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Abstract. The invariance principle for M/M/1 and M/M/∞ queues states
that when properly renormalized (i.e. rescaled and centered), the Markov
processes which describe these systems both converge to a diffusive limit when
the driving parameters go to infinity: a killed Brownian motion in the former
case and an Ornstein-Uhlenbeck process for the latter. The purpose of this
paper is to assess the rate of convergence in these diffusion approximations. To
this end, we extend to these contexts, the functional Stein’s method introduced
for the Brownian approximation of Poisson processes.

1. Motivations

It is usually said that the Central Limit Theorem (CLT for short) indicates that
the rate of convergence in the Law of Large Numbers is of the order of 1/

√
n because

one can informally write

1

n

n
∑

j=1

Xj ≃ E [X1] +
1√
n
N (0, 1).

Going further, one can ask what is the rate of convergence in the CLT itself. As this
theorem is about convergence in distribution, answering such a question requires to
define a notion of distance between laws of random variables. Most of the textbooks
about probability theory mention the Prohorov distance defined by

ρ(P,Q) = inf
{

ε > 0, P(A) ≤ Q(Aε) + ε for all A ∈ B(E)
}

where (E,B(E)) is a metric space, equipped with a distance d; P, Q are two proba-
bility measures on (E,B(E)) and Aε = {y ∈ E, d(x,A) < ε}. It is then well known
that

(

ρ(P,Qn)
n→∞−−−−→ 0

)

⇐⇒
(

Qn converges in dist. to P
)

.

Unfortunately, it is not straightforward to estimate distances between probability
measures with this definition. It turns out that another definition of a distance
between P and Q is available and gives the same topology when E is separable.
Denote by Lip1(E), the set of 1-Lipschitz continuous functions on E:

|f(x)− f(y)| ≤ d(x, y), for all x, y ∈ E.

The so-called Kolmogorov-Rubinstein distance (sometimes called Wasserstein dis-
tance) between two probability measures P and Q on E is defined by

dKR(P,Q) = sup
F∈Lip1(E)

(∫

E

F dP−
∫

E

F dQ

)

.

In Theorem 11.3.3 of [15], it is shown that
(

dKR(P,Qn)
n→∞−−−−→ 0

)

⇐⇒
(

Qn converges in dist. to P
)

.
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This formulation is particularly well suited to be estimated via the Stein method
(SM for short).

The SM was first introduced in an article by Stein [27] to quantify the rate of
convergence in the Central Limit Theorem and was soon extended to the Poisson
distribution by Chen [8]. In its first step, the method involves characterizing the
target distribution with a functional operator A such that EQ [AF ] = 0 for any F in
a sufficiently large set of test functions F , if and only if Q = P. Barbour introduced
the generator interpretation that made possible the extension of Stein’s method to
many other probability distributions: in many cases this functional operator A can
be viewed as the infinitesimal generator of a Markovian semi-group (Pt, t ≥ 0)
whose stationary measure is P. This means that we can write

(1) dF(P, Q) := sup
F∈F

∣

∣

∣

∣

EP [F ]−EQ [F ]

∣

∣

∣

∣

= sup
F∈F

∣

∣

∣

∣

EQ

[∫ ∞

0

APtF dt

]∣

∣

∣

∣

.

If we choose F to be Lip1, we have an interesting representation of the Kolmogorov-
Rubinstein between P and Q. The function

x ∈ E 7−→
∫ ∞

0

APtF (x) dt

is one possible expression of the solution of the so-called Stein equation. If P

is the Gaussian distribution on R, then (Pt, t ≥ 0) is known as the Ornstein-
Uhlenbeck semi-group whose regularizing properties induce that the solution of the
Stein equation has bounded first and second order derivatives. This observation is
the first step of the numerous papers on the SM ([3] and references therein).

A very important breakthrough was made by Nourdin and Peccati [19] who
showed that alternatively, the right-hand-side of (1) could be transformed and
amenable to further simplifications, by using integration by parts in the Malliavin
calculus sense. This was the starting point of a bunch of articles with a wide
area of applications: Berry-Esseen theorem, iterated-logarithm theorem (see [18]
and references therein), limit theorems on manifolds, Poisson approximation [21],
etc. As a result of these almost fifty years of intense activity, a huge number of
Gaussian or Poisson convergence results have been quantified. When the limiting
distribution are processes like Brownian motion, Poisson process, Poisson point
process, there are very few papers. The first of all was the paper by Barbour [2]
which established the first quantified version of the Donsker theorem, resorting to
ideas very close to that of Malliavin calculus. In [9], a different technique was
used to estimate the convergence rate of the normalized Poisson process to the
Brownian motion. The paper of Shih [25] extends the original approach of the
SM in abstract Wiener spaces. Besides the technical points which are evidently
more involved, the main difference between convergence to random variables and
convergence to random processes is that for the latter, we generally have a large
choice of functional spaces of reference. For instance, a Brownian motion can be
seen either as a square integrable process, as a continuous process, as an α-Hölder
continuous for any α < 1/2 or even as an element of a fractional Sobolev spaces as
defined below. Changing the topology modifies the admissible test functions: The
evaluation of the trajectory at time t0 is Lipschitz continuous on a Hölder space but
it is not defined on the space of square integrable functions. Moreover, as already
seen in [9], the convergence rate may also depend on the chosen space.

So far, Stein’s method has been applied to estimate the convergence rate of
explicit processes towards the Brownian motion or Poisson point processes [14].
This does not represent all kinds of situations where we know that a sequence of
processes converges to a diffusion process. Here, we have in mind the vast literature
on diffusion approximations, allowing to efficiently simulate an asymptotic version
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of the process under consideration, or assess the order of the fluctuations around its
fluid limit or its mean field, along the various applications. The most basic example
is that of the M/M/1 queue with initial condition nx0, arrival rate λn and service
rate µn. It is well known (see e.g. Section 5.7 in [23]) that if L†

n denotes the process
which counts the customers in the system, then

(2) Z†
n =

√
n

λ+ µ

(L†
n

n
− L†

)

=⇒ B,

on the time interval [0, x0(µ− λ)], where B is a standard Brownian motion and L†

is the solution of the equation

L†(t) = x0 + λt− µ

∫ t

0

1
{L†(s−)>0}

ds.

The convergence holds in distribution over D, the Skorohod space of continuous-
on-the-right-with-left-limits functions. The principle of the proof is to show that
the sequence of processes

(

Z†
n : n ≥ 1

)

is tight in the convenient topology and that

the finite dimensional distributions of Z†
n converge to that of the Brownian motion.

One approach is to view L†
n as the solution of a stochastic differential equation

driven by a finite number of independent Poisson processes on the real line:

(3) L†
n(t) = x0 +Nλn(t)−

∫ t

0

1{L†
n(s−)>0} dNµn(s),

where for any α > 0, Nα denote a Poisson process on R
+ of intensity α. This yields

an implicit definition of L†
n which, using martingale theory, is sufficient to prove the

tightness of
(

Z†
n : n ≥ 1

)

. Unfortunately, the representation (3) is not well suited
to the development of the Stein method. Originally, we were interested in the class
of Markovian processes which are solution to a stochastic differential equation of
the form

dX(t) =

n
∑

i=1

ai1{X(t)∈Ci} dN i(t),

where the N i’s are independent Poisson processes, the ai’s are deterministic coeffi-
cients and the Ci’s are Borel subsets of the set R of real numbers. These processes
are very widely used to model stochastic networks and in particular, queueing sys-
tems [23]. The properties of some of these processes have been thoroughly studied,
and limit theorems have been obtained when speeding up time and rescaling the
processes themselves with some parameter going to infinity. For the reasons ex-
plained above for the M/M/1 queue, this kind of representation is not adapted to
Stein’s method so we had to lower our expectations.

We propose an analysis of the rescaled M/M/1 and M/M/∞ queues which are
the basic models for which approximation diffusions were initially developped. The
difficulties we meet are of different nature for these two processes.

The representation (3) of the M/M/1 queue means that until L†
n reaches 0, it

evolves as the difference of two independent Poisson processes. According to [9],
we know the convergence rate of any combination of independent Poisson point
processes conveniently renormalized towards a Brownian motion. For the M/M/1,
the problem is then to handle the reflection at 0. We introduce the hitting time
of 0, denoted by τ†n and we show that for any deterministic time T < x0/(µ− λ),
we can apply the results of [9] (actually an improvement of these results) on the
set (τ†n > T ). As n increases, a classical result of large deviations ensures that
the complementary set (τ†n ≤ T ) becomes exponentially small and hence can be
neglected. This an interesting and original extension of the SM.

As to the renormalized M/M/∞, the limiting process is an Ornstein-Uhlenbeck
(see [4] and Section 6.6 in [23], or [12] regarding non-exponential service times),
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for which we do not know a characterizing operator as in Eqn. (1). Thus, we
first apply an integral transformation to the process which counts the number of
occupied servers, so that we are reduced to prove the convergence to a time-changed
Brownian motion. It is then sufficient to estimate the convergence rate in a finite
dimensional functional space.

In brief, the techniques are different in the two situations. Thus, a generalization
of our results can be envisioned only on a case by case basis. Even if it is frustrating,
this is not so surprising since even for the functional limit theorems to be proved,
the procedure is always the same (tightness and convergence of fidi distributions)
but the actual computations are adapted to each particular model.

The paper is organized as follows. In Section 2, we explain the functional frame-
work and introduce the Malliavin calculus for Brownian motion and marked Poisson
point process. In Section 3, we show that the distance we aim to compute can be
split into three parts, each one we handle differently. In particular, in subsection
3.3, we develop our approach of the Stein method. It is an extension to the func-
tional setting of [21, Theorem 3.1]. In Section 4, we apply the previous results to
the M/M/1 and to the M/M/∞ queue in Section 5.

2. Preliminaries

2.1. Functionals spaces. We need to introduce several spaces of functions. Through-
out the whole paper, we fix a time horizon T > 0.

Definition 2.1. The Skorokhod space D([0, T ]) is the space of right continuous with
left limits (rcll) functions from [0, T ] into R. It is usually equipped with the distance

(4) dD(f, g) = inf
φ∈HomT

(

max
(

‖Id− φ‖L∞([0,T ]), ‖f − g ◦ φ‖L∞([0,T ])

))

where HomT is the space of increasing homeomorphisms from [0, T ] into itself.

It contains C, the space of continuous functions on [0, T ], as well as E , the set
of stepwise functions. In C, it is interesting to focus on the Hölder continuous
functions: f ∈ Hol(η) whenever

‖f‖Hol(η) = sup
s6=t∈[0,T ]

|f(t)− f(s)|
|t− s|η <∞.

As in [11, 17], we consider the fractional Sobolev spacesWη,p defined for η ∈ (0, 1]
and p ≥ 1 as the closure of C1 functions with respect to the norm

‖f‖pη,p =
∫ T

0

|f(t)|p dt+

∫∫

[0,T ]2

|f(t)− f(s)|p
|t− s|1+pη dt ds.

For η = 1, W1,p is the completion of C1 for the norm:

‖f‖p1,p =
∫ T

0

|f(t)|p dt+

∫ T

0

|f ′(t)|p dt.

They are known to be Banach spaces and to satisfy the Sobolev embeddings [1, 16]:

Wη,p ⊂ Hol(η − 1/p) for η − 1/p > 0

and

Wη,p ⊂Wα,q for 1 ≥ η ≥ α and η − 1/p ≥ α− 1/q.

As a consequence, since W1,p is separable (see [6]), so does Wη,p. We need to
compute the Wη,p norm of primitive of step functions.
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Lemma 2.2. Let 0 ≤ s1 < s2 ≤ T and consider

hs1,s2(t) =

∫ t

0

1[s1,s2](r) dr.

There exists c > 0 such that for any s1, s2, we have

(5) ‖hs1,s2‖Wη,p
≤ c |s2 − s1|1−η.

Proof. Remark that for any s, t ∈ [0, T ],

|hs1,s2(t)− hs1,s2(s)| ≤ |t− s| ∧ (s2 − s1).

The result then follows from the definition of the Wη,p norm. �

We also need to introduce the Besov-Liouville spaces of fractional derivatives.
For f ∈ L1([0, T ]; dt), (denoted by L1 for short) the left and right fractional
integrals of f are defined by :

(Iα0+f)(x) =
1

Γ(α)

∫ x

0

f(t)(x− t)α−1dt , x ≥ 0,

(IαT−f)(x) =
1

Γ(α)

∫ T

x

f(t)(t− x)α−1dt , x ≤ 1,

where α > 0 and I00+ = I0T− = Id. For any α ≥ 0, p, q ≥ 1, any f ∈ Lp and g ∈ Lq

where p−1 + q−1 ≤ α, we have :

(6)

∫ T

0

f(s)(Iα0+g)(s) ds =

∫ T

0

(IαT−f)(s)g(s) ds.

The Besov-Liouville space Iα0+(L
p) := I+

α,p is usually equipped with the norm :

(7) ‖Iα0+f‖I+
α,p

= ‖f‖Lp.

Analogously, the Besov-Liouville space IγT−(L
p) := I−

γ,p is usually equipped with
the norm :

‖I−αT−f‖I−
α,p

= ‖f‖Lp.

These spaces are particularly interesting in view of their relationships with the
spaces of Hölder continuous functions.

Theorem 2.3 (Sobolev embeddings, [16, 24]). We have the following embbedding
properties.

(1) If 0 < α < 1, 1 < p < 1/α, then Iα0+ is a bounded operator from Lp into Lq

with q = p(1− αp)−1.
(2) For any 0 < α < 1 and any p ≥ 1, I+

α,p is continuously embedded in
Hol(α− 1/p) provided that α− 1/p > 0.

(3) For any α′ ≥ α and p, p′ such that α′ − 1/p′ ≥ α− 1/p, Iα′,p′ ⊂ Iα,p.
(4) For 1 ≥ α > η > ζ > 0, the following embeddings are continuous (even

compact)

Wα,p ⊂ I+
η,p ⊂Wζ,p.

It may be useful to keep in mind the following diagram where all arrows represent
continuous embeddings. For any η > 0, any ǫ ∈ (0, η),

Wη,1/(η−ǫ) Hol0(ǫ) C0 C D

Wη,1/(η+ǫ) E E0
where D0 (respectively C0, Hol0, E0) represents the elements of D (respectively C,
Hol, E) which are null at time 0.
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2.2. Wiener space. Since we want to compare some measure with the distribu-
tion of the Brownian motion, sometimes called the Wiener measure, we need to
construct precisely the functional framework. We refer to [20, 22, 28] for details
about Malliavin calculus in the Gaussian setting.

Let B = (B(t), t ∈ [0, T ]) be a standard one-dimensional Brownian motion.
Since it has Hölder continuous sample-paths of any order less than 1/2, we can
say that almost-surely, B belongs to I+

η,p for any

(η, p) ∈ Λ =
{

(η, p) ∈ R
+ × R

+, 0 < η − 1/p < 1/2
}

.

We denote by Pη,p, the distribution of B over I+
η,p. The spaces I+

η,p are Banach

spaces, for which there exists the notion of Fréchet derivative. For F : I+
η,p → R,

it is differentiable whenever

(8) lim
ε→0

ε−1
(

F (x+ εh)− F (x)
)

exists for any h ∈ I+
η,p and defines an element of (I+

η,p)
∗,

lim
ε→0

ε−1
(

F (x+ εh)− F (x)
)

= 〈DF (x), h〉(I+
η,p)∗,I

+
η,p
.

In particular, as in finite dimension, Fréchet differentiability implies continuity. In
the present context, the functions we are going to consider are random variables,
meaning that they are defined up to a negligeable set, so that no hypothesis of
continuity can be enforced. Moreover, as Eqn. (8) suggests, if F = G almost-surely,
we must be sure that F (.+ h) = G(. + h) almost-surely for any h ∈ Wη,p, i.e. the
pullback measure of Pη,p by the map τh : x 7→ x+ h is absolutely continuous with
respect to Pη,p. For this property to hold, the Cameron-Martin theorem says that
we must restrict the perturbation h to belong to I+

1,2.

Theorem 2.4 (Cameron-Martin). For any h ∈ I+
1,2, for any bounded functional

F : Wη,p → R

(9) E [F (B + h)] = E

[

F (B) exp

(

∫ T

0

ḣ(s) dB(s)− 1

2
‖h‖2

I+
1,2

)]

,

where ḣ is the time derivative of h ∈ I+
1,2, so that ḣ belongs to L2([0, T ]) and the

stochastic integral has to be taken in the Itô sense.
Otherwise stated, Eqn. (9) means that the distribution of B + h is absolutely

continuous with respect to Pη,p and that its Radon-Nykodim derivative is given by
the exponential factor of the RHS of (9).

Because of this theorem, the space I+
1,2 plays a crucial role in the stochastic

calculus of variations. We have the following scheme

W ∗
η,p (I+

1,2)
∗

L2 I+
1,2 Wη,p

i
∗
η,p

≃

I1
0+ iη,p

The map iη,p is the embedding from I+
1,2 into Wη,p. The pivotal space, i.e. the

Hilbert space identified to itself, is, in this context, the space I+
1,2 and not L2 as it

often happens. This means that i∗η,p is the adjoint of iη,p after this identification.
We can now introduce the concept of Gross-Sobolev or weak derivative.

Definition 2.5. A function F : Wη,p → R is said to be cylindrical if it is of the
form

(10) F = f
(

δBh1, · · · , δBhk
)
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where f belongs to the Schwartz space on R
k, h1, · · · , hk belong to I+

1,2 and δBh is

the Itô integral of ḣ:

δBh =

∫ 1

0

ḣ(s) dB(s).

Remark that if u̇ belongs to L2, then

∫ s

0

u̇(s) d(B + h)(s) =

∫ s

0

u̇(s) dB(s) +

∫ s

0

u̇(s)ḣ(s) ds

=

∫ s

0

u̇(s) dB(s) +
〈

u̇, ḣ
〉

L2
=

∫ s

0

u̇(s) dB(s) + 〈u, h〉I+
1,2
.

Hence, if F is cylindrical

d

dε
F (B + εh)

∣

∣

∣

∣

ε=0

=

k
∑

j=1

∂jf
(

δBh1, · · · , δBhk
)

〈hj , h〉I+
1,2

This motivates the following definition

Definition 2.6. For F as in (10), let ∇F be the element of L2(Wη,p; I+
1,2) defined

by

∇F =

k
∑

j=1

∂jf
(

δBh1, · · · , δBhk
)

hj

and let ∇(2)F be the element of L2(Wη,p; I+
1,2 ⊗ I+

1,2)

∇(2)F =

k
∑

j,l=1

∂
(2)
jl f

(

δBh1, · · · , δBhk
)

hj ⊗ hl.

Consider the norm

‖F‖22,2 = ‖F‖2L2 +E
[

‖∇F‖2
I+
1,2

]

+E
[

‖∇(2)F‖2
I+
1,2⊗I+

1,2

]

,

where

‖∇F‖2
I+
1,2

=

∫ 1

0





k
∑

j=1

∂jf
(

δBh1, · · · , δBhk
)

ḣj(s)





2

ds

and

‖∇(2)F‖2
(I+

1,2)
⊗2 =

∫ 1

0

∫ 1

0





k
∑

j,l=1

∂
(2)
jl f

(

δBh1, · · · , δBhk
)

ḣj(s)ḣk(s)





2

ds dr.

The set D2,2 is the completion of the set of cylindrical functions with respect to the
norm ‖ ‖2,2.

Remark 1. Note that if h belongs to I±
2,2 = (I10+ ◦ I11−)(L2) ⊂ I+

1,2 then

∇f(δBh) = f ′(δBh) h

belongs to L2(Wη,p; I±
2,2). This means that for such a functional, its gradient is

more regular, in the sense that it belongs to a smaller space, than for ordinary
elements of D2,2.

Since we identified I+
1,2 with its dual, the space I±

2,2 is in duality with L2: For

h ∈ I±
2,2, there exists ḧ ∈ L2 such that h = I10+(I

1
1−(ḧ)). Hence for k ∈ I+

1,2, we
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have

∣

∣

∣
〈h, k〉I+

1,2

∣

∣

∣
=

∣

∣

∣

∣

∫ 1

0

I11−(ḧ)(s)k̇(s) ds

∣

∣

∣

∣

=

∣

∣

∣

∣

∫ 1

0

ḧ(s)I10+(k̇)(s) ds

∣

∣

∣

∣

=

∣

∣

∣

∣

∫ 1

0

ḧ(s)k(s) ds

∣

∣

∣

∣

≤ ‖ḧ‖L2‖k‖L2.

Since I+
1,2 is dense in L2, we can extend this duality pairing to h ∈ I±

2,2 and k ∈ L2.

This leads to the following definition.

Definition 2.7. A function F : Wη,p → R is said to belong to the class Ση,p
whenever it belongs to Lip1(Wη,p), belongs to D2,2 and satisfies

(11)

∣

∣

∣

∣

〈

∇(2)F (x)−∇(2)F (x+ g), h⊗ k
〉

I+
1,2

∣

∣

∣

∣

≤ ‖g‖Wη,p
‖h‖L2‖k‖L2,

for any x ∈Wη,p, g ∈ I+
1,2, h, k ∈ L2. This means that ∇(2)F is an element of the

space Lip1(Wη,p; (I±
2,2)

⊗2).

If F : Wη,p → R is thrice differentiable in the direction of I+
1,2 and such that

sup
x∈Wη,p

‖∇(3)F‖(I±
2,2)

⊗3 <∞

then by the fundamental theorem of calculus
∣

∣

∣

∣

〈

∇(2)F (x)−∇(2)F (x+ g), h⊗ k
〉

I+
1,2

∣

∣

∣

∣

≤ ‖∇(3)F‖L∞(Wη,p;(I
±
2,2)

⊗3)‖g‖L2 ‖h‖L2‖k‖L2.

Since Wη,p is continuously embedded in L2,

‖∇(3)F‖−1

L∞(Wη,p;(I
±
2,2)

⊗3) F ∈ Ση,p.

Our main results below will be more easily expressed for test functions in the
following set,
(12)
Lη,p = {bounded functions of Lip1(D) whose restriction to Wη,p belongs to Ση,p.} .
Let us also define the following distances and norm: for any two processes U and
V in the convenient spaces,

dΣη,p
(U, V ) = sup

F∈Ση,p

|E [F (U)]−E [F (V )]| ;(13)

dLη,p
(U, V ) = sup

F∈Lη,p

|E [F (U)]−E [F (V )]| ;(14)

‖ V − U ‖∞,T = sup
t∈[0,T ]

|V (t)− U(t)| a.s..(15)

2.3. Poisson point process. We now introduce the minimum framework to get
an integration by parts for Poisson point processes. For details, we refer to [13, 22]
Let E be a complete and separable metric space equipped with a σ-finite measure ν.
Let NE be the space of locally finite configurations on E, i.e. the set of at most
denumerable subsets of E with no accumulation point. Such a set φ can be described
as a set or as a sum of atomic measures:

φ ≃
∑

x∈φ

εx,
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where εx is the Dirac measure at x, so that for any ψ : E → R,

∫

E

ψ dφ =
∑

x∈φ

ψ(x).

For ν a σ-finite measure on E, a Poisson point process of control measure ν is an
NE-valued random variable, say Nν , such that for any ψ : E → R, with compact
support,

E

[

exp
(

−
∑

x∈Nν

ψ(x)
)

]

= exp
(

−
∫

E

1− e−ψ(x) dν(x)
)

.

The multivariate Campbell-Mecke formula states that for any integer k ≥ 1, for
any nonnegative F : Ek ×NE ,

(16) E





∑

x1,··· ,xk∈N
6=
ν

F (x1, · · · , xk, Nν)





=

∫

Ek

E



F
(

x1, · · · , xk, Nν +
k
∑

j=1

εxj

)



⊗kj=1 dν(xj),

where the sum in the left-hand-side runs through the k-uples of distinct points of
the configuration Nν . We say that F : E → R belongs to domD whenever

E

[∫

E

(

F (Nν + εx)− F (Nν)
)2

dν(x)

]

<∞

and we set, for any x ∈ E,

DxF (Nν) = F (Nν + εx)− F (Nν − εx),

where Nν − εx is to be understood as Nν whenever x /∈ Nν . Let

dom δν =
{

u : NE × E → R, E

[∫

E

∣

∣u(Nν, x)
∣

∣

2
dν(x)

]

<∞
}

.

Then, for F ∈ domD and u ∈ dom δν , the multivariate Campbell-Mecke formula
entails that

(17) E [F δνu] = E

[∫

E

DF (x)u(Nν , x) dν(x)

]

,

where

δνu =

∫

E

u(Nν − εx, x) dNν(x)−
∫

E

u(Nν, x) dν(x).

Note that if u is deterministic,

(18) δνu =

∫

E

u(x) ( dNν(x) − dν(x)) and Dxδνu = u(x).

Moreover,

(19) E [δνu] = 0 and E
[

(

δνu
)2
]

=

∫

E

|u(x)|2 dν(x).
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3. Distances between probability distributions

3.1. Distances on functional spaces. Two measures are comparable only if they
are supported on the same space. For real or multivariate random variables, their
distribution is canonically supported either by N, R or Rn, etc. When dealing with
functional spaces, a given process can naturally belong to several metric spaces.
The sample-paths of continuous time Markov chains are piecewise constant, thus
(see [9]) belong to Wη,p for any (η, p) such that η − 1/p < 0 and also to D. On the
other hand, trajectories of diffusion processes belong toWη,p for η−1/p < 1/2. This
means that two factors may contribute to the distance between the distribution of
a CTMC and that of a diffusion process: the difference between the dynamics and
the gap of regularity; the latter being in some sense of lesser importance for the
probabilist. In an effort to see the importance of each of these terms, we consider
an intermediate process which has at least the regularity of the diffusion and a
stochastic behavior similar to that of the stochastic process under study.

For f ∈ D, we consider its affine interpolation on [0, T ] of mesh T/n:

πnf : [0, T ] −→ R(20)

t 7−→
n−1
∑

i=0

n

T

(

f

(

(i+ 1)T

n

)

− f

(

iT

n

))

I10+
(

1[ iTn , (i+1)T
n )

)

(t).

Remark that a stochastic process and its affine interpolation have similar dynamics
since they coincide at each point of the subdivision, whose mesh tends to 0. In
these conditions, it is meaningful to evaluate the distance between the distribution
of some stochastic process Ln and the distribution of its affine interpolation, the
distance between πnLn and πnB where B is a standard Brownian motion, and then
the distance between πnB and B. In view of what we said earlier, these distances
are evaluated for the topology of the fractional Sobolev spacesWη,p for η−1/p < 0,
η − 1/p < 1 and η − 1/2 < 0 respectively. In the end, by the triangular inequality
we get the distance between the distribution of Ln and the Gaussian measure in the
smallest spaces Wη,p for η− 1/p < 0 but in passing we obtain some insights on the
different factors which lead to the discrepancy. The distance between Ln and πnLn
and the distance between πnB and B are due to the gap of regularity between the
sample-paths, whereas the difference between the laws of πnLn and πnB is due to
the dissimilarity of their stochastic behavior.

3.2. Distance between sample-paths. In what follows, N is the set of positive
integers. As mentioned above, we need to estimate the distance between the dis-
tribution of Ln and of πnLn and the distance between the laws of πnB and of
B.

Regarding the latter, since πnB and B are defined on the same probability space,
we can resort to a more precise result, Proposition 13.20 in [17], claiming that for
some c,

E
[

‖πnB −B‖Wη,p

]

≤ c n−(1/2−η), n ∈ N,

for any η < 1/2. Then, recalling (13) we immediately get

(21) E
[

dΣη,p
(πnB, B)

]

≤ c n−(1/2−η), n ∈ N.

We can also estimate the distance between the sample-paths of Birth-and-death
processes and their interpolation. Specifically,

Lemma 3.1. Let n ∈ N, and let X be a N-valued Markov jump process on [0, T ]
of infinitesimal generator A . Suppose that there exists two constants J ∈ N and
α > 0 such that

10



• the amplitude of jumps of X is bounded by J > 0, i.e. for all i, j ∈ N,
A (i, j) = 0 whenever |j − i| > J ;

• the intensities of jumps of X are bounded by nα, i.e. for all i, j ∈ N, i 6= j,
A (i, j) ≤ nα.

Then,

E [‖ Xn − πnXn ‖∞,T ] ≤ 2J
log n

log logn
·

Proof. Fix n ∈ N. For any t ∈ [0, T ] we have that

|Xn(t)− πnXn(t)|

=

∣

∣

∣

∣

Xn(t)−Xn

(

iT

n

)

− n

T

(

t− iT

n

)(

Xn

(

(i+ 1)T

n

)

−Xn

(

iT

n

))∣

∣

∣

∣

≤ 2 sup
t∈[ iTn ; (i+1)T

n ]

∣

∣

∣

∣

Xn(t)−Xn

(

iT

n

)∣

∣

∣

∣

,

so that

(22) E [‖ Xn − πnXn ‖∞,T ] ≤ 2E



 max
i∈[0,n−1]

sup
t∈[ iTn ; (i+1)T

n ]

∣

∣

∣

∣

Xn(t)−Xn

(

iT

n

)∣

∣

∣

∣



 .

But for any i and any t ∈
[

iT
n ; (i+1)T

n

]

we have that

∣

∣

∣

∣

Xn(t)−Xn

(

iT

n

)∣

∣

∣

∣

≤ J
(

Ain +Di
n

)

,

where Ain and Di
n denote respectively the number of up and down jumps of the

process Xn within the interval
[

iT
n ; (i+1)T

n

]

. In turn, by assumption Ain + Di
n is

stochastically dominated by a Poisson r.v., say P i, of parameter αnTn = αT . All
in all, we obtain with (22) that

E [‖ Xn, πnXn ‖∞,T ] ≤ 2JE

[

max
i∈[0,n−1]

P i
]

,

and we conclude using Proposition A.1. �

3.3. Functional Stein method. For ξ = (ξk, k = 1, · · · , n) a finite sequence of
positive real numbers, consider Y = (Yk, k = 1, · · · , n) a family of independent
centered Gaussian random variables such that var(Yk) = ξ2k and

Bξ :=

n
∑

j=1

Yj h
n
j ,

where for 0 ≤ i ≤ n− 1,

hni :=

√

n

T
I10+
(

1
[ iT

n
, (i+1)T

n
)

)

.

Set

T nη,p : Rn −→Wη,p

(y1, · · · , yn) 7−→
n
∑

j=1

yj h
n
j .

11



On R
n, put µnξ the Gaussian measure of density:

(y1, · · · , yn) 7−→
1

(2π)n/2
∏n
j=1 ξj

exp



−1

2

n
∑

j=1

y2j
ξ2j



 ·

For any k = 1, · · · , n, consider the R-valued process, damped Ornstein-Uhlenbeck
process:

Xξk(x, t) = e−tx+ ξk
√
2

∫ t

0

e−(t−s) dB(s),

where B is an ordinary Brownian motion. Xξk can alternatively be described as
the solution of the stochastic differential equation

dX(t) = −Xt dt+ ξk
√
2 dB(t), X(0) = x

The Itô formula easily entails that if we set

P ξkt f(x) = E
[

f(Xξk(x, t))
]

and Lξkf(x) = −xf ′(x) + ξ2kf
′′(x),

then, for f ∈ L1(µ1
ξk
),

(23)
d

dt
P ξkt f(x) = LξkP ξkt f(x) = P ξkt Lξkf(x) and (P ξkt f)′(x) = e−tP ξkt f ′(x).

Moreover, the distribution of Xξk(x, t) is Gaussian with mean e−tx and variance
ξ2k(1 − e−2t), hence

(24) P ξkt f(x) =

∫

R

f(e−tx+
√

1− e−2ty) dµ1
ξk
(y).

It is then straightforward that

P ξkt f(x)
t→∞−−−→

∫

R

f dµ1
ξk
.

Combine (23) and (24) to obtain

(25)

∫

R

f dµ1
ξk − f(x) =

∫ ∞

0

LξkP ξkt f(x) dt.

We now transfer this construction onto Wη,p. Let Pnη,p be the pushforward of µnξ
by the map T nη,p. Remark that Pnη,p is supported by Wn = span(hnj , j = 1, · · · , n)
and that for any (η, p) ∈ Λ,

Wn ⊂ I+
1,2 ⊂Wη,p.

We denote by In1,2, the space Wn equipped with the scalar product of I+
1,2 and

by Wn
η,p, the space Wn with the norm induced by Wη,p. The space Wn is finite

dimensional so that the distinction between the norms may seem spurious but it
is still mandatory to keep track of the underlying infinite dimensional setting. For
y ∈ R

n, X is the Wn
η,p-valued process defined by

X(T nη,py, t) =

n
∑

j=1

Xξj(yj , t)h
n
j .

For y ∈ R
n, let

PtF (T
n
η,py) = E

[

F (X(T nη,py, t))
]

.

By tensorization of the previous construction (or more directly using the general
theory of abstract Wiener spaces [7, 10, 25]), we see that Pnη,p is the stationary and

12



invariant measure of the Markov process X, whose generator is given by

LF (T nη,py) = −
n
∑

j=1

yj
〈

hnj ,∇F (T nη,py)
〉

Wn
η,p,(W

n
η,p)

∗

+

n
∑

j=1

ξ2j

〈

hnj ⊗ hnj , ∇(2)F (T nη,py)
〉

(I+
1,2)

n
.

This means in particular that (25) holds true in the new form:

(26)

∫

R

F dPnη,p − F (T nη,py) =

∫ ∞

0

LP
ξ
tF (T

n
η,py) dt.

We can now state and prove the functional Stein’s theorem which is the cornerstone
of the following. In spirit, it is the multidimensional version of Theorem 3.1 of [21].
For (uj , j = 1, · · · , n) ∈ L2(E,Rn), set

u =

n
∑

j=1

uj ⊗ hnj and δνu =

n
∑

j=1

δνuj h
n
j .

Theorem 3.2. Assume that (uk, k = 1, · · · , n) is an orthogonal family of elements
of L2(ν). For any k ∈ {1, · · · , n}, let

(27) ξ2k =

∫

E

uk(x)
2 dν(x).

Consider Y = (Yk, k = 1, · · · , n) a family of independent centered Gaussian random
variables such that var(Yk) = ξ2k and let

Bξ =

n
∑

j=1

Yj h
n
j

For any F ∈ Ση,p,

(28) |E [F (Bξ)]−E [F (δνu)]|

≤ 1

2
n−3/2+η

n
∑

j=1

n
∑

k=1

n
∑

l=1

∫

E

|uj(x)uk(x)| |ul(x)| dν(x).

Remark 2. If we compare Theorem 3.2 with Theorem 3.1 of [21], we retrieve
a third order moment. It is not surprising that we have crossed moments since
we need to control how the correlations between the different coordinates of δu do
vanish as n tends to infinity. We already know that each of the components tend
to a Gaussian distribution, the only point at stake is then to show that they become
more and more independent as the size of the vector increases.

At last, remark that there is no term involving the second order moments, this
is due to the hypothesis of orthogonality.

Proof of Theorem 3.2. According to (26), we have

(29) E [F (Bξ)]−E [F (δνu)] = E

[∫ ∞

0

LPtF (δνu) dt

]

.
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According to the integration by parts formula and to the fundamental theorem of
calculus, we get

n
∑

j=1

E
[

δνuj
〈

hnj , ∇PtF (δνu)
〉

I+
1,2

]

=

n
∑

j=1

E

[

∫

E

uj(x)
〈

hnj , ∇PtF
(

δνu+ u(x)
)

−∇PtF
(

δνu
)〉

I+
1,2

dν(x)

]

=

n
∑

j,k=1

E

[

∫

E

∫ 1

0

uj(x)uk(x)
〈

hnj ⊗ hnk ,∇(2)
PtF

(

δνu+ r u(x)
)

〉

I+
1,2

dr dν(x)

]

.

Since the uk’s are orthogonal, in view of Eqn. (27),

E





n
∑

j,k=1

∫

E

∫ 1

0

uj(x)uk(x)
〈

hnj ⊗ hnk ,∇(2)
PtF

(

δνu
)

〉

I+
1,2

dr dν(x)





= E





n
∑

j=1

ξ2j

〈

hnj ⊗ hnj ,∇(2)
PtF

(

δνu
)

〉

I+
1,2



 .

Hence

E [LPtF (δνu)]

=

n
∑

j,k=1

∫

E

∫ 1

0

E

[

〈

hnj ⊗ hnk , ∇(2)
PtF

(

δνu+ ru(x)
)

−∇(2)
PtF

(

δνu
)

〉

I+
1,2

]

× uj(x)uk(x) dr dν(x).

Recall that ‖hnj ‖L2 ≤ n−1/2 and note that

‖u(x)‖Wη,p
≤

n
∑

l=1

|ul(x)| ‖hnl ‖Wη,p
= n−(1/2−η)

n
∑

l=1

|ul(x)|.

Since F belongs to Ση,p

(30) |E [LPtF (δνu)]| ≤ n−3/2+η e−2t
n
∑

j,k,l=1

∫ 1

0

|uj(x)uk(x)||ul(x)| dν(x).

Plug (30) into (29) yields (28). �

4. The M/M/1 queue

The M/M/1 queue consists in a single server with infinite queue, where the
service times are independently and identically distributed, according to an expo-
nential distribution of parameter µ. The customers arrive at the time epochs of
a Poisson process of intensity λ > 0. Let L†(t) denote the number of customers
in the system (including the one in service, if any) at time t ≥ 0. The process
(

L†(t), t ≥ 0
)

counting the number of customers in the system is clearly a birth
and death process, that is ergodic if and only if λ/µ < 1. If the initial size of the
system is x ∈ N, then L† obeys the SDE

L†(t) = x+Nλ(t)−
∫ t

0

1{L(s−)>0}Nµ(ds),

for two independent Poisson processes Nλ and Nµ. This process is rescaled by
accelerating time by an arbitrarily large factor n, while multiplying the number of
customers in the initial state by the same factor, and then dividing the number of
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customers in the system at any time by n: with obvious notation, for all t ≥ 0 we
obtain

L†
n(t) = x+

Nnλ(t)

n
− Nnµ(t)

n
+

1

n

∫ t

0

1{L†
n(ns−)=0} dNnµ(s).

It is a well established fact (see e.g. Proposition 5.16 in [23]) that the sequence
(

L†
n : n ≥ 1

)

converges in probability and uniformly over compact sets, to a deter-

ministic process

L† : t 7−→ L†(t) = (x+ λt− µt)
+
,

and that

Z†
n(t) :=

√
n√

λ+ µ

(

L†
n(t)− L†(t)

)

=

√
n√

λ+ µ

[

(

Nnλ(t)

n
− λt

)

−
(

Nnµ(t)

n
− µt

)

]

+

√
n√

λ+ µ

(

1

n

∫ t

0

1
{L†

n(s−)=0}
dNnµ(s)−

∫ t

0

1
{L†(s)=0}

ds

)

converges in distribution on D to the standard Brownian motion B.
We aim at controlling the speed of the latter convergence. For that purpose, we

bound for any fixed n and any horizon T , the Lη,p-distance between these processes,
defined by (14). We have the following result,

Theorem 4.1. Suppose that λ < µ and let T ≤ x
µ−λ . Then, for all n ∈ N we have

that

dLη,p

(

Z†
n, B

)

≤ c log n

log logn
√
n
,

where B is a standard Brownian motion.

Proof. Fix T ≤ x
µ−λ . Then for all n ∈ N, recalling (13) and (20), by the very

definition of the set Lη,p in (12) we have that

(31) dLη,p

(

Z†
n, B

)

≤ dLη,p

(

Z†
n, πnZ

†
n

)

+ dΣη,p
(πnZ

†
n, πnB) + dΣη,p

(πnB,B).

First observe that the function L† is affine hence πnL† on [0, T ]. Moreover, the
operator πn is linear and the elements of Lη,p are 1-Lipschitz-continuous, thus we
have that for all n,

dLη,p
(Z†

n, πnZ
†
n) ≤ E

[

‖ Z†
n − πnZ

†
n ‖∞,T

]

≤ 1
√

n(λ+ µ)
E
[

‖ L†
n − πnL

†
n ‖∞,T

]

≤ c logn

log logn
√
n
,(32)

where the last inequality follows from applying Lemma 3.1 to the Markov processes
(

L†
n : n ≥ 1

)

for J ≡ 1 and α ≡ λ ∨ µ. Now, for any n ∈ N, if we let τn0 = inf{t >
0, L†

n(t) = 0}, for any F ∈ Ση,p we have that

(33) E
[∣

∣F
(

πnZ
†
n

)

− F (πnB)
∣

∣

]

= E
[∣

∣F
(

πnZ
†
n

)

− F (πnB)
∣

∣1{T<τn
0 }

]

+E
[∣

∣F
(

πnZ
†
n

)

− F (πnB)
∣

∣1{T≥τn
0 }

]

.

We first prove that for some c > 0,

(34) E
[∣

∣F
(

πnZ
†
n

)

− F (πnB)
∣

∣ 1{T<τn
0 }

]

≤ c√
n
, n ∈ N.
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Fix n ∈ N. On the event {T ≤ τn0 }, for any t ∈ [0, T ) we have that

Z†
n(t) =

1√
λ+ µ

(√
λ

(

Nnλ(t)√
λn

−
√
λnt

)

−√
µ

(

Nnµ(t)√
µn

−√
µnt

))

=:
1√
λ+ µ

(

Z†
λ,n(t)− Z†

µ,n(t)
)

.

Consider N †
n(λ+µ) the marked Poisson point process of control measure

dν†n(s, r) = n(λ+ µ) ds⊗
( λ

λ+ µ
ε1(dr) +

µ

λ+ µ
ε−1(dr)

)

.

That is to say, N †
n(λ+µ) is constructed as an ordinary Poisson process on the positive

real line with intensity n(λ + µ) and each atom is assigned a mark +1 or −1,
independent of the atom location and of the other marks, with respective probability
λ(λ + µ)−1 and µ(λ + µ)−1. By the thinning property of Poisson processes, the

point process which counts the atom N †
n(λ+µ) with mark +1 (respectively −1) is a

Poisson process with intensity nλ (respectively nµ). For any t ∈ [0, T ], let

vt : [0, T ]× {−1, 1} −→ R

(s, r) 7−→ 1
√

n(λ+ µ)
r 1[0,t)(s).

Then, we have

Z†
n(t)

dist
= δν†

n
(vt)

and

πnZ
†
λ,n

dist
=

n−1
∑

i=0

n

T
δν†

n

(

v(i+1)T/n − viT/n
)

I10+
(

1[ iTn , (i+1)T
n )

)

.

For i = 1, · · · , n, let

u†i (s, r) =

√

n

T

(

v(i+1)T/n(s, r)− viT/n(s, r)
)

=
1

√

T (λ+ µ)
r 1[iT/n, (i+1)T/n)(s),

so that

πnZ
†
λ,n

dist
=

n−1
∑

i=0

δν†
n
(u†i ) h

n
i .

It is clear that
∫

[0,T ]×{−1,1}

u†i (s, r)u
†
j(s, r) dν

†
n(s, r) =

{

0 if i 6= j

1 if i = j.

Moreover,

n
∑

j=1

n
∑

k=1

n
∑

l=1

∫

E

|u†ju†ku
†
l | dν†n =

1

T 3/2
√
λ+ µ

n
∑

i=1

∫ iT/n

(i−1)T/n

n ds =
n

√

T (λ+ µ)
·

Let ξ† = (1, k = 1, · · · , n). Since πnB = Bξ† , as a consequence of Theorem 3.2, we
obtain (34).

Regarding the second term on the right-hand side of (33), fix n ∈ N and observe
that F is in particular bounded, so there exists a constant c such that

E
[∣

∣F (πnZ
†
n)− F (πnB)

∣

∣ 1{T>τn
0 }

]

≤ cP [T > τn0 ] .
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But P [T > τn0 ] tends to 0 with exponential speed from Theorem 11.9 of [26]: if
ρ < 1, for any x > 0 and any y < 0

lim
n→∞

1

n
log P

[

τn0 ≤ x

λ− µ
+ y

]

= −f(y),

where f is strictly positive on (0,∞). This shows that

E
[∣

∣F (Z†
n)− F (B)

∣

∣ 1{T>τn
0 }

]

≤ ce−n

for some d, which, together (34) in (33), shows that for some constant c,

dΣη,p
(πnZ

†
n, πnB) ≤ c√

n
, n ∈ N.

This, together with (32) and (21) in (31), concludes the proof. �

5. The M/M/∞ queue

We consider an M/M/∞ queue: a potentially unlimited number of servers at-
tend customers that enter the system following a Poisson process of intensity λ,
requesting service times that are exponentially distributed of parameter µ (where
λ, µ > 0).

If L♯(t) denotes the number of customers in the system at time t, L♯ is an ergodic
Markov process which obeys the SDE

L♯(t) = x0 +Nλ(t)−
+∞
∑

i=1

∫ t

0

1{L♯(s−)≥i}N
i
µ(ds), t ≥ 0,

where Nλ is a Poisson process of intensity λ, the N i
µ’s are independent Poisson

processes of intensity µ, and x0 is the initial number of customers at time 0. For
simplicity, we assume throughout this Section that the system is initially empty,
i.e.

(35) x0 = 0.

The process L♯ is then rescaled by accelerating time by a factor n ∈ N, and dividing
the size of the system by n. From (35), the corresponding n-th rescaled process is
thus defined by

L♯n : t 7−→ Nλn(t)

n
− 1

n

+∞
∑

i=1

∫ t

0

1
{L♯

n(s−)> i
n
}
N i
µ(ds).

It is a well known fact (see e.g. [4] or Theorem 6.14 in [23]) that the sequence

of processes
(

L♯n, n ≥ 0
)

converges in L1 and uniformly over compact sets to the

deterministic function

(36) L♯ : t 7−→ L♯(t) = ρ− ρe−µt,

where ρ = λ/µ. Moreover, if we define for all n the process

(37) Z♯n : t 7−→ Z♯n(t) =
√
n
(

L♯n(t)− L♯(t)
)

,

the sequence
(

Z♯n : n ≥ 0
)

converges in distribution to the process X♯ defined by

(38) X♯ : t 7−→ X♯(t) = X♯(0)e−µt +

∫ t

0

e−µ(t−s)
√

h(s) dB(s),

where h(t) = λ (2− e−µt) for all t ≥ 0 and B is the standard Brownian motion.
The following result is shown in [23] (eq. (6.23) in Chapter 6),
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Proposition 5.1. The sequence of processes
(

Y ♯n : n ≥ 0
)

defined by

(39) t 7→ Y ♯n(t) = Z♯n(t)− Z♯n(0) + µ

∫ t

0

Z♯n(s) ds

converges in distribution to B ◦ γ, where
(40) γ(t) = 2λt− ρ(1− e−µt) for all t ≥ 0.

This section is devoted to assessing the rate of convergence in Proposition 5.1, on
any fixed time interval [0, T ], where T > 0 is fixed throughout.

5.1. An integral transformation. The processX♯ defined in (38) is an Ornstein-
Uhlenbeck process which can be analyzed by introducing a one to one mapping
between the space of rcll functions and R× D0.

Proposition 5.2. The mapping

Θ :







D([0, T ]) −→ R× D0([0, T ])

f 7−→
(

f(0) , f(.)− f(0) + τ

∫ .

0

f(s)ds

)

is linear, continuous and one to one.

Proof. Let us fix η ∈ D0([0, T ]) and consider the following integral equation of
unknown function z,

z(t)− z(0) = −τ
∫ t

0

z(s) ds+ η(t).

We clearly have for all t ≥ 0,

z(t) = z(0)e−τt + η(t)− τ

∫ t

0

e−τ(t−s)η(s) ds,

hence Θ is bijective and for all (x, η) ∈ R× D0([0, T ]),

Θ−1(x, η) =

(

t 7−→ xe−τt + η(t)− τ

∫ t

0

e−τ(t−s)η(s) ds

)

.(41)

Linearity and continuity are straightforward. �

Lemma 5.3. On the subset of {0} ×Θ(I+
α,2) whose image by Θ−1 is in I+

α,2, Θ
−1

is Lipschitz continuous.

Proof. For all η and ω ∈ Θ(I+
α,2) and all t ∈ [0, 1], we have that

Θ−1(0, η)−Θ−1(0, ω) = η(t) − ω(t)− τ

∫ t

0

e−τ(t−s)(η(s)− ω(s)) ds.

Hence

‖ Θ−1(0, η)−Θ−1(0, ω) ‖α,2< t ‖ η − ω ‖α,2 +τ ‖ η − ω ‖α,2

√

∫ t

0

e−2τ(t−s) ds,

so that for some positive number k,

‖ Θ−1(x, η)− Θ−1(y, ω) ‖α,2< k ‖ η − ω ‖α,2 .
The proof is thus complete. �

As they are either piecewise linear or piecewise constant L♯, Z♯n and Y ♯n all belong
to I+

α,2. And since the I+
α,2 are closed sets, X♯ and B ◦γ also belong to I+

α,2. As the

following corollary demonstrates, the Lipschitz property of Θ−1 enables to reduce
the calculation of the rate of convergence of Z♯n towards X♯ to that of Y ♯n towards
B ◦ γ,

18



Corollary 5.4. Almost surely, for some positive constant c we have

dΣη,p
(πnZ

♯
n, X

♯) ≤ c dΣη,p
(πnY

♯
n , B ◦ γ).

Proof. From Proposition 5.1, Y ♯n converges in distribution to B ◦ γ. From the
Lipschitz continuity of Θ and the Continuous Mapping Theorem, setting τ = µ
this entails the convergence in distribution

Θ(Z♯n) = (0, Y ♯n) ⇒ (0, B ◦ γ)
However, expression (6.34) in [21] shows that for all t, Θ

(

X♯(t)
)

= (0, B ◦ γ(t))
which, together with the linearity of Θ and of the operator πn for any n, concludes
the proof. �

5.2. Alternative representation. As a consequence of a Corollary 5.4, the rate of
convergence of (Gn : n ≥ 0) towardsX♯ is bounded by that of (Yn : n ≥ 0) towards
B ◦ γ, which we now address.

For that purpose, and following Section 7.2 of [23], an alternative representation
of L♯ in terms of a marked Poisson process will prove useful. A point (x, z) repre-
sents a customer arriving at time x and requiring a service of duration z. Let Nλ,µ
be a Poisson process on R

+×R
+ of control measure λ dx⊗µe−µz dz. At any time

t ≥ 0, the number of busy servers at t equals the number of points located in the
shaded trapeze bounded by the axes of equation x = 0 and x = t, and above the
line z = t− x: in other words

L♯(t) =

∫

Ct

dNλ,µ(x, z),

where

(42) Ct = {(x, z), 0 ≤ x ≤ t, z ≥ t− x}.

x

z

tx3

z3

z=t−x

x3 + z3

= exit time
of the 3rd customer

T

•

•

•

•

•

L
♯(t) = 2

Figure 1. Representation of the M/M/∞ queue

Fix a positive integer n throughout this section. After scaling, for all t ≥ 0 we
get that

L♯n(t) =
1

n
Nλn,µ(Ct).

19



Let us denote for all (x, z) in the positive orthant by

dν♯n(x, z) := λn dx⊗ µe−µz dz,

the control measure of Nnλ,µ. As readily follows from (36), the fluid limit L♯ can
be written for all t ≥ 0 as

L♯(t) =
1

n

∫

1Ct
(x, z) dν♯n(x, z),

in a way that

(43) Z♯n(t) =
1√
n

∫

1Ct

(

dNλn,µ − dν♯n
)

,

for Ct defined by (42). We deduce that for all t ≥ 0,

(44) Y ♯n(t) =
1√
n

∫

1Ct

(

dNλn,µ − dν♯n
)

+ µ

∫ t

0

1√
n

∫

1Cs

(

dNλn,µ − dν♯n
)

du

=
1√
n
δλn,µ(1Ct

) + µ

∫ t

0

1√
n
δλn,µ(1Cu

) du,

where δλn,µ is the compensated integral with respect to the Poisson process Nλn,µ,
see (18).

5.3. Reduction to the finite dimension. Fix n ∈ N and recall (20). It follows
from (44) that

πnY
♯
n =

n−1
∑

i=0

n

T

(

Y ♯n

(

(i+ 1)T

n

)

− Y ♯n

(

iT

n

))

I10+
(

1[ iTn ,
(i+1)T

n )

)

=

n−1
∑

i=0

(

δλn,µ

(

1C (i+1)T
n

− 1C iT
n

)

+ µ

∫
(i+1)T

n

i
n

δλn,µ(1Cu
) du

)

hni

=

n−1
∑

i=0

δλn,µ(u
♯
i)h

n
i ,

where for all i and all (x, z) ∈ R
2,

(45) u♯i(x, z) =
1√
T

(

1C (i+1)T
n

(x, z)− 1C iT
n

(x, z) + µ

∫
(i+1)T

n

iT
n

1Cu
(x, z) du

)

.

Let us denote for any i = 0, · · · , n− 1,

ξ♯i :=

√

γ

(

(i+ 1)T

n

)

− γ

(

iT

n

)

.

The following result is proven in appendix B,

Proposition 5.5. For any n, the family
(

u♯i , i = 0, · · · , n− 1
)

has the following

properties:

(i) It is orthogonal in L2
(

ν♯n
)

;
(ii) For some constant c independent of n,

n
∑

j=1

n
∑

k=1

n
∑

l=1

∫

E

|u♯ju♯ku
♯
l | dν♯n ≤ nc.
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(iii) For any i ∈ {1, · · · , n},
∫ ∫

u♯iu
♯
i dν

♯
n =

n

T
(ξ♯i )

2.

Note that for n large, if i/n tends to t,

n

T
(ξ♯i )

2 i/n→t−−−−→ γ′(t) and for i fixed
n

T
(ξ♯i )

2 n→∞−−−−→ γ′(0).

We thus have the following result,

Proposition 5.6. For some c, for all positive integer n, the respective interpola-
tions of Y ♯n and B ◦ γ satisfy

dΣη,p
(πnY

♯
n , πn(B ◦ γ)) ≤ c√

n
.

Proof. Recall that πn(B ◦ γ) can be represented as

πn(B ◦ γ) dist
=

n
∑

j=1

Y ♯j h
n
j = Bξ♯ ,

where
(

Y ♯k , k = 1, · · · , n
)

is a family of independent centered Gaussian random

variables such that var(Y ♯k ) = (ξ♯k)
2 for all k. From assertion (i) of Proposition 5.5,

we can apply Theorem 3.2 : for any F ∈ Ση,p,

∣

∣E
[

F (Bξ♯)
]

−E [F (δλn,µu)]
∣

∣ ≤ 1

2
n−3/2+η

n
∑

j=1

n
∑

k=1

n
∑

l=1

∫

E

|ujuk| |ul| dν♯n.

Assertions (ii) and (iii) of Proposition 5.5 allow us to conclude. �

5.4. Speed of convergence. We can now state our main result of this section,

Theorem 5.7. On the interval [0, T ], let (Gn : n ≥ 1) be the sequence of processes
defined for all n by (37) and X♯ be the process defined by (38). Then there exists a
constant c > 0 such that for all n,

dLη,p
(Z♯n, X

♯) ≤ c logn

log logn
√
n
·

Proof. For any n ∈ N we have that

(46) dLη,p
(Z♯n, X

♯)

≤ dLη,p
(Z♯n, πnZ

♯
n) + dΣη,p

(πnZ
♯
n, X

♯)

≤ dLη,p
(Z♯n, πnZ

♯
n) + c dΣη,p

(πnY
♯
n , B ◦ γ)

≤ dLη,p
(Z♯n, πnZ

♯
n) + c dΣη,p

(πnY
♯
n , πnB ◦ γ) + c dΣη,p

(πnB ◦ γ,B ◦ γ),

where we applied Corollary 5.4 in the second inequality.
First define the stopping times

τ ♯n = inf {t ≥ 0 : Nnλ(t) ≥ 2λnT } , n ∈ N.
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Then, as all functions of Lη,p are bounded and Lipschitz continuous we obtain that
for all n,

(47) dLη,p

(

Z♯n, πnZ
♯
n

)

≤ sup
F∈Lη,p

E
[

∣

∣F
(

Z♯n
)

− F
(

πnZ
♯
n

)∣

∣ 1{T<τ♯
n}
]

+ cP
[

T ≥ τ ♯n
]

≤ E
[

dD
(

Z♯n, πnZ
♯
n

)

1{T<τ♯
n}
]

+ cP
[

T ≥ τ ♯n
]

≤ E
[

‖ Z♯n
(

. ∧ τ ♯n
)

− πn
(

Z♯n
(

. ∧ τ ♯n
))

‖∞,T 1{T<τ♯
n}
]

+ cP
[

T ≥ τ ♯n
]

.

On the one hand, from Tchebychev inequality, we have for all n,

(48) P
[

T ≥ τ ♯n
]

= P [Nnλ(T ) ≥ 2λnT ] ≤ Var (Nnλ(T ))

(λnT )2
≤ c

n
·

Also, for any n on {T < τ ♯n} we have that

L♯n
(

t ∧ τ ♯n
)

≤ Nnλ(t) ≤ 2λnT,

therefore the Markov process L♯n
(

. ∧ τ ♯n
)

satisfies to the Assumptions of Lemma 3.1
for J ≡ 1 and α ≡ λ ∨ (µT ). Thus we obtain as in (32) that for any n,

(49) E
[

‖ Z♯n
(

. ∧ τ ♯n
)

− πn
(

Z♯n
(

. ∧ τ ♯n
))

‖∞,T 1{T<τ♯
n}
]

≤ 1√
n
E
[

‖ L♯n − πnL
♯
n ‖∞,T

]

+
√
n ‖ L♯ − πnL♯ ‖∞,T

≤ c logn

log logn
√
n
·

Recalling (36), we use the fact that

√
n ‖ L♯ − πnL♯ ‖∞,T ≤ 2

√
n max
i∈[0,n−1]

sup
t∈[ iTn ; (i+1)T

n ]

∣

∣

∣e−µt − e−µ
iT
n

∣

∣

∣

≤ 2
√
n
(

e−
µ
n − 1

)

≤ c√
n
.

Finally, gathering (49) with (48) in (47) entails that for all n,

dLη,p
(Z♯n, πnZ

♯
n) ≤

c log n√
n

which, together with with Proposition 5.6 and (21) in (46), concludes the proof. �

Appendix A. Moment bound for Poisson variables

We show hereafter a moment bound for the maximum of n Poisson variables.
For doing so, we follow closely Chapter 2 in [5].

Proposition A.1. Let (Xi, i = 1 · · · , n) be Poisson random variables of parame-
ter ν. The LambertW function is defined over [−1/e,∞] by the equationW (x)eW (x) =
x. Then

E

[

max
i=1,··· ,n

Xi

]

≤ logn/eν

W (log(n/eν)/eν)

Proof. Let us consider (Zi, i = 1 · · · , n) the centered Poisson variables (i.e., for all
i, Zi = Xi − ν). By a straightforward calculation, for all u ∈ R and all i,

E
[

euZi
]

= e−uν
∞
∑

k=0

euke−ν
νk

k!
= e−uν−νeνe

u
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Therefore the logarithm of the moment generating function of Zi is ΨZi
(u) =

ν (eu − u− 1)
By Jensen,’s inequality, and because exp(.) is an increasing function,

exp

(

uE

[

max
i=1,··· ,n

Zi

])

≤ E

[

exp

(

u max
i=1,··· ,n

Zi

)]

= E

[

max
i=1,··· ,n

exp(uZi)

]

Because the maximum of a sequence of positive numbers is lower than its sum, the

right hand side of the last equation is lower than E

[

n
∑

i=1

exp(uZi)

]

.

Hence, because of the definition of ΨZi
,

exp

(

uE

[

max
i=1,··· ,n

Zi

])

≤
n
∑

i=1

E [exp(uZ1)] ≤ n exp (ΨZi
(u)) .

Taking the logarithm, for any u in R,

uE

[

max
i=1,··· ,n

Zi

]

− ν (eu − u− 1) ≤ log n

so that

E

[

max
i=1,··· ,n

Zi

]

≤ inf
u∈R

(

log n+ ν (eu − u− 1)

u

)

Taking the derivative on the right hand side, it is easy to check that the infinimum
is reached when

(50) νueu − νeu + ν = logn

which means that it is reached when (u − 1)eu−1 = log(n/eν)
eν i.e. u = 1 +W (a)

where a = log(n/eν )
eν Then the infinimum is equal to

(51)
logn+ ν

(

e1+W (a) − 1−W (a)− 1
)

1 +W (a)

But we know from (50) that ν(1 +W (a))e1+W (a) − logn = νe1+W (a) − ν so that
(51) gives

νe1+W (a) − ν = νeeW (a) − ν = νe
a

W (a)
− ν

Remembering that the Zi are the centered Xi, we thus obtain that

E

[

max
i=1,··· ,n

Xi

]

≤ νe
a

W (a)
− ν + ν =

log (n/eν)

W (log(n/eν)/eν)

which completes the proof. �

Notice that, contrary to Exercise 2.18 in [5], the Poisson variables here are not
necessarily independent. Moreover, observe that W (z) ≥ log(z)− log log(z) for all
z > e. Hence if n ≥ exp

(

eν+1 + ν
)

, there exists c > 0 such that

E

[

max
i=1,··· ,n

Xi

]

≤ log (n/eν)

log(log(n/eν)/eν)− log log(log(n/eν)/eν)

≤ logn

log(log(n/eν)/eν)− log log(log(n/eν)/eν)

≤ c
logn

log logn
·(52)
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Appendix B. Proof of Proposition 5.5

For the sake of notations, we give the proof for T = 1. The general case is
handled similarly. Fix n throughout this section, and denote for all i ∈ [1, n] and
(x, z) ∈ R

2,

αi(x, z) = 1C i
n

(x, z), βi(x, z) =

∫
i+1
n

i
n

1Cu
(x, z) du.

Proof of (i). Recall (45), and fix two indexes 1 ≤ i < j ≤ n. We have that

(53)

∫ ∫

u♯iu
♯
j dν

♯
n =

∫ ∫

(αi+1 − αi) (αj+1 − αj) dν♯n

+ µ

∫ ∫

βi (αj+1 − αj) dν♯n + µ

∫ ∫

βj (αi+1 − αi) dν♯n + µ2

∫ ∫

βjβj dν
♯
n

=: I1 + I2 + I3 + I4.

As i+ 1 ≤ j, a straightforward computation shows that

I1 = −λ
∫

i+1
n

0

∫
j+1
n

j
n
−x

nµe−µz dz dx+ λ

∫ i
n

0

∫
j+1
n

j
n
−x

nµe−µz dz dx

= λn
(

2e−µ
j−i
n − e−µ

j−i−1
n − e−µ

j−i+1
n

)

.

Likewise, we obtain that

I2 =
λn

µ

(

2e−µ
j−i
n − e−µ

j−i−1
n − e−µ

j−i+1
n

)

− λ
(

e−µ
j+1
n − e−µ

j
n

)

;

I3 =
λn

µ

(

−2e−µ
j−i
n + e−µ

j−i−1
n + e−µ

j−i+1
n

)

;

I4 =
λn

µ

(

−2e−µ
j−i
n + e−µ

j−i−1
n + e−µ

j−i+1
n

)

+ λ
(

e−µ
j+1
n − e−µ

j
n

)

.

Adding up the above into (53), readily entails that
∫ ∫

u♯iu
♯
j dν

♯
n = 0.

�

Proof of (ii). For all j 6= k we can write that

(54) Ii,j,k :=

∫

R2

|uiujuk| dν♯n ≤
∫

|(αi+1 − αi)(αj+1 − αj)(αk+1 − αk)| dν♯n

+

∫

|(αi+1 − αi)(αj+1 − αj)µβk| dν♯n +

∫

|(αj+1 − αj)(αk+1 − αk)µβi| dν♯n

+

∫

|(αi+1 − αi)(αk+1 − αk)µβj | dν♯n +

∫

∣

∣(αi+1 − αi)µ
2βjβk

∣

∣ dν♯n

+

∫

∣

∣(αj+1 − αj)µ
2βiβk

∣

∣ dν♯n +

∫

∣

∣(αk+1 − αk)µ
2βiβj

∣

∣ dν♯n

+

∫

∣

∣µ3βiβjβk
∣

∣ dν♯n =:

8
∑

l=1

I li,j,k.

First suppose that i < j < k. Then the integrand of I1i,j,k cannot possibly be

non zero and I1i,j,k = 0.
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Suppose now that i = j < k. As the integrand of I1i,j,k is non zero only on the set
Dj,k := C j+1

n
∩ Ccj

n

∩ Cck+1
n

∩ C k
n
we have that

I1i,j,k =

∫ ∫

Dj,k

αj+1αk dν♯n =

∫
j+1
n

j
n

∫
k+1
n

−x

k
n
−x

nλµe−µz dz dx

=
λn

µ

(

eµ
j+1
n − eµ

j
n

)(

e−µ
k
n − e−µ

k+1
n

)

≤ λ

µn
.

The case i < j = k is treated identically by interchanging the roles of j and k.
At last in the case i = j = k

I1i,i,i =

∫ ∫

αi+1 − αi dν
♯
n

= n

(

∫
i+1
n

i
n

∫ ∞

0

λµe−µz dz dx−
∫ i

n

0

∫
i+1
n

−x

i
n
−x

λµe−µz dz dx

)

= n

(

λ

n
− λ

µ

(

1− e−
µ
n

)(

1− eµ
i+1
n

)

)

≤ λ

µ
.

The calculation of I2i,j,k, I
3
i,j,k and I4i,j,k can be simplified by noticing that

µ

∫

|(αi+1 − αi)(αj+1 − αj)βk| dν♯n ≤ µ

n

∫

|(αi+1 − αi)(αj+1 − αj)| dν♯n

In the case i < j, the integrand of this integral is non zero only on the set Di,j :=
C i+1

n
∩ Cci

n

∩ Ccj+1
n

∩C j
n
so that

µ

∫

|(αi+1 − αi)(αj+1 − αj)βk| dν♯n ≤ µ

n

∫ ∫

Di,j

αi+1αj dν♯n

≤ µ

n

∫
i+1
n

i
n

∫
j+1
n

−x

j
n
−x

nλµe−µz dz dx

≤ λ
(

eµ
i+1
n − eµ

i
n

)(

e−µ
j
n − e−µ

j+1
n

)

≤ λ

n2
.

In the case i = j this integral becomes

µ

∫

|(αi+1 − αi)(αi+1 − αi)βk| dν♯n ≤ µ

n

∫ ∫

(αi+1 − αi)
2 dν♯n

=
µ

n

(

∫
i+1
n

0

∫ ∞

i+1
n

−x

λµne−µz dz dx+

∫ i
n

0

∫ ∞

i
n
−x

λµne−µz dz dx

−2

∫ i
n

0

∫ ∞

i+1
n

−x

λµne−µz dz dx

)

= 2λ
(

2 + e−µ
i+1
n − e−µ

i
n − 2e−

µ
n

)

≤ 2λµ

n
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So that in all cases I2i,j,k, I
3
i,j,k and I4i,j,k are lower than C

n where C is a constant
Reasoning similarly, we also obtain that

µ2

∫

∣

∣(αi+1 − αi)µ
2βjβk

∣

∣ dν♯n ≤ µ2

n2

∫

|αi+1 − αi| dν♯n

=
µ2

n

(

∫
i+1
n

i
n

∫ ∞

0

λµe−µz dz dx−
∫ i

n

0

∫
i+1
n

−x

i
n
−x

λµe−µz dz dx

)

=
µ2

n

(

λ

n
− λ

µ

(

1− e−
µ
n

)(

1− eµ
i+1
n

)

)

≤ λ

µn2

for all i, j, j so that in all cases I5i,j,k, I
6
i,j,k and I7i,j,k are lower than C′

n2 where C′ is
a constant To end with, an easy calculation shows that if u < v,
∫ ∫

1Cu1Cvλµe
−µydxdy =

λ

µ
(e−µ(u−v) − e−µu) =

λ

µ
(e−µ(u∨v−u∧v) − e−µu∨v)

and that
∫ ∫

1Cu
1Cv

1Cw
λµe−µydxdy =

λ

µ
(e−µ(max(u,v,w)−min(u,v,w)) − e−µmax(u,v,w))

so that

µ3

∫

|βiβjβk| dν♯n

=
µ3λn

µ

∫
i+1
n

i
n

∫
j+1
n

j
n

∫
k+1
n

k
n

eµ(max(u,v,w)−min(u,v,w)) − e−µmax(u,v,w) du dv dw

≤ µ3λn

µ

2

n3
= 2

µ2λ

n2

so that there exists a c such that all terms in Ii,j,k are lower than c/n2 except for
the I1i,i,i which are bounded by a constant but are only n in number, and all the
terms where one index appears twice, which are for some c lower than c/n but are
only n2 in number. Therefore

n
∑

j=1

n
∑

k=1

n
∑

l=1

∫

E

|ujukul| dν ≤ Cn

where C is a constant and the condition spelled in ii) of 5.5 is satisfied. �

Proof of (iii). We have

(55)

∫ ∫

u♯iu
♯
i dν

♯
n =

∫ ∫

αi+1 dν♯n +

∫ ∫

αi dν
♯
n − 2

∫ ∫

αi+1αi dν
♯
n

+ 2µ

∫ ∫

βiαi+1 dν♯n − 2µ

∫ ∫

βiαi dν
♯
n + µ2

∫ ∫

βiβi dν
♯
n

= J1 + J2 + J3 + J4 + J5 + J6

A straightforward calculation shows that

J1 = λµn

∫
i+1
n

0

∫ ∞

i+1
n

−x

e−µz dz dx =
λn

µ

(

1− e−µ
i+1
n

)

Similarly

J2 =
λn

µ

(

1− e−µ
i
n

)

J3 = −2λµn

∫ i
n

0

∫ ∞

i+1
n

−x

e−µz dz dx = −2
λn

µ

(

e−
µ
n − e−µ

i+1
n

)
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J4 = 2
λn

µ
(1− e−

µ
n )− 2λe−µ

i+1
n

J5 = −2
λn

µ
(1− e−

µ
n )− 2

λn

µ
(e−µ

i+1
n − e−µ

i
n )

and

J6 = λ

(

2 + 2e−µ
i+1
n +

2n

µ
(e−µ

i+1
n − e−µ

i
n + e

−µ
n − 1)

)

Adding J1, J2, J3, J4, J5 and J6, the term on the left of (55) simplifies to

2λ+
λn

µ
(e−µ

i+1
n − e−µ

i
n ),

which recalling the definition of γ(.) from Proposition 5.1 is equal to

n

(

γ

(

i+ 1

n

)

− γ

(

i

n

))

= n∆γ2(i).

�
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Kantorovich-Rubinstein distance with applications to U-statistics and stochastic geometry,
Annals of probability 44 (2016), no. 3, 2147–2197.

[15] R. M. Dudley, Real analysis and probability, Cambridge Studies in Advanced Mathematics,
vol. 74, Cambridge University Press, Cambridge, 2002.

[16] D. Feyel and A. de la Pradelle, On Fractional Brownian Processes, Potential Analysis 10

(1999), no. 3, 273–288.
[17] P. K. Friz and N. B. Victoir, Multidimensional Stochastic Processes as Rough Paths: Theory

and Applications, Cambridge University Press, 2010.

[18] I. Nourdin and G. Peccati, Normal Approximations with Malliavin Calculus: From Stein’s

Method to Universality, Cambridge University Press, 2012.
[19] I. Nourdin and G. Peccati, Stein’s method on Wiener chaos, Probability Theory and Related

Fields 145 (2009), no. 1-2, 75–118.
[20] D. Nualart, The Malliavin Calculus and Related Topics, vol. 17, SpringerVerlag, 1995.
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