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Abstract

This work designs a methodology to quantify the uncertainty of a volatility
parameter in a stochastic control problem arising in energy management. The dif-
ficulty lies in the non-linearity of the underlying scalar Hamilton-Jacobi-Bellman
equation. We proceed by decomposing the unknown solution on a Hermite poly-
nomial basis (of the unknown volatility), whose different coefficients are solution
to a system of non-linear PDEs of the same kind. Numerical tests show that
computing the first basis elements may be enough to get an accurate approxi-
mation with respect to the uncertain volatility parameter. We experiment the
methodology in the context of swing contract (energy contract with flexibility in
purchasing energy power), this allows to introduce the concept of Uncertainty
Value Adjustment (UVA), whose aim is to value the risk of misspecification of the
volatility model.
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1 INTRODUCTION

1 Introduction

1.1 Statement of the problem

Swing or Take-Or-Pay contracts are very common in energy markets. When the un-
derlying commodity is gas, they give the possibility to the buyer of such a contract to
buy /exchange the gas on the spot market (or the forward market) at a given price, with
a flexibility on the cumulative volume on a given period, say [0, 7]. The valuation prob-
lem can be split into two steps: identifying the model from data, and computing the
swing option price given the model. The second step is usually quite demanding since
it requires to solve a non-linear Hamilton-Jacobi-Bellman (HJB) equation: for some
related numerical methods, see | , , , , |. Here we
address the problem of swing valuation when the volatility of the model is unperfectly
identified.

As a model, we consider the Schwartz-Smith model | | simplified to a single factor
(see also | B |): namely, we assume that the forward gas price F(s,t) (fixed
at time s for receiving and paying one unit of gas at time ¢ > s) obeys the one-factor
dynamics (for any maturity ¢)

dF(s,t)

— 2 = ge ot qw, 0<s<t 1.1
F(s,t) o€ % =5=h (1.1)

given a initial forward curve (F'(0,¢) : ¢ > 0). The parameter ¢ > 0 is the volatility and
a > 0 is the mean-reversion coefficient that describes the rate at which the short-term
deviations are expected to disappear (see (2.2) later, for the link with mean-reverting
Ornstein-Uhlenbeck process).
The statistical inference of (a, ) is usually handled with Maximum Likelihood es-
timation or Kalman filtering | , , |; standard statistical results | ,
| show that with a large number of data, the estimators are asymptotically nor-
mal (for the Local Asymptotic Normality property, see | |). Therefore, naturally,
one may consider that the estimation errors on («a, o) are approximately Gaussian, with
small covariance /variances. Here to simplify the analysis, we consider that « is known
and only ¢ is subjected to estimation error. In other words, we have

o & N, 12, (1.2)

with small variance v > 0 and some g > 0. This comes from a Central Limit Theorem
result where typically v? is proportional to the inverse of the number of available data.
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The model-certain price v7(0) at time 0 of the swing contract depends naturally on
o, and we wish now to account for the variability of price with respect to o; in other
words, to quantify the uncertainty in o. Typically our aim is to efficiently estimate the
distribution of the random variable v7(0). Because v7(0) solves a non-linear equation
(for each given o), it raises new issues that have not yet been addressed before.

From the point of view of financial economics, evaluating the mean excess between
the uncertain swing option price v7(o) and the deterministic price v7(0) is helpful to
account for the risk of model uncertainty. This is similar to Credit Value Adjustment
in finance, and other related adjustments, collectively called xVA (see | |), cor-
responding (in the case of CVA) to accounting for the possibility of a counter-party’s
default within a bilateral contract. In our case, E[(v7(0) — 2)4+] with z > v7(0) is
referred to as UVA (Uncertainty Value Adjustment). The level z could be taken as
v7(0) = E[v7(0)], or as a given quantile of v7(c). This measure may serve to com-
pute a deposit in order to face a quite unfavorable pricing of the swing option. Some
illustrations are presented in Section 6.

1.2 Background results in uncertainty quantification

Many numerical strategies for uncertainty quantification are possible, of which we sin-
gle out the most usual ones. For definiteness, we assume that a set of x uncertain
parameters o is being propagated by a PDE, which are usually modeled as indepen-
dent random distributions, and we say the random space is xk-dimensional. In the case
of an uncertain function, modeled by a random field, dimension reduction is typically
performed first via Karhunen-Loéve expansions (KLE) truncated to a finite number &
of random parameters. Here are the different numerical strategies.

e Simulation-based methods, consisting in sampling M different o according to (1.2)
and for each of them, solving (v°"(0) : 1 < m < M). Sample statistics can then
be performed on the ensemble of simulations. These methods are straightforward
to implement provided that a deterministic solver for the PDE with fixed param-
eters is available (hence they are called non-intrusive). Moreover, they can handle
arbitrary uncertainty distributions and high-dimensional uncertainty spaces with
no particular modification. On the other hand, the convergence rate is very slow
(typically as M~%/2) a problem which is compounded if each deterministic sample
is costly to compute. Strategies to reduce the statistical error (and thus to speed
up simulations) include Latin hypercube | |, quasi Monte Carlo | | and
the Multilevel method | |-
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e Local expansion-based methods, consisting in deriving Taylor /perturbation meth-
ods, taking advantage (or assuming) that the uncertain parameter o fluctuates
little. See | |. It boils down to a sensitivity analysis which appears to be
quite delicate in the case of HJB equation, because of the non-linear property of
the equation (see (2.4) later).

e Generalized Polynomial Chaos (gPC) methods | Il |, which involve a
functional expansion (the gPC expansion) of the solution in a basis in the ran-
dom space—ideally orthogonal with respect to the joint distribution of param-
eters. There are two main approaches to gPC, differing in how the residual to
the PDE is treated. In the first one—stochastic collocation—the residual of the
gPC expansion is forced to vanish on a predefined set of nodes in the random
space. This involves the discretization of the random space, which can be costly
in high dimensions (k 2 4)—although sparse grids can be sometimes used—but
has the advantage of being non-intrusive. The second approach is called stochas-
tic Galerkin, where the residual is forced to be orthogonal to each of the basis
functions in the random space retained in the gPC expansion. This method is
usually considered more accurate than stochastic collocation and does not involve
grids in the random space; but the projection of the residual results in a system
of k PDEs which are different from the original problem (hence it is an intrusive
method).

In this work we follow the last approach using polynomial chaos expansion (PCE)
based on Gaussian noise (due to (1.2)). To the best of our knowledge, the above tech-
niques have been investigated in the case of linear problems (like | |) and scarcely
in the case of nonlinear PDEs (in fluid mechanics see | |, in stochastic optimiza-
tion and HJB equations see | , |, both cases are not related to Uncertainty
Quantification strictly speaking).

2 Model and polynomial chaos expansion

2.1 Modeling the energy contract: HJB equation with uncer-
tainty

To better represent (1.1), define

Xs = ae_o‘s/ edW,, (2.1)
0
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which is an Ornstein-Uhlembeck process, starting from 0, and with zero long-term
average:

dX, = —aX.ds + odW,, Xo=0.

The process X is Gaussian and its limiting distribution as time goes to infinity is
N(0,Z). Then, by the Ito formula we have

2
F(s,t) = F(0,t)exp [e_a(t_s)Xs - Z_a <e_2a(t_s) — 6_26”5)] . (2.2)

The gas spot price is

2

S, = F(t,t) = F(0,%) exp [Xt - Z—a (1 - 6—2‘“)] . (2.3)

The swing contract has an expiration equal 7" > 0, and the fixed price to buy gas is
given by the strike K > 0. At any date, the swing owner has the right to buy ¢; units
of gas at the price K, so that his instantaneous profit is

f(t> X, Qt) = Qt(St - K)-

Here the volume flexibility is allowed in the range ¢; € [¢m, qu] = Q C [0,400) at any
time ¢ € [0,7]. The cumulative gas withdrawn is

t
Y;t:/ QSdS‘
0

The value function is defined as

T
Vv (t,x,y) = sup E lP(XT,YT) +/ f(s, Xs,q5)ds | Xe =2,V =y| (2.4)
(s)t<s<T,as€Q ¢

where the expectation is taken under the risk-neutral measure defining the forward
contract /spot price. The term P plays the role of a penalty forcing the cumulative
withdraw Y7 to finish in a given range (depending on the swing contract), typically we
can take P with polynomial growth in its variables. Under smoothness assumptions on
v, we know that v solves the following Hamilton-Jacobi-Bellman PDE:

O +sup (L7 + f) =0, (t,z,y) € [0,T] x R xR,
q€eQ

UU<T7xay> = P(l’,y),
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where
o2
L7 (t,x,y) = ?85\11(75, x,y) — axd, ¥V (t, z,y) + g0,V (t, x,y).
By changing t — T'—t, we get another PDE (v7(t,.) = u?(T'—t, .)) with initial condition:

o’ = %28;0’&0 — axd,u’ + sup q<8yu” + s(t,o)e” — K),

q€Q (2.5)

u?(0,z,y) = P(z,y),

0'2 —Z —_ . . .
where s(t,0) = F(0,T — t)e~a(=¢*"""") (see Equation (2.3)). This is a degenerate
diffusion along y compounded by advection in that direction (in the sup term).

Boundary conditions. Equation (2.5) is defined on the halfplane y > 0. However, the
solution is only needed in a bounded region I around the origin where contract scenarios
with significant probability occur. For computational purposes, a finite computational
domain D = [x,,, zy] X [0, yar] with 2, < 0 < zp; must be defined which contains I.
The boundary conditions (BCs) on D are to be chosen in such a way that they do not
affect the solution inside I; and they are compatible with the initial condition P.

Along the y direction, (2.5) is purely hyperbolic and, since ¢ > ¢,, > 0, information
travels downward. Consequently, no BC is required at the downwind side of the bound-
ary (y = 0), while the BC on the upwind side cannot affect I as long as it is farther
away than qu/T', i.e. if ypr > sup,e; +quT.

Along the z direction, (2.5) is diffusive and information travels instantaneously; the
goal is to place the BC far enough so that its effect inside I is negligible. In order to get a
rough estimate of z, := max (—z,,, zas), let us heuristically split (2.5) into three parts:
a diffusion term U;agxua; an advection term —axd,u’, which advects information away
from I; and a nonlinear term, which we neglect. Based on the fundamental solution
of the diffusion part only, the effect b > 0 of a Dirichlet BC u(#,x,y) on a point
(xr,yr) € I at time t > ¢’ (“boundary pollution”) is assumed bounded as

/ _ 2
p < |u<t y UL, y)l ex < . |(L’[ ‘TLl ) (26)
™ \/2mo(t —t) 202%(t — t')

In this way, given a prescribed tolerance b, a rough estimate of x; can be obtained.
Let us define

Z%(t,x,y) = 0yu’(t,x,y) + s(t,0)e” — K, (2.7)
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which may be denoted simply by Z? when there is no ambiguity. Then

Sug 0Z = qu(Z)y — @u(Z)- = Z(qulz20 + Gmlz<0)
qeE

and the HJB equation is

(9tuff — %28§qu _ ngaxua + 7° (QM]'ZUZO + qm]_Zo<0)7 (2 8>
u?(0,2,y) = g(y).
2.2 Hermite Polynomial chaos expansion
From (1.2), we assume an equality and we may write
o*(€) = (n+vg), (Q)

leading to the approximation (1.2) as v — 0. Here ¢ is a standard Gaussian random

variable AV (0,1), with density
1
L en

Ver

The uncertain parameter being related to Gaussian distribution, we derive a PCE using

p(€) =

Hermite polynomials. This is the purpose of the subsequent presentation.

2.2.1 Hermite polynomials

Consider the orthogonal basis of Hermite polynomials | , Appendix B.1.2 p.502]:
they are given by the Rodrigues formula

Pn(§) = (—1)”(50;[@—52/2], n > 0.

Therefore,
%(5) =1, (/51(5) =¢, ¢2(f) = 52 — 1,
¢s(§) = &£ — 3¢, P4(€) = &1 — 667 + 3,
¢5(€) = & — 106 + 15¢, ¢6(§) = £° — 156* + 456 — 15,
and
+o00
E[¢n()om(§)] = ) Dn (&) (§)p(§)dE = nldym. (2.9)

7
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In particular, we set

Vi :=E [¢7(8)] = k. (2.10)

These polynomials satisfy a three-term relation, as any family of orthogonal polynomi-
als; here it takes the form:

{wn(f) = Gni1(€) + 1o (§), n =1, (2.11)
$1(8) = £do().
From this, we deduce
{52%(5) = nr2(€) + (20 + 1)n(€) + n(n = Dgns(§), n 22, (2.12)
¢3(§) = (52 = 3)é1(§),

that we will use subsequently to derive the system of non-linear PDEs to solve.

2.2.2 Chaos expansion, Monte-Carlo evaluation of the distribution of u7(-)

Since u®® : ¢ € R+ Ly(Ly([0,T] x Dp;R),p(£)d€), it can be decomposed onto the
Hermite basis with coefficients in Ly ([0, 7] x Dr;R) (see | ]):

wO0) = () dk(€), (2.13)
k=0

with (for any ¢, z,y)

{ak(t,m,y) = E [u' (L, =, y)dn ()] /R, (2.14)

E [Ju®(t,2,9)]*] = Ty ai(t v, y)kl.

Thus, in the decomposition (2.13), (@3 (t,z,y)k!)x>0 must form a convergent series for
almost every (t,z,y) € [0,T] x Dy. Following this PCE approach, our goal is now to
identify the sequence of function coefficients w(-), & > 0.

Once the coefficients identified (see Subsection 2.2.3 below), note that it is very easy
(and efficient) to sample the distribution of a functional of (). For instance, if one is
interested by the distribution of a single value u?(¢, x,y), it is enough to sample i.i.d.
standard Gaussian &i,. .., &y and to evaluate the approximation ), (¢, z, y)dr(§)
as those sample points {{ = &,,m = 1,..., M} and for some large order n: it will
provide an empirical measure of u’(t,x,y) under the uncertainty measure for o. If

8
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instead of a single value one needs a functional of the solution as a function of (¢, z,y) €
[0,T] x Dy, the methodology is unchanged. This approach is significantly faster than
the naive one consisting to solve the whole PDE for each sampled ¢ = &,,, since only
the ¢ (&) have to be computed and the {@ : 0 < k£ < n} do not depend anymore on
the noise.

If only the expectation of u’(t,z,y) is required, it is enough to consider u(t, z,y)
in view of (2.14), so that no extra simulation is needed. The variance is also obtained
simply, without extra effort, by using the relation

Var(u’®(t, z,)) Zuktmyk' Zuktxy

Higher order moments can be computable explicitly too, see | , Appendix C].
This makes this PCE approach potentially much cheaper than the crude Monte-Carlo
method.

2.2.3 Representation of the chaos expansion from the HJB equation

We truncate (Galerkin projection) the expansion (2.13) at the truncation level n > 0:

wO(t, z,y) ~ ul(t,z,y) : Zuktﬂﬁy%)
The above residual at order n is orthogonal to {¢;(£)},. From (2.8) and (2.14), we
obtain a PC system (k=0,1,...,n)

E[m@)atug(t,x,y)}=E[¢k<§> 7 s n<txy>] E [60(€)oadu (t,2,y)] (2.15)

+E | 6n(€) 28t 2 9) (01 g0z + Gl s agpeo) |- (216)
where we set (similarly to (2.7))
Zy(toa,y) = Z(t 2,y 0t 2,y),§) = Oyus(t.,y) + s(t, o(€))e” — K.

We may add a similar treatment of the initial and boundary conditions. The following
transformations of (2.15)-(2.16) are obtained using extensively the orthogonality rela-
tion (2.9) and the definition of u,, assuming all the necessary smoothness on u (and
thus on ).
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> Term with time-derivative. The time-derivative and the first-order derivative
in y (available in y) can be transformed into semi-Lagrangian derivative. In order to
get rid of advection along a degenerate direction of the diffusion (y), let us define the
semi-Lagrangian derivative along a characteristic I'(¢) : y(t) = y(0) + ¢t,t > 0, as

Dﬁq)u(zﬁ,x, y) = D§Q)u(t, z,y € I'(t)) = Owult, x,y) + qOyu(t, x,y).

It can be discretized for instance as

t —u(t — At — qAt
D}gq)u@’x’y) ~ U( ,ﬂf,y) 'LL( N y L, Y — g )

Set
OL(O)s(7(E)e” = KTLyg,,000)
On()s(t () — KLy 0]

E
Hﬁ(t,x,y) =E :¢j(§)¢k(§)1zﬁ(t,z,y)20}'

Since Z§(t, z,y) = Oyus, (¢, z,y) + s(t,0(€))e® — K, we derive

E [¢r(§)0wus]| — E [%(5)&5(@ r,y) <QMlz,€(t,x,y)zo + lezﬁ(m,yxoﬂ

=E [¢k(§)(5’tui — quOyus(t, z, Z/))lzg(t,z,y)zo]
+E [(Jﬁk(ﬁ)(@thL — @Oy (t, @, y))lzg(t,x,y)@]
— g [0n(©)ls(t 7 (€)e” — KLy, o]
— 4B [0 [5(0. 7€) — KLy, o]

= E [0n(6) DL S (0.0, 9)1 g5 0] + B [0 Db (12901551100
—auWy (t,2,y) — Wy (t,2,9)

=E |64(6) D} " st 2,)|
+E |0n(&) (D ul (t,2,y) = DI (4.2, 9) gt 00
—auWy (t.2,y) — ¢ Wy (t,2,y)

= Vth(iqm)ak(t) z, y) + Z Hj;g@? xz, y) (DgiqM)aj (ta xz, y) - Dt(iqm)aj (t> z, y))
7=0

—quW, (2, y) — guW, (t, 2, y). (2.17)

10



2.2 Hermite Polynomial chaos expansion 2 POLYNOMIAL CHAOS EXPANSION

We could also write the equation in terms of D —ang k(t,x,y). For this, set

Hﬁﬂ(t, z,y) =E [¢j(5)¢k(f)1zﬁ(t,x,y)<0]'

Then, similar computations give

E [(bk(g)atui} - |:¢k (5) (t z y) <qM1Z§ (t,z,y)>0 + lezf (t,z y)<0)i|

= ViD{~ iy (t, 2,y +ZH (t, 2, y) (DY (t, 2, y) — D™, (t, 2, y))
7=0

- QMW;@?% y) - Qka_(t’ x>y)' (2'18)

Interpolating the formulas (2.17) and (2.18) with a parameter 6§ € R yields

E [01(€)0] — B |61 Z5(t,2,9) (03155 py20 + Gl 55 000
— VkDIS*QQm (1 H)QM) (t €T y)

+ Y _0H (e y) — (1= O Hj (6, o)) (D iyt oy) — Dy "y (t,x,y))

=0
—quW, (2, y) — guW, (t, 2, y). (2.19)

> Term with first space derivative. We simply have

E [d)k(é‘)ax@ ub (t, x y)] = ax V0, ux(t, x,y). (2.20)

Trn

> Term with first second derivative. The transformation of E [qbk.(f )5 92 Wl (t, x,y)

depends on the model of uncertainty on & — o(§). In the case (Q) Where a%(&) =
(u + v€)?, in view of the three and four-terms relation (2.11)-(2.12) and using V}, =
E [¢2(£)] = k! (see (2.10)), we have (for 0 < k < n)

E {qbk(g)a (5)63; n] = —Vk82 iy, + —ZE E2¢;(&)oi(€)] 92,

+ v Y E[66;(€)0u()10, 5,
j=0
2

= —V,ﬁ Ug + — ((k +2)(k + D)V, 02, digro + (2k + 1)V,02, G + Vkaﬁwak_g)

11
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2
1
—V [%aﬁxak,Q i + 5 (17 + (2K + 1)) Oy

(k+2)(k+1)
2

+ pv(k 4 1)07, ligr + V23§xﬂk+2} :

> Summary. Now, plug the above into (2.16)-(2.19)-(2.20): after dividing by V} =
k! > 0, the PC system in the Hermite basis with the semi-Lagrangian scheme approxi-
mated by forward finite differences is (k =0,1,...,n)

o i O e g
(1), ey — 2)(5 OV 02 s+ cxOaiin
+ Aitak(t, z,y) — Aitak(t — At,z,y + [0gm + (1 — 0)qu] At)
L ﬁ S [6H (txy) — (1 — ) Hyy(t 2, y)
j=0
X (&j(t — At,x,y + gnAt) — 0 (t — Atz y + qMAt))
— qk—rTW,;(t,x,y) — %W;(t,x,y) =0.

3 Implementation

Experimentally, it turns out that the interpolation parameter 6 in (2.19) does not
noticeably affect the results. Thus, we fix # = 1 henceforth. The PC system reads:

2 u? + (2k + 1)v/?

- %aizﬁk—2 — gy — 5 Ozl
(o )y — 2)(2’“ OV 52 s+ i
s il e 0
+ ﬁ zn% Hi(t, 2, y) (;(t = At, 2,y + qmAt) — 4;(t — At, 2,y + quAt))
=
— qk;—"!lW,;(t,x,y) — %W;(t,x,y) = By(t,z,y), (3.1)

12
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where for convenience we have introduced By (t,x,y) = 0 (it will be nonzero with the
benchmark problem to be introduced in Section 4). The above system poses the chal-
lenge that the nonlinear terms {H;; , Wki} couple all of the components of the solution,
g, - - ., Up. This means that the discretized version of (3.1) with finite differences (FD)
will in principle have full bandwidth. Indeed, a well known drawback of PC is that the
method may give rise to taxing algebraic equations | |, which is only compounded
by the nonlinear nature of (3.1).

In order to (partially) circumvent this issue, we put forward an FD semi-implicit
time-stepping scheme, whereby the linear terms are evaluated implicitly, and the non-
linear ones, explicitly (i.e. based on the solution on the previous timestep). Formally:

2

T N e e L

S X L L P o N

T LSRR e o Lo
e ([t 0] - 30+ ]

G (T W 02

In (3.2), [Lv]%h" and [Lo]R,, are proper FD discretizations of some operator £ evaluated
at current time ™! = (m + 1)At and at previous time t™ = mAt, respectively. In
this way, the discretized system (3.2) has a pentadiagonal, rather than full, coupling.
Let the spatial domain [z,, = —xp,2zy = x| X [0,yp] be discretized into a grid
of (1 + n,)(1 + n,) nodes (z;,y;) = (—zp + tAz, jAy), where Az = 2x./n, and
Ay =y /ny; and let [Uk]g”rl be the FD approximation to (™", x;, y;). Furthermore,
the random dimension is approximated as 2 ~ [—L,, L,,] and discretized into n,, + 1
equispaced nodes. We have employed the following FD approximations:
e central second-order—i.e. O(A?z)—FDs for the implicit second derivative,

mil (UREES + (Ul = 2[00

i—1,j ]

FD (Ax)? ’

|02, i, )]

e second-order upwind FDs for the implicit first derivative along x,

mt1 B[UL ™ — 4[U]™ 1) + (U
< omtl _ ij i—1, i—2,j
[c@muk(t , Ty, yj)} . max (c, 0) AL

13
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— U785 + AU = 8lUL

J v

2Ax ’

+ min (¢, 0)

e second-order central FDs for the explicit first derivative along y (notice that there
is no need for an upwind scheme since it is computed explicitly),

mo o ([UR 0 = (U 1) 0k (€)
FD 2Ay

Z(tm,xi,yj,f)] +s(t™ 0(&))e" — K.
The nonlinear terms are approximated by numerical integration. Since they involve
the indicator function, straightforward trapezoidal quadrature is preferable to higher-
order methods, which are more prone to oscillations when dealing with discontinuous
integrands (due to the indicator). For example,

m Lw

Hi( iy)| | = = (éu(—wn)ou(—wn)p(—01) Lz oy

+¢s(wL)¢k<wL)p(wL)1[Z(tm,aci7ijwL)}m +2 Z gbs (€T)¢k‘ (§r>p<§r)1[Z(tm,xi,yj ,{r)]m> .
r=1

When choosing the timestep, we mind At < quAy—i.e. prevent the interpolation
of semilagrangian derivatives from “jumping” over cells. (A CFL upper bound At <
2Ax/|ax | is not necessary since the derivatives in z are evaluated implicitly.)

The interpolation scheme is a critical aspect of semilagrangian differentiation—

specially so if the former is to be monotone, see | |. In particular, the condition
1 B m+1
— gt — At,x,y + gnAt) -0 as At — 0
At FD

must hold for consistency. (In our Matlab implementation, this was achieved with
cubic-spline interpolation—but not necessarily so with the other available methods.)
The resulting linear system to be solved at each time step has a block pentadiagonal
structure (there are linear algebra routines tailored to such systems, see | .
Hamilton-Jacobi PDEs such as (2.5) are well known to often lack a solution in the
classical sense | |. For that reason, numerical schemes for solving scalar equations
such as (2.5) must be designed to pick up the unique, sought-for viscosity solution. With
FDs in particular, this is enforced with monotone discrete operators | , | In
contrast to the scalar case—and to the best of our knowledge—there is not a systematic
theory of viscosity solutions for systems of equations such as (3.1) | |. Therefore,
we will always assume that either a classical solution does exist, or that our numerical
method is able to pick up the viscosity solution, otherwise. With this proviso, we have

14



4 NUMERICAL VALIDATION

dropped the requirement of monotonicity of the finite difference operators. For instance,
(3.3) and cubic-spline interpolation are not monotone, but they are more accurate than
monotone versions, which typically are just O(Ax).

The code has been written in vectorized style in Matlab R2017 and run on a laptop.

4 Numerical validation

In order to assess empirically the accuracy and stability of the numerical scheme, we
consider the PDE in (2.5) with an additional source term B:
o 2(5) 2 _
atu - Tgmxu + axamu -7 qM]-Z>0 + Qm1Z<0 - B(t7 r,y, 5) (41)
Analogously to Section 2.2.3, we derive the PC equations for (4.1) up to truncation
level n. For convenience, let us rewrite the resulting PC system (k =0, ...,n) without
the semilagrangian approximation as

v _ p? + (2k + 1)v?

Oyliy, — E@imﬂk_g — w02 g — 02 iy, — (k + 1) puvd? i

2
2
_(k+ 2)(2k + v 02 i yo + axdyity — —E | op(€) Z (8, 2, y, un(€)) <quz>0 + qmlz<0>]
= BB, .6 2

The difference between (4.2) and (2.16) is the presence of the vector of source terms

Eloe(§)B(t, 2,y,&)]/k! (k =0,...,n).

Let us choose as exact solution of the benchmark problem (or simply, the benchmark)

Nex

Uextﬂfyf E Uktxy¢k ) (43)
with
- 141 . [(2mx\ . [Ty
t = —_—
Op(t, z,y) <k+1)m51n( 3 >81n<2>,

which complies with (2.14). Moreover, we let u.(t,x,y,&) serve as initial condition
and Dirichlet BCs for the benchmark problem (4.1). (Note that it can no longer be
associated with the fair price of a gas swing option).

We highlight from the onset that results turn out to be remarkably insensitive to
discretization in the random dimension (provided it is adequate). Therefore, we set

15



4 NUMERICAL VALIDATION

L, = 13, n,, = 200 in all the ensuing experiments. Regarding the spatial domain, we
set 2, = =3, £y = 3 yy = 4, and take Dirichlet BCs along {|z| = 3,0 <y < yu}
and {z,, <z < xp,y = ya}. The spatial discretization is discussed in terms of either
n, and n,, or of Az = 6/n, and Ay = 4/n,, equally. The remaining parameters are:
F(0,t) = 15(1 + (sin27t)/3), K = .1, gy = .1, qu = .7, p = 1, a = .3 and (unless
stated otherwise) v = .3. The variables n and T remain to be set, as well as the value
Ny for the ue, in (4.3). Given N, = 500 fixed, uniformly scattered points across the
domain, the error of the PC expansion is characterized by

N, n
1 ev R ~ 2
RMS(t) = oD (Ot y5) =t g, y,))
€U j=1 k=0
(108 =N, =0 «10%  M=Ny, =16
8 w w At=.0200, Ay=.048 w w

A t=.0200, A x =.04
—O— At=.0100, Ay =.04
7 ® At=.0100, Ax=.04| 7 J

—%— At=.0050, Ay =.04
* At=.0050, A x = .04
—O— At=.0025, Ay=.04

6 ® At=.0025 Ax=.04/6F J
—~5 - —~5 J
1 ‘;
4 1 Zq ]
Q 0
z z
3 . 3 J
2 R 2 |
1 1 1 ]
O 1 1 1 1 1 1 0 1 1 1 1 | |
50 70 90 110 130 150 170 50 70 90 110 130 150 170
n  (with ny=100) & n (with n_=150) n, (with ny=100) & n (with n =150)

Figure 1: Convergence of RM S(t = 1) w.r.t. At, Az and Ay (separately), with n = n,.

In a first set of experiments, we enforce the truncation error of the PC expansion to
be zero by always setting n., = n, and focus on the discretization error with respect to
At, Az and Ay. This is shown both with n = n., = 0 (left side of Figure 1), and with

n = ne, = 16 (right side). A few remarks are in place:

16



4 NUMERICAL VALIDATION

e Using cubic-spline interpolation, consistency with respect to At is clear (also for
smaller values than shown on Figure 1). Furthermore, stability is apparent.

e While the accuracy noticeably improves with decreasing At and Az, it is barely
sensitive to Ay.

e The pentadiagonal coupling notwithstanding, accuracy is scarcely affected by the
number n 4+ 1 of PC equations in the system. However, when n is very large, the
evaluation of high-order Hermite polynomials may overflow (not shown). This is
a well known issue which can be ameliorated by ad-hoc procedures, for instance
by resorting to the Cauchy-Schwartz bound

[H5 (2, )] < Ello5(6)l[6n(€)] < VIIVEL

Then, if the numerical evaluation of |H (t,2,y)| overshoots the above bound,
1A (1,2, y) must be replaced by sign (H3 (1, 2,9)) VWAL

e With n = 0, the PC system is effectively an HJB equation. While the FD oper-
ators being used are not monotone, there is no need for them in the first place,
since the benchmark solution is guaranteed to be smooth.

In Figure 1, the RMS error decreases roughly linearly w.r.t. At as n, — oo and
n, — 00. In order to better assess the convergence rate of the numerical scheme, we
produce an ensemble of simulations with discretization values randomly picked from
uniform distributions in the ranges 0 < n = n,, < 20, 50 < Az < 200, 50 < Ay < 200,
and log (107?) < log (At) < log (.025). Then, we fit the resulting RMS(t = 1) errors
to the nonlinear model

RMS(t=1) = (14 can) (a1 At + c3(Az)?),

yielding as best-fit constants ¢; &~ .26, c3 ~ 2.26, c3 &~ .55 and ¢4 ~ .0025, roughly in
agreement with the expected second order convergence rate along x. This fit is plotted
in Figure 2, and it turns out to be distinctly the best (in a least-squares sense) over
several plausible nonlinear convergence models, including floating powers of At and Ay
(not shown). (The outliers in Figure 2 are simulations with small At and large Az.)

In the second part of this numerical study we focus on the effect of the truncation
level n. Henceforth, we set n., = 16 and allow n to differ from it.

In Figure 3, the longer-term behaviour of the RMS error is plotted. Observe that:
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4 NUMERICAL VALIDATION

. <108 Fit: mse=1.57753e-07 c,=0.260 c¢,=2.257 ¢,=0.545 ¢,=0.0025
\ \ \ \ \ \ \ \

0 1 1 1 1 1 1 1 1
0 1 2 3 4 5 6 7 8 9

z=(1+c,n)(cAt+Cc,AX%) %1073
Figure 2: Best fit of RMS(t = 1) error to a nonlinear convergence rate model. Colours:
n =0 (white), 1 <n <6 (green), 7 < n < 13 (blue), 14 < n < 20 (red); and n., = n.

e Asymptotically, all the instances of the RM S error tend to grow at a constant,
sublinear rate (check the dashed lines of slope one on Figure 3). This means that
relative errors are actually decreasing with increasing ¢ (recall that the benchmark
solution (4.3) grows linearly with ¢). Moreover, it strongly suggests stability of
the numerical PC code for longer terminal times.

e When the PC solution lives in a smaller random space than the benchmark (i.e.
when n < n., = 16), errors are almost always larger when v is larger. On the
other hand, when n = n.,, = 16, the RM.S error is virtually insensitive to v.
Moreover, truncating beyond n., does not improve accuracy (as expected).

A well known issue of PC is that the moments of the PC solution (specially from the
variance onwards) tend to deteriorate rather rapidly as ¢t — oo, unless the truncation
level is also constantly raised or the random basis adaptively changed | |. Figure
4 shows the propagation of the error of the mean and that of the variance (with respect

18



5 UNCERTAINTY QUANTIFICATION ON GAS SWING OPTION

n=4(nex=16) n=8(nex=16)

— ; A 9
N %M 10° e . y —*—y=.9
= = ot
w10’ o 101 .
i W = 10
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; n=12(nex=16) ; n=16(nex=16) ) n=20(nex=16)
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10°
- .
210 o
T o -
102 O/}/@/M
1*3
0 0 2 4 6 8 1

t t t
Figure 3: Propagation of the RM .S error. Auxiliary dashed lines have slope 1.

to the mean and variance of the benchmark solution) at (z¢,%) = (v/2,v/3). The
relative error of the variance grows faster than that of the expectation and—unless n
is very close to n.,—becomes O(1) by time t = 2.

Finally, in Figure 5 we study the dependence of the PC numerical solution on the
random variable & ~ N(0,1). We focus on the interval —3 < ¢ < 3 which has an
aggregate probability of over 99%. When n < n., = 16, the error (with respect to
the benchmark) is small and increases with 7" and with (At¢, Az, Ay). On the other
hand, when n is too low, the truncation error overrides that of discretization and can
be unacceptably large (O(1) and bigger).

Summing up, the numerical scheme (3.2) has been validated with a smooth solution.

5 Uncertainty quantification on gas swing option
We consider the gas swing option priced under one-factor dynamics in | |. The
parameters are: 7' = 1 (in years) , u = .7, a = 4, Fp; = 20 (a constant), ¢, = 0,

g = 2190, Qo = 1900, Qpmin = 1300 and K = {5,10,15,20}. In a slight departure
from our own framework, the contract described there does not allow to adjust the gas
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5 UNCERTAINTY QUANTIFICATION ON GAS SWING OPTION

error of expectation at x, = 1.41,y, = 1.73 error of variance at x, = 1.41,y, =1.73
10 e ([0 A s e e s e S SR SR R
102
— 103
10
10® 10°

02040608 1 12141618 2 02040608 1 12141618 2
t t

Figure 4: Error of the expectation (left) and variance (right) of the PC expansion for
various truncation levels (At = .005, n, = 200, n, = 100). Dashed lines have slope 1.

drawing rate continuously, but only once a day over one year (i.e. it depends on 365
discrete variables rather than on a continuous function y(t¢)). There are two cases:

e Unconstrained contract: in this scenario, there are no upper or lower limits to
the total amount of gas that can be withdrawn over the entire contract period
(the swing option contract is in fact equivalent to a string of 365 call options).
Therefore, P(x,y) =0 in (2.5) (so that the initial condition is smooth).

e Constrained contract: this is the most usual contractual scenario, when there are
strict limits on the total amount of gas that can be withdrawn, i.e.

Qmin S YT S Qma:p- (51)

Strictly speaking, (5.1) amounts to a penalty function which is zero for Q. <
Y < Qmae and infinity outside that interval. For numerical purposes, it is approx-
imated by the double ramp function

P(ﬂf, y) = A 5(07 J)ex(min (07 Yy — len) — max (07 Yy — Qmaaz))a
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5 UNCERTAINTY QUANTIFICATION ON GAS SWING OPTION

(%q:Y): relative error at t = 1 1 (%q:¥): relative error att = 5 (y5Y,): relative error at t = 10
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Figure 5: Relative error in the random dimension with respect to the benchmark (n., =
16) at (zo,%0) = (vV/2,v/3) and: t = 1 (left), t = 5 (middle) , and ¢ = 10 (right). Dashed
curves represent a rougher discretization (At = .02, n, = 90,n, = 60). Solid curves are

a finer discretization (At = .005,n, = 150,n, = 100). For n = 4, both sets are nearly
indistinguishable to the naked eye.

where A is a user-defined positive constant. We take A = 10000 as recommended
by | |. Note that A = 0 recovers the unconstrained case.

The solution is to be evaluated at yr = 0 (no initial gas) and

2

H —2aT Fou(T)
=—(1-— 1 ~ .03061.

The initial conditions for the PC equations now read:

T

ak(()? z, y) = fij (mln (07 Y= Qmm) —max (07 Yy — Qmax))]E[S(O—(g)v O)¢k(£)] ) (52)

which is again approximated by trapezoidal quadrature for simplicity. Numerical ex-
periments show that taking L,, = 10 and n,, = 100 is sufficient in all the cases.

Due to the nonsmooth initial condition, in this problem linear interpolation performs
better than cubic splines, so that we use the former instead.
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5 UNCERTAINTY QUANTIFICATION ON GAS SWING OPTION
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Figure 6: Ilustration of the “boundary pollution” effect with K = 5 and n = &:
xpr 2 154/ 2a for the solution to be unaffected by the finite computational domain.

Computational domain and BCs. As discussed in Section 2.1, the computational
domain D = [z, xp7] X [0, yar > g T] must be large enough that the numerical solution
at point (x7,yr) at time T is not affected by the BCs enforced up to time 7. We set
ynu = 1.3qp T = 2847, and choose as BCs:

u‘””g(tx ) = P(x,y), if(z,y) € 0D and t = 0,
! e 0, if (z,y) € 0D and 0 <t <T.

In this way, only the effect of the initial condition along 0D must be reckoned with.
Owing to the e® factor in (5.2), u*™4(T, xp, yr) is rather insensitive to z,, < 0 (we set
T, = —1.24), but z3; > 0 must be handled with more care. The reason is that the
influence of the initial condition on the boundary decays as O(e~*i/2#)) but the BC
itself grows as O(e*). The value of x), is estimated as follows: we wish to keep the
“boundary pollution” (let us call it b) smaller than 0.1% of the solution at (7', z7, yr).
According to Table 1 (more on it later), b = 30 > .001 x E[u**(T,zr,yr)] >
001 x |t (T, zp,yr)| (0 < k < n) is a conservative bound. Combining the propagation
estimate (2.6) and the BC (at t = 0) given by (5.2) yields 23 ~ 15u/v2a = 3.72
(i.e. 15 standard deviations of the OU process (2.1)). Figure 6 shows the effect of the
“boundary pollution” for several z;.
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5 UNCERTAINTY QUANTIFICATION ON GAS SWING OPTION

unconstrained (A = 0) constrained (A = 10000)

K uéf (T, xT, yT) UEX Ug(T> xr, ?/T) URQ
5 | 33274 32760 29361 29342
10 | 22298 21844 19987 19866
15 | 11760 11381 10867 10698
20 | 4181 3966 2580 2680

Table 1: Using the PC algorithm (3.2) with n = 0 and v = 0 as an HJB solver for pricing
gas swing options without uncertainty. (At = 1/365,n, = 320,n, = 200, z) = 3.72).
References upx and ugg are the solution of the slightly different problem in | |.

Using the PC' code in “scalar mode”. The PC algorithm can, in principle, also be used
for scalar HJB equations such as (2.5)—and hence for pricing swing options without
uncertainty, too. This is possible by letting n = 0, » = 0, and g = ¢ in (3.1). In the
sequel, ug(-) is to be understood as the numerical solution of an HJB equation with
volatility o obtained by so using the PC code (in “scalar mode”).

Since some of the FD operators in Section 3 are not monotone, u§(-) is not guaranteed
to pick up the viscosity solution. (This is particularly relevant in the constrained case,
where the initial conditions are non-differentiable.) On the other hand, comparison with
the results of a separate viscosity-capturing HJB code (based on Howard’s algorithm
[ |) shows no difference with u(-)—while the latter enjoys a higher convergence
rate w.r.t. Ax. Therefore, we stick to the PC code henceforth.

In order to get a feeling about the several discretization parameters involved, we
calculate the swing option prices for K = {5,10,15,20} with no uncertainty (i.e.

uf (T, zr,yr)), and compare it with the values given in | |. In Table 1, ugx has
been calculated with the Black-Scholes formula, and ugg with a quantization method
(see | | for details). In the remaining of the paper, we will use either the

e “coarser discretization” At = 1/365,n, = 160 (and n, = 200), or the
e “finer discretization” At =1/(2 x 365),n, = 320 (and n, = 200 as well).

Reference solution. In order to assess the quality of the PC solution, we will fix
v first, and then compare u**¢(T, xp,yr) inside a given interval of & with the HIB
solution w§(T, zr,yr), where 0 = pu + v€. Specifically, for each K we precompute a
set of {ud (T, xr,yr)}2, HIB solutions with the “finer” discretization at 90 equispaced
volatilities o1 = 0.1, ..., 099 = 1.75. For a given v, the comparable interval of £ is thus

(01— p)/v < &< (090 — p)/v.
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5 UNCERTAINTY QUANTIFICATION ON GAS SWING OPTION
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Figure 7: Comparison between the PC expansion with increasing n, and the HJB
reference curves, at (T, zr,yr). With n > 4, the improvement becomes harder to tell
with the naked eye; use the zoom and/or check Table 2. (v = .5; “finer” discretization)

We start the numerical study by investigating the interplay between the discretiza-
tion and the truncation level, n. In order to better highlight the effect of n, we first pick
the relatively large value v = .5. The dashed curves in Figure 7 are based on a subset of
70 of those HJB simulations. They represent uf (7, zr,yr) in the interval 0.1 <o < 1.3
(i.e. centered around ). It can be seen that the delta of the swing option is nearly
constant.

The red curves in Figure 7 are the PC approximation u**(T, z7, yr) for n =
{2,4,8}. The fit to the reference HJB curves improves as n grows. In order to system-
atically check this, we track the RMS error between each pair of curves, defined as (we
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5 UNCERTAINTY QUANTIFICATION ON GAS SWING OPTION

K n=2 n=4 n=2_, n =16
5 3303.3 3289.6 | 1563.0 1621.8 | 1083.7 1151.5 | — —
10 1834.9 1791.3 | 686.9 630.0 | 536.9 432.8 | 565.3 479.6
15 1200.3 1051.7 | 854.9 490.6 | 837.0 443.0 | 806.7 414.1
20 2647.7 2261.0 | 2255.3 1782.3 | 1872.7 1323.4 | 1660.3 1077.2
disc. | coarser finer coarser finer coarser finer coarser finer

Table 2: Improvement of the PC solution as n grows and the discretization is refined,
as measured by RX (5.4). For K =5 and n = 16, both discretizations are inadequate.

include a superindex K to specify the pair of curves):

70

1 o o 2
RE = -0 Z (Ué( (T, xr,yr) — un’ (T, xTﬁUT)) : (54)
i=1

The values of R¥ for the “finer” and “coarser” discretization are listed on Table 2. As
expected, R¥ usually improves (i.e. diminishes) as the discretization is refined and n
grows. The exception are the entries with K = 5, for which neither discretization is fine
enough at v = .50. (Since Hermite polynomials oscillate with ever larger amplitude as
|€] increases, numerical errors accumulate at the tails of the higher-order components
of uf¢(-)—check also Figure 5.)

Figure 8 zooms in on the fit between u*™¢(T, z7,yr) and the HJB reference curve
with K = 15, for n = {2,4,8,16} and the “finer” discretization. It is apparent that
as n grows, the errors accumulate on the higher end of £. Therefore, the truncation
level can be increased only so much for a given discretization. For this reason, when
computing the cdf of the swing prices under uncertainty, the integration w.r.t. & must
be cut short above. Furthermore, since 0 = p + v€ must be positive, swing prices for
¢ < —p/v are meaningless. In sum, we introduce the following truncated cdf:

Em
CDFT[ul*%, 2] ; m e s W3
where &, and &;; are respectively negative and positive enough that the distribution is
well represented. (Note that this may not be possible if the cut-off |/v| is too small).
By differentiating CDFT[u/*"¢, 2] with respect to z, one obtains the approximate
pdf of the Swing option price under uncertainty. The error tends to accumulate at the
tails, thus having a larger adverse effect on the higher moments of the distribution.
This is illustrated in Figure 9, where the more realistic uncertainty v = .1 has been
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Figure 8: Comparison of the PC expansions (“finer” discretization) with increasing n
to the reference HJB curve for K = 15 and v = .5. For the sake of clarity, only a few
individual values of the PC curves are displayed instead of the continuous curves.

used. In that Figure, the PC curves with different n (but the same discretization) are
nearly indistinguishable. The black curve, based on CDFT|[uf,z], is equivalent to a
Monte Carlo reference pdf, but without the statistical error.

In Figure 9, and in all the remaining simulations in the paper, the following values
have been used: K = 15, &, = —3.5, &,y = 3.5. (We point out that no smoothing has
been applied either to the truncated cdfs or to the pdfs.)

6 Uncertainty Value Adjustment

Consider now the following practical situation. The swing option is sold at the price
v7(0) corresponding to a medium estimation of the volatility: this may be an equi-
librium price in the market. However, the seller of the contract wants to assess the
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Figure 9: Pdf of the swing option price (with K = 15) under 10% uncertainty on the
volatility. The error of discretization overrides that of truncation. The black curve is
the reference “Monte Carlo” pdf, based on stochastic collocation of the HJB equation.

risk for volatility misspecification: he could consider a worst-case analysis by comput-
ing sup, v? (o) but this may be too conservative. More reasonably, he incorporates
the distribution on ¢ (coming from his calibration/estimation procedure) and aims at
computing E [(v7(0) — 2)4] with z > v7(0). The above quantity can be seen as an
Uncertainty Value Adjustment (UVA), whose purpose is to give a financial evaluation
of the possibility of misspecification of ¢ in the swing problem, beyond a risk threshold
z. In finance (like for CVaR), z is a given by a quantile at 95% or 99%.

We proceed to explore this idea using the gas swing option in the previous Section.
Let us consider three quantiles ¢ = {99%,95%,90%}. For each of them, and given a
PC expansion u“™*(T, zr,yr), the risk threshold z, is defined by

CDFT[u"*"%, 2,] = q/100.

After solving for z, with Newton’s method, the UVA is calculated as
Em

=)
27 Jmax (ém,—u/v)

Table 3 compiles UVA approximations for K = 15 and v = 10% using several PC

UVA[u!t q] = min (0, ¢ — z,)e /2d¢.

expansions. The entries are the percentage of UVA relative to the mean price of the
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v=.10and K =15
q MC n=2 n=4 n==~8 n =16
99% | .0067 | .0072 .0070 | .0071 .0069 | .0071 .0069 | .0071 .0069
95% | .0453 | .0476 .0463 | .0470 .0457 | .0470 .0457 | .0470 .0457
90% | .1031 | .1075 .1045 | .1065 .1036 | .1066 .1035 | .1066 .1036
disc. coarser finer | coarser finer | coarser finer | coarser finer

Table 3: Relative (percentual) UVA: (100x UVA[u/™¢, q]/E[ut™*(T, zr, yr)])%. For
the Monte Carlo (MC) references, the entries are (100x UVA[ug, q|/E[uf(T, zr, yr)]) %.

swing option. They are compared with the “Monte Carlo” reference based on stochastic
collocation of the HJB equation. A relatively coarse discretization and low n are enough
to get adequate acccuracy.

With p = .7 and v = .25 the cut-off value |u/v| = 2.8 is already small (less than
3 standard deviations of the distribution of £). In order to investigate UVA at larger
uncertainties than 10%, we set u = 1.3 (and keep K = 15, §,, = —3.5, &y = 3.5, and
the other parameters as before). See Table 4 for the UVA percentages in that case.

v q = 99% q = 95% q = 90%
10% | .0062 .0062 | .0424 .0424 | .0973 .0974
20% | .0126 .0128 | .0857 .0858 | .1964 .1960
30% | .0197 .0204 | .1322 .1323 | .3014 .2990
40% | .0267 .0276 | .1832 .1797 | 4156 .4042

n 2 4 2 4 2 4

Table 4: UVA (in terms of a percentage over the expected price of swing option) for
p = 1.3, K = 15, and the other parameters as in Section 5. (The “coarse” discretization
was employed.)

We conclude that settling for n = 2 and the “coarser” discretization is adequate for
an accurate estimation of UVA. On a laptop and in Matlab, it takes about 3 —4 minutes
to calculate w44 (-) and the UVA. While the risk premium against misspecification of
the volatility is quite small when the calibration is precise, it grows roughly linearly as

the calibration uncertainty increases.

28



REFERENCES REFERENCES

References

[Bas15|

[BBPOY]

[BEBD™*06]

[BF07]

[BL14|

[Bre91|

[BS91]

|CSKO1]

[Gob02]

|GvVK10]

[Har89|

Basel Committee on Banking Supervision. Review of the credit valuation
adjustment risk framework. Bank for International Settlements, July 2015.

O. Bardou, S. Bouthemy, and G. Pages. Optimal quantization for the
pricing of swing options. Applied Mathematical Finance, 16(2):183-217,
2009.

C. Barrera-Esteve, F. Bergeret, C. Dossal, E. Gobet, A. Meziou, R. Munos,
and D. Reboul-Salze. Numerical methods for the pricing of swing options:

a stochastic control approach. Methodology and Computing in Applied
Probability, 8(4):517-540, 2006.

K. Benkert and R. Fischer. An efficient implementation of the Thomas
algorithm for block pentadiagonal systems on vector computers. In: Shi,
Y., van Albada, G.D., Dongarra, J., Sloot, P.M.A. (eds.) Proceedings of
the 7th International Conference on Computer Science, ICCS, pages 144—
151, 2007.

P. Briand and C. Labart. Simulation of BSDEs by Wiener Chaos Expan-
sion. Annals of Applied Probability, 24(3):1129-1171, 2014.

M. J. Brennan. The price of convenience and the valuation of commodity
contingent claims. Stochastic Models and Option Values, 200(22-71), 1991.

G. Barles and P. E. Souganidis. Convergence of approximation schemes for
fully nonlinear second order equations. Asymptot. Anal., 4:271-283, 1991.

L. Clewlow, C. Strickland, and V. Kaminski. Valuation of swing contracts
in trees. Energy and Power Risk Management, 6(4):33-34, 2001.

E. Gobet. LAN property for ergodic diffusion with discrete observations.
Ann. Inst. H. Poincaré Probab. Statist., 38(5):711-737, 2002.

M. Gerristma, J. B. van der Steen, P. Vos, and G. E. Karniadakis. Time-
dependent generalized polynomial chaos. J. Comput. Phys., 229(22):8333~
8363, 2010.

A.C. Harvey. Forecasting, Structural Time Series Analysis, and the
Kalman Filter. Cambridge, 19809.

29



REFERENCES REFERENCES

|HS14]

[JRT04]

[Kep04]

[KHO2]

[LK10]

[Loh96]

[LYLO3]

[MROS|

[MRO5]|

[MT02]

[Nie92]

[Rao99)]

T. Huschto and S. Sager. Solving stochastic optimal control problems by
a Wiener chaos approach. Vietnam Journal of Mathematics, 42(1):83-113,
2014.

P. Jaillet, E.I. Ronn, and S. Tompaidis. Valuation of commodity-based
swing options. Management Science, 50:909-921, 2004.

J. Keppo. Pricing of electricity swing options. The Journal of Derivatives,
11(3):26-43, 2004.

M. Kleiber and T.D. Hien. The Stochastic Finite Element Method. John
Wiley & Sons Ltd, 1992.

O. Le Maitre and O.M. Knio. Spectral methods for uncertainty quantifica-
tion: with applications to computational fluid dynamics. Springer Science
& Business Media, 2010.

W.L. Loh. On latin hypercube sampling. Annals of Statistics, 24(5):2058—
2080, 1996.

W. Liu, Y. Yang, and G. Lu. Viscosity solutions of fully nonlinear parabolic
systems. Journal of Mathematical Analysis and Applications, 281(1):362—
381, 2003.

R. Mikulevicius and B. Rozovskii. Linear parabolic stochastic PDE and
Wiener chaos. SIAM Journal on Mathematical Analysis, 29(2):452-480,
1998.

R. Mikulevicius and B. Rozovskii. Global L2-solutions of stochastic Navier-
Stokes equations. The Annals of Probability, 33(1):137-176, 2005.

M. Manoliu and S. Tompaidis. Energy futures prices: term structure mod-
els with Kalman filter estimation. Applied Mathematical Finance, 9(1):21
43, 2002.

H. Niederreiter. Random number generation and quasi-Monte-Carlo meth-
ods, volume 63 of CBMS-NSF Regional Conference Series in Applied Math-
ematics. STAM, Philadelphia, PA, 1992.

B.L.S. Prakasa Rao. Statistical inference for diffusion type processes,
Kendall’s Library of statistics (Vol. 8). London/New York: Edward Arnold.
Oxford University Press, 1999.

30



REFERENCES REFERENCES

[Sch97]

SS00]

[Toul3|

[TSGU13]

[Warl6]

[Xiu09)

E. Schwartz. The stochastic behavior of commodity prices: implications
for valuation and hedging. J. Finance, 52(3):923-973, 1997.

E. Schwartz and J.E. Smith. Short-term variations and long-term dynamics
in commodity prices. Management Science, 46(7):893-911, 2000.

A. Tourin. An introduction to finite difference methods for PDEs in finance.
In Optimal Stochastic Target problems and Backward SDE, Fields Institute
Monographs, ed. Nizar Touzi. Springer, 2013.

A L. Teckentrup, R. Scheichl, M.B. Giles, and E. Ullmann. Further anal-
ysis of multilevel Monte Carlo methods for elliptic PDEs with random
coefficients. Numerische Mathematik, 125(3):569-600, 2013.

X. Warin. Some non monotone schemes for time dependent Hamilton-
Jacobi-Bellman equations in stochastic control. J. Sci. Comp., 66(3):1122—
1147, 2016.

D. Xiu. Fast numerical methods for stochastic computations: a review.
Communications in Computational Physics, 5(2-4):242-272, 2009.

31



	Introduction
	Statement of the problem
	Background results in uncertainty quantification

	polynomial chaos expansion
	HJB equation with uncertainty
	Hermite Polynomial chaos expansion
	Hermite polynomials
	Chaos expansion, Monte-Carlo evaluation of the distribution of u()
	Representation of the chaos expansion from the HJB equation


	Implementation
	Numerical validation
	Uncertainty quantification on gas swing option
	Uncertainty Value Adjustment

