
,

whereas if i = j, the above integral is upper bounded by

2λ
(

2 + e−µ
i+1
n − e−µ

i
n − 2e−

µ
n

)

≤ 2λµ

n
.

It readily follows that in all cases, I2i,j,k, I
3
i,j,k and I4i,j,k are less than c n−1 for some

constant c. Reasoning similarly, we also obtain that for all i, j, k,

µ2

∫

∣

∣(αi+1 − αi)µ
2βjβk

∣

∣ dν♯n ≤ µ2

n

(

λ

n
− λ

µ

(

1− e−
µ
n

)(

1− eµ
i+1
n

)

)

≤ λ

µn2
,

so that in all cases the I5i,j,k, I
6
i,j,k and I7i,j,k’s are less than c n

−2 for some c. Finally,
observing that for all u, v, w,
∫ ∫

1Cu
1Cv

1Cw
λµe−µy dx dy =

λ

µ
(e−µ(max(u,v,w)−min(u,v,w)) − e−µmax(u,v,w))

we can similarly bound I8i,j,k by a c n−2 for all i, j, k. To summarize, all the Ii,j,k’s

are less than c n−2 for some c, except for the I1i,i,i’s, i = 1, ..., n, which are bounded
23



by a constant but are only n in number, and all terms where one index appears
twice, which are less than c n−1 for some c, but are only n2 in number. Hence (ii).

�

Proof of (iii). We have for all 1 ≤ i ≤ n,

(53)

∫ ∫

u♯iu
♯
i dν

♯
n =

∫ ∫

αi+1 dν♯n +

∫ ∫

αi dν
♯
n − 2

∫ ∫

αi+1αi dν
♯
n

+ 2µ

∫ ∫

βiαi+1 dν♯n − 2µ

∫ ∫

βiαi dν
♯
n + µ2

∫ ∫

βiβi dν
♯
n

= J1 + J2 + J3 + J4 + J5 + J6,

where straightforward calculations show that

J1 =
λn

µ

(

1− e−µ
i+1
n

)

; J2 =
λn

µ

(

1− e−µ
i
n

)

;

J3 = −2
λn

µ

(

e−
µ
n − e−µ

i+1
n

)

; J4 = 2
λn

µ
(1 − e−

µ
n )− 2λe−µ

i+1
n ;

J5 = −2
λn

µ
(1− e−

µ
n )− 2

λn

µ
(e−µ

i+1
n − e−µ

i
n );

J6 = λ

(

2 + 2e−µ
i+1
n +

2n

µ
(e−µ

i+1
n − e−µ

i
n + e

−µ
n − 1)

)

.

Recalling (40), adding up the Jj ’s, j = 1, ..., 6, concludes the proof. �
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E-mail address: pascal.moyal@utc.fr

25


