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Introduction

Statement of the problem

Swing or Take-Or-Pay contracts are very common in energy markets. When the underlying commodity is gas, they give the possibility to the buyer of such a contract to buy/exchange the gas on the spot market (or the forward market) at a given price, with a flexibility on the cumulative volume on a given period, say [0, T ]. The valuation problem can be split into two steps: identifying the model from data, and computing the swing option price given the model. The second step is usually quite demanding since it requires to solve a non-linear Hamilton-Jacobi-Bellman (HJB) equation: for some related numerical methods, see [CSK01, JRT04, Kep04, BEBD + 06, BBP09]. Here we address the problem of swing valuation when the volatility of the model is unperfectly identified.

As a model, we consider the Schwartz-Smith model [START_REF] Schwartz | Short-term variations and long-term dynamics in commodity prices[END_REF] simplified to a single factor (see also [START_REF] Brennan | The price of convenience and the valuation of commodity contingent claims[END_REF]- [START_REF] Schwartz | The stochastic behavior of commodity prices: implications for valuation and hedging[END_REF]): namely, we assume that the forward gas price F (s, t) (fixed at time s for receiving and paying one unit of gas at time t > s) obeys the one-factor dynamics (for any maturity t) dF (s, t) F (s, t)

= σe -α(t-s) dW s , 0 ≤ s < t, (1.1)

given a initial forward curve (F (0, t) : t ≥ 0). The parameter σ > 0 is the volatility and α > 0 is the mean-reversion coefficient that describes the rate at which the short-term deviations are expected to disappear (see (2.2) later, for the link with mean-reverting Ornstein-Uhlenbeck process). The statistical inference of (α, σ) is usually handled with Maximum Likelihood estimation or Kalman filtering [Sch97, SS00, MT02]; standard statistical results [START_REF] Harvey | Forecasting, Structural Time Series Analysis, and the Kalman Filter[END_REF][START_REF] Rao | Statistical inference for diffusion type processes[END_REF] show that with a large number of data, the estimators are asymptotically normal (for the Local Asymptotic Normality property, see [START_REF] Gobet | LAN property for ergodic diffusion with discrete observations[END_REF]). Therefore, naturally, one may consider that the estimation errors on (α, σ) are approximately Gaussian, with small covariance/variances. Here to simplify the analysis, we consider that α is known and only σ is subjected to estimation error. In other words, we have

σ d ≈ N (µ, ν 2 ), (1.2) 
with small variance ν > 0 and some µ > 0. This comes from a Central Limit Theorem result where typically ν 2 is proportional to the inverse of the number of available data.

The model-certain price v σ (0) at time 0 of the swing contract depends naturally on σ, and we wish now to account for the variability of price with respect to σ; in other words, to quantify the uncertainty in σ. Typically our aim is to efficiently estimate the distribution of the random variable v σ (0). Because v σ (0) solves a non-linear equation (for each given σ), it raises new issues that have not yet been addressed before.

From the point of view of financial economics, evaluating the mean excess between the uncertain swing option price v σ (σ) and the deterministic price v σ (0) is helpful to account for the risk of model uncertainty. This is similar to Credit Value Adjustment in finance, and other related adjustments, collectively called xVA (see [START_REF]Review of the credit valuation adjustment risk framework[END_REF]), corresponding (in the case of CVA) to accounting for the possibility of a counter-party's default within a bilateral contract. In our case, E [(v σ (σ) -z) + ] with z ≥ v σ (0) is referred to as UVA (Uncertainty Value Adjustment). The level z could be taken as v σ (0) = E [v σ (σ)], or as a given quantile of v σ (σ). This measure may serve to compute a deposit in order to face a quite unfavorable pricing of the swing option. Some illustrations are presented in Section 6.

Background results in uncertainty quantification

Many numerical strategies for uncertainty quantification are possible, of which we single out the most usual ones. For definiteness, we assume that a set of κ uncertain parameters σ is being propagated by a PDE, which are usually modeled as independent random distributions, and we say the random space is κ-dimensional. In the case of an uncertain function, modeled by a random field, dimension reduction is typically performed first via Karhunen-Loève expansions (KLE) truncated to a finite number κ of random parameters. Here are the different numerical strategies.

• Simulation-based methods, consisting in sampling M different σ according to (1.2) and for each of them, solving (v σ (m) (0) : 1 ≤ m ≤ M ). Sample statistics can then be performed on the ensemble of simulations. These methods are straightforward to implement provided that a deterministic solver for the PDE with fixed parameters is available (hence they are called non-intrusive). Moreover, they can handle arbitrary uncertainty distributions and high-dimensional uncertainty spaces with no particular modification. On the other hand, the convergence rate is very slow (typically as M -1/2 ), a problem which is compounded if each deterministic sample is costly to compute. Strategies to reduce the statistical error (and thus to speed up simulations) include Latin hypercube [START_REF] Loh | On latin hypercube sampling[END_REF], quasi Monte Carlo [START_REF] Niederreiter | Random number generation and quasi-Monte-Carlo methods[END_REF] and the Multilevel method [START_REF] Teckentrup | Further analysis of multilevel Monte Carlo methods for elliptic PDEs with random coefficients[END_REF].

• Local expansion-based methods, consisting in deriving Taylor/perturbation methods, taking advantage (or assuming) that the uncertain parameter σ fluctuates little. See [START_REF] Kleiber | The Stochastic Finite Element Method[END_REF]. It boils down to a sensitivity analysis which appears to be quite delicate in the case of HJB equation, because of the non-linear property of the equation (see (2.4) later).

• Generalized Polynomial Chaos (gPC) methods [START_REF] Xiu | Fast numerical methods for stochastic computations: a review[END_REF][LK10], which involve a functional expansion (the gPC expansion) of the solution in a basis in the random space-ideally orthogonal with respect to the joint distribution of parameters. There are two main approaches to gPC, differing in how the residual to the PDE is treated. In the first one-stochastic collocation-the residual of the gPC expansion is forced to vanish on a predefined set of nodes in the random space. This involves the discretization of the random space, which can be costly in high dimensions (κ 4)-although sparse grids can be sometimes used-but has the advantage of being non-intrusive. The second approach is called stochastic Galerkin, where the residual is forced to be orthogonal to each of the basis functions in the random space retained in the gPC expansion. This method is usually considered more accurate than stochastic collocation and does not involve grids in the random space; but the projection of the residual results in a system of κ PDEs which are different from the original problem (hence it is an intrusive method).

In this work we follow the last approach using polynomial chaos expansion (PCE) based on Gaussian noise (due to (1.2)). To the best of our knowledge, the above techniques have been investigated in the case of linear problems (like [START_REF] Mikulevicius | Linear parabolic stochastic PDE and Wiener chaos[END_REF]) and scarcely in the case of nonlinear PDEs (in fluid mechanics see [START_REF] Mikulevicius | Global L2-solutions of stochastic Navier-Stokes equations[END_REF], in stochastic optimization and HJB equations see [START_REF] Briand | Simulation of BSDEs by Wiener Chaos Expansion[END_REF][START_REF] Huschto | Solving stochastic optimal control problems by a Wiener chaos approach[END_REF], both cases are not related to Uncertainty Quantification strictly speaking).

Model and polynomial chaos expansion

Modeling the energy contract: HJB equation with uncertainty

To better represent (1.1), define

X s = σe -αs s 0 e αu dW u , (2.1)
which is an Ornstein-Uhlembeck process, starting from 0, and with zero long-term average:

dX s = -αX s ds + σdW s , X 0 = 0.
The process X is Gaussian and its limiting distribution as time goes to infinity is N (0, σ 2 2α ). Then, by the Itô formula we have

F (s, t) = F (0, t) exp e -α(t-s) X s - σ 2 4α e -2α(t-s) -e -2αt .
(2.2)

The gas spot price is

S t = F (t, t) = F (0, t) exp X t - σ 2 4α 1 -e -2αt .
(2.

3)

The swing contract has an expiration equal T > 0, and the fixed price to buy gas is given by the strike K > 0. At any date, the swing owner has the right to buy q t units of gas at the price K, so that his instantaneous profit is

f (t, X t , q t ) = q t (S t -K).
Here the volume flexibility is allowed in the range q t ∈ [q m , q M ] := Q ⊂ [0, +∞) at any time t ∈ [0, T ]. The cumulative gas withdrawn is

Y t = t 0 q s ds.
The value function is defined as

v σ (t, x, y) = sup (qs) t≤s≤T ,qs∈Q E P (X T , Y T ) + T t f (s, X s , q s )ds | X t = x, Y t = y (2.4)
where the expectation is taken under the risk-neutral measure defining the forward contract/spot price. The term P plays the role of a penalty forcing the cumulative withdraw Y T to finish in a given range (depending on the swing contract), typically we can take P with polynomial growth in its variables. Under smoothness assumptions on v, we know that v solves the following Hamilton-Jacobi-Bellman PDE:

   ∂ t v σ + sup q∈Q L σ,q v σ + f = 0, (t, x, y) ∈ [0, T ] × R × R, v σ (T, x, y) = P (x, y),
where

L σ,q Ψ(t, x, y) = σ 2 2 ∂ 2
x Ψ(t, x, y) -αx∂ x Ψ(t, x, y) + q∂ y Ψ(t, x, y).

By changing t T -t, we get another PDE (v σ (t, .) = u σ (T -t, .)) with initial condition:

   ∂ t u σ = σ 2 2 ∂ 2 xx u σ -αx∂ x u σ + sup q∈Q q ∂ y u σ + s(t, σ)e x -K , u σ (0, x, y) = P (x, y), (2.5) 
where

s(t, σ) = F (0, T -t)e -σ 2 4α (1-e -2α(T -t) ) (see Equation (2.3))
. This is a degenerate diffusion along y compounded by advection in that direction (in the sup term).

Boundary conditions. Equation (2.5) is defined on the halfplane y ≥ 0. However, the solution is only needed in a bounded region I around the origin where contract scenarios with significant probability occur. For computational purposes, a finite computational domain D = [x m , x M ] × [0, y M ] with x m < 0 < x M must be defined which contains I. The boundary conditions (BCs) on ∂D are to be chosen in such a way that they do not affect the solution inside I; and they are compatible with the initial condition P .

Along the y direction, (2.5) is purely hyperbolic and, since q ≥ q m ≥ 0, information travels downward. Consequently, no BC is required at the downwind side of the boundary (y = 0), while the BC on the upwind side cannot affect I as long as it is farther away than q M T , i.e. if y M > sup y∈I +q M T .

Along the x direction, (2.5) is diffusive and information travels instantaneously; the goal is to place the BC far enough so that its effect inside I is negligible. In order to get a rough estimate of x L := max (-x m , x M ), let us heuristically split (2.5) into three parts: a diffusion term σ 2 2 ∂ 2 xx u σ ; an advection term -αx∂ x u σ , which advects information away from I; and a nonlinear term, which we neglect. Based on the fundamental solution of the diffusion part only, the effect b > 0 of a Dirichlet BC u(t , x L , y) on a point (x I , y I ) ∈ I at time t > t ("boundary pollution") is assumed bounded as

b |u(t , x L , y)| 2πσ 2 (t -t ) exp - |x I -x L | 2 2σ 2 (t -t ) . (2.6)
In this way, given a prescribed tolerance b, a rough estimate of x L can be obtained. Let us define Z σ (t, x, y) := ∂ y u σ (t, x, y) + s(t, σ)e x -K, (2.7) which may be denoted simply by Z σ when there is no ambiguity. Then

sup q∈Q qZ = q M (Z) + -q m (Z) -= Z q M 1 Z≥0 + q m 1 Z<0
and the HJB equation is

∂ t u σ = σ 2 2 ∂ 2 xx u σ -αx∂ x u σ + Z σ q M 1 Z σ ≥0 + q m 1 Z σ <0 , u σ (0, x, y) = g(y).
(2.8)

Hermite Polynomial chaos expansion

From (1.2), we assume an equality and we may write

σ 2 (ξ) = (µ + νξ) 2 , (Q)
leading to the approximation (1.2) as ν → 0. Here ξ is a standard Gaussian random variable N (0, 1), with density

p(ξ) = 1 √ 2π e -ξ 2 /2 .
The uncertain parameter being related to Gaussian distribution, we derive a PCE using Hermite polynomials. This is the purpose of the subsequent presentation.

Hermite polynomials

Consider the orthogonal basis of Hermite polynomials [LK10, Appendix B.1.2 p.502]: they are given by the Rodrigues formula

φ n (ξ) = (-1) n e ξ 2 2 ∂ n ξ [e -ξ 2 /2 ], n ≥ 0.
Therefore,

       φ 0 (ξ) = 1, φ 1 (ξ) = ξ, φ 2 (ξ) = ξ 2 -1, φ 3 (ξ) = ξ 3 -3ξ, φ 4 (ξ) = ξ 4 -6ξ 2 + 3, φ 5 (ξ) = ξ 5 -10ξ 3 + 15ξ, φ 6 (ξ) = ξ 6 -15ξ 4 + 45ξ 2 -15,
and

E [φ n (ξ)φ m (ξ)] = +∞ -∞ φ n (ξ)φ m (ξ)p(ξ)dξ = n!δ nm .
(2.9)

In particular, we set

V k := E φ 2 k (ξ) = k!.
(2.10)

These polynomials satisfy a three-term relation, as any family of orthogonal polynomials; here it takes the form:

ξφ n (ξ) = φ n+1 (ξ) + nφ n-1 (ξ), n ≥ 1, φ 1 (ξ) = ξφ 0 (ξ).
(2.11)

From this, we deduce

ξ 2 φ n (ξ) = φ n+2 (ξ) + (2n + 1)φ n (ξ) + n(n -1)φ n-2 (ξ), n ≥ 2, φ 3 (ξ) = (ξ 2 -3)φ 1 (ξ),
(2.12) that we will use subsequently to derive the system of non-linear PDEs to solve.

Chaos expansion, Monte-Carlo evaluation of the distribution of u

σ (•) Since u σ(ξ) : ξ ∈ R → L 2 (L 2 ([0, T ] × D L ; R), p(ξ)dξ)
, it can be decomposed onto the Hermite basis with coefficients in L 2 ([0, T ] × D L ; R) (see [START_REF] Le Maître | Spectral methods for uncertainty quantification: with applications to computational fluid dynamics[END_REF]):

u σ(ξ) (.) = +∞ k=0 ũk (.)φ k (ξ), (2.13) 
with (for any t, x, y)

ũk (t, x, y) = E u µ+νξ (t, x, y)φ k (ξ) /k!, E |u σ(ξ) (t, x, y)| 2 = +∞ k=0 ũ2 k (t, x, y)k!.
(2.14) Thus, in the decomposition (2.13), (ũ 2 k (t, x, y)k!) k≥0 must form a convergent series for almost every (t, x, y) ∈ [0, T ] × D L . Following this PCE approach, our goal is now to identify the sequence of function coefficients ũk (•), k ≥ 0.

Once the coefficients identified (see Subsection 2.2.3 below), note that it is very easy (and efficient) to sample the distribution of a functional of u σ (•). For instance, if one is interested by the distribution of a single value u σ (t, x, y), it is enough to sample i.i.d. standard Gaussian ξ 1 , . . . , ξ M and to evaluate the approximation n k=0 ũk (t, x, y)φ k (ξ) as those sample points {ξ = ξ m , m = 1, . . . , M } and for some large order n: it will provide an empirical measure of u σ (t, x, y) under the uncertainty measure for σ. If instead of a single value one needs a functional of the solution as a function of (t, x, y) ∈ [0, T ] × D L , the methodology is unchanged. This approach is significantly faster than the naive one consisting to solve the whole PDE for each sampled ξ = ξ m , since only the φ k (ξ) have to be computed and the {ũ k : 0 ≤ k ≤ n} do not depend anymore on the noise.

If only the expectation of u σ (t, x, y) is required, it is enough to consider ũ0 (t, x, y) in view of (2.14), so that no extra simulation is needed. The variance is also obtained simply, without extra effort, by using the relation

Var(u σ(ξ) (t, x, y)) = +∞ k=1 ũ2 k (t, x, y)k! ≈ n k=1 ũ2 k (t, x, y)k!.
Higher order moments can be computable explicitly too, see [LK10, Appendix C]. This makes this PCE approach potentially much cheaper than the crude Monte-Carlo method.

Representation of the chaos expansion from the HJB equation

We truncate (Galerkin projection) the expansion (2.13) at the truncation level n ≥ 0:

u σ(ξ) (t, x, y) ≈ u ξ n (t, x, y) := n k=0 ũk (t, x, y)φ k (ξ).
The above residual at order n is orthogonal to {φ i (ξ)} n i=0 . From (2.8) and (2.14), we obtain a PC system (k = 0, 1, . . . , n)

E φ k (ξ)∂ t u ξ n (t, x, y) = E φ k (ξ) σ 2 (ξ) 2 ∂ 2 xx u ξ n (t, x, y) -E φ k (ξ)αx∂ x u ξ n (t, x, y) (2.15) + E φ k (ξ)Z ξ n (t, x, y) q M 1 Z ξ n (t,x,y)≥0 + q m 1 Z ξ n (t,x,y)<0 , (2.16)
where we set (similarly to (2.7))

Z ξ n (t, x, y) = Z t, x, y, u ξ n (t, x, y), ξ = ∂ y u ξ n (t, x, y) + s(t, σ(ξ))e x -K.
We may add a similar treatment of the initial and boundary conditions. The following transformations of (2.15)-(2.16) are obtained using extensively the orthogonality relation (2.9) and the definition of u n , assuming all the necessary smoothness on u (and thus on ũk ).

Term with time-derivative. The time-derivative and the first-order derivative in y (available in y) can be transformed into semi-Lagrangian derivative. In order to get rid of advection along a degenerate direction of the diffusion (y), let us define the semi-Lagrangian derivative along a characteristic Γ(t) : y(t) = y(0) + qt, t ≥ 0, as

D (q) t u(t, x, y) := D (q) t u(t, x, y ∈ Γ(t)) = ∂ t u(t, x, y) + q∂ y u(t, x, y).
It can be discretized for instance as

D (q) t u(t, x, y) ≈ u(t, x, y) -u(t -∆t, x, y -q∆t) ∆t . Set W + k (t, x, y) = E φ k (ξ)[s(t, σ(ξ))e x -K]1 Z ξ n (t,x,y)≥0 , W - k (t, x, y) = E φ k (ξ)[s(t, σ(ξ))e x -K]1 Z ξ n (t,x,y)<0 , H + jk (t, x, y) = E φ j (ξ)φ k (ξ)1 Z ξ n (t,x,y)≥0 . Since Z ξ n (t, x, y) = ∂ y u ξ n (t, x, y) + s(t, σ(ξ))e x -K, we derive E φ k (ξ)∂ t u ξ n -E φ k (ξ)Z ξ n (t, x, y) q M 1 Z ξ n (t,x,y)≥0 + q m 1 Z ξ n (t,x,y)<0 = E φ k (ξ)(∂ t u ξ n -q M ∂ y u ξ n (t, x, y))1 Z ξ n (t,x,y)≥0 + E φ k (ξ)(∂ t u ξ n -q m ∂ y u ξ n (t, x, y))1 Z ξ n (t,x,y)<0 -q M E φ k (ξ)[s(t, σ(ξ))e x -K]1 Z ξ n (t,x,y)≥0 -q m E φ k (ξ)[s(t, σ(ξ))e x -K]1 Z ξ n (t,x,y)<0 = E φ k (ξ)D (-q M ) t u ξ n (t, x, y)1 Z ξ n (t,x,y)≥0 + E φ k (ξ)D (-qm) t u ξ n (t, x, y)1 Z ξ n (t,x,y)<0 -q M W + k (t, x, y) -q m W - k (t, x, y) = E φ k (ξ)D (-qm) t u ξ n (t, x, y) + E φ k (ξ)(D (-q M ) t u ξ n (t, x, y) -D (-qm) t u ξ n (t, x, y))1 Z ξ n (t,x,y)≥0 -q M W + k (t, x, y) -q m W - k (t, x, y) = V k D (-qm) t ũk (t, x, y) + n j=0 H + jk (t, x, y)(D (-q M ) t ũj (t, x, y) -D (-qm) t ũj (t, x, y)) -q M W + k (t, x, y) -q m W - k (t, x, y).
(2.17)

We could also write the equation in terms of D (-q M ) t ũk (t, x, y). For this, set

H - jk (t, x, y) = E φ j (ξ)φ k (ξ)1 Z ξ n (t,x,y)<0 .
Then, similar computations give

E φ k (ξ)∂ t u ξ n -E φ k (ξ)Z ξ n (t, x, y) q M 1 Z ξ n (t,x,y)≥0 + q m 1 Z ξ n (t,x,y)<0 = V k D (-q M ) t ũk (t, x, y) + n j=0 H - jk (t, x, y)(D (-qm) t ũj (t, x, y) -D (-q M ) t ũj (t, x, y)) -q M W + k (t, x, y) -q m W - k (t, x, y). (2.18)
Interpolating the formulas (2.17) and (2.18) with a parameter θ ∈ R yields

E φ k (ξ)∂ t u ξ n -E φ k (ξ)Z ξ n (t, x, y) q M 1 Z ξ n (t,x,y)≥0 + q m 1 Z ξ n (t,x,y)<0 = V k D (-θqm-(1-θ)q M ) t ũk (t, x, y) + n j=0 [θH + jk (t, x, y) -(1 -θ)H - jk (t, x, y)](D (-q M ) t ũj (t, x, y) -D (-qm) t ũj (t, x, y)) -q M W + k (t, x, y) -q m W - k (t, x, y). (2.19)
Term with first space derivative. We simply have

E φ k (ξ)αx∂ x u ξ n (t, x, y) = αxV k ∂ x ũk (t, x, y).
(2.20)

Term with first second derivative. The transformation of E φ k (ξ) σ 2 (ξ) 2 ∂ 2 xx u ξ n (t,
x, y) depends on the model of uncertainty on ξ → σ(ξ). In the case (Q) where σ 2 (ξ) = (µ + νξ) 2 , in view of the three and four-terms relation (2.11)-(2.12) and using

V k = E [φ 2 k (ξ)] = k! (see (2.10)), we have (for 0 ≤ k ≤ n) E φ k (ξ) σ 2 (ξ) 2 ∂ 2 xx u ξ n = µ 2 2 V k ∂ 2 xx ũk + ν 2 2 n j=0 E ξ 2 φ j (ξ)φ k (ξ) ∂ 2 xx ũj + µν n j=0 E [ξφ j (ξ)φ k (ξ)]∂ 2 xx ũj , = µ 2 2 V k ∂ 2 xx ũk + ν 2 2 (k + 2)(k + 1)V k ∂ 2 xx ũk+2 + (2k + 1)V k ∂ 2 xx ũk + V k ∂ 2 xx ũk-2 + µν (k + 1)V k ∂ 2 xx ũk+1 + V k ∂ 2 xx ũk-1 = V k ν 2 2 ∂ 2 xx ũk-2 + µν∂ 2 xx ũk-1 + 1 2 µ 2 + (2k + 1)ν 2 ∂ 2 xx ũk + µν(k + 1)∂ 2 xx ũk+1 + (k + 2)(k + 1) 2 ν 2 ∂ 2 xx ũk+2 .
Summary. Now, plug the above into (2.16)-(2.19)-(2.20): after dividing by V k = k! > 0, the PC system in the Hermite basis with the semi-Lagrangian scheme approximated by forward finite differences is

(k = 0, 1, . . . , n) - ν 2 2 ∂ 2 xx ũk-2 -µν∂ 2 xx ũk-1 - µ 2 + (2k + 1)ν 2 2 ∂ 2 xx ũk -(k + 1)µν∂ 2 xx ũk+1 - (k + 2)(k + 1)ν 2 2 ∂ 2 xx ũk+2 + αx∂ x ũk + 1 ∆t ũk (t, x, y) - 1 ∆t ũk (t -∆t, x, y + [θq m + (1 -θ)q M ]∆t) + 1 k!∆t n j=0 [θH + jk (t, x, y) -(1 -θ)H - jk (t, x, y)] × ũj (t -∆t, x, y + q m ∆t) -ũj (t -∆t, x, y + q M ∆t) - q m k! W - k (t, x, y) - q M k! W + k (t, x, y) = 0.

Implementation

Experimentally, it turns out that the interpolation parameter θ in (2.19) does not noticeably affect the results. Thus, we fix θ = 1 henceforth. The PC system reads:

- ν 2 2 ∂ 2 xx ũk-2 -µν∂ 2 xx ũk-1 - µ 2 + (2k + 1)ν 2 2 ∂ 2 xx ũk -(k + 1)µν∂ 2 xx ũk+1 - (k + 2)(k + 1)ν 2 2 ∂ 2 xx ũk+2 + αx∂ x ũk + 1 ∆t ũk (t, x, y) - 1 ∆t ũk (t -∆t, x, y + q m ∆t) + 1 k!∆t n j=0 H + jk (t, x, y) ũj (t -∆t, x, y + q m ∆t) -ũj (t -∆t, x, y + q M ∆t) - q m k! W - k (t, x, y) - q M k! W + k (t, x, y) = B k (t, x, y), (3.1)
where for convenience we have introduced B k (t, x, y) = 0 (it will be nonzero with the benchmark problem to be introduced in Section 4). The above system poses the challenge that the nonlinear terms {H + ij , W ± k } couple all of the components of the solution, ũ0 , . . . , ũn . This means that the discretized version of (3.1) with finite differences (FD) will in principle have full bandwidth. Indeed, a well known drawback of PC is that the method may give rise to taxing algebraic equations [START_REF] Xiu | Fast numerical methods for stochastic computations: a review[END_REF], which is only compounded by the nonlinear nature of (3.1).

In order to (partially) circumvent this issue, we put forward an FD semi-implicit time-stepping scheme, whereby the linear terms are evaluated implicitly, and the nonlinear ones, explicitly (i.e. based on the solution on the previous timestep). Formally:

- ν 2 2 ∂ 2 xx ũk-2 m+1 F D -µν ∂ 2 xx ũk-1 m+1 F D - µ 2 + (2k + 1)ν 2 2 ∂ 2 xx ũk m+1 F D -(k + 1)µν ∂ 2 xx ũk+1 m+1 F D - (k + 2)(k + 1)ν 2 2 ∂ 2 xx ũk+2 m+1 F D + αx∂ x ũk m+1 F D + 1 ∆t ũk (t, x, y) m+1 F D - 1 ∆t ũk (t -∆t, x, y + q m ∆t) m+1 F D + 1 k!∆t n j=0 H + jk (t, x, y) m F D × ũj (t -∆t, x, y + q m ∆t) m F D -ũj (t -∆t, x, y + q M ∆t) m F D - q m k! W - k (t, x, y) m F D - q M k! W + k (t, x, y) m F D = B m+1 k . (3.2)
In (3.2), [Lv] m+1 F D and [Lv] m F D are proper FD discretizations of some operator L evaluated at current time t m+1 = (m + 1)∆t and at previous time t m = m∆t, respectively. In this way, the discretized system (3.2) has a pentadiagonal, rather than full, coupling. Let the spatial domain [x m = -x L , x M = x L ] × [0, y M ] be discretized into a grid of (1 + n x )(1 + n y ) nodes (x i , y j ) = (-x L + i∆x, j∆y), where ∆x = 2x L /n x and ∆y = y M /n y ; and let [U k ] m+1 ij be the FD approximation to ũk (t m+1 , x i , y j ). Furthermore, the random dimension is approximated as Ω ≈ [-L w , L w ] and discretized into n w + 1 equispaced nodes. We have employed the following FD approximations:

• central second-order-i.e. O(∆ 2 x)-FDs for the implicit second derivative,

∂ 2 xx ũk (t m+1 , x i , y j ) m+1 F D = [U k ] m+1 i+1,j + [U k ] m+1 i-1,j -2[U k ] m+1 i,j ( 
∆x) 2 ;

• second-order upwind FDs for the implicit first derivative along x, c∂ x ũk (t m+1 , x i , y j )

m+1 F D = max (c, 0) 3[U k ] m+1 ij -4[U k ] m+1 i-1,j + [U k ] m+1 i-2,j 2∆x 13 + min (c, 0) -[U k ] m+1 i+2,j + 4[U k ] m+1 i+1,j -3[U k ] m+1 ij 2∆x ;
• second-order central FDs for the explicit first derivative along y (notice that there is no need for an upwind scheme since it is computed explicitly),

Z(t m , x i , y j , ξ) m F D = n k=0 [U k ] m i,j+1 -[U k ] m i,j-1 φ k (ξ) 2∆y + s(t m , σ(ξ))e x i -K.
The nonlinear terms are approximated by numerical integration. Since they involve the indicator function, straightforward trapezoidal quadrature is preferable to higherorder methods, which are more prone to oscillations when dealing with discontinuous integrands (due to the indicator). For example,

H + sk ((t m+1 , x i , y j )) m F D = L w n w φ s (-w L )φ k (-w L )p(-w L )1 [Z(t m ,x i ,y j ,-w L )] m +φ s (w L )φ k (w L )p(w L )1 [Z(t m ,x i ,y j ,w L )] m + 2 nw r=1 φ s (ξ r )φ k (ξ r )p(ξ r )1 [Z(t m ,x i ,y j ,ξr)] m .
When choosing the timestep, we mind ∆t < q M ∆y-i.e. prevent the interpolation of semilagrangian derivatives from "jumping" over cells. (A CFL upper bound ∆t < 2∆x/|αx L | is not necessary since the derivatives in x are evaluated implicitly.)

The interpolation scheme is a critical aspect of semilagrangian differentiationspecially so if the former is to be monotone, see [START_REF] Warin | Some non monotone schemes for time dependent Hamilton-Jacobi-Bellman equations in stochastic control[END_REF]. In particular, the condition

1 ∆t ũk (t -∆t, x, y + q m ∆t) m+1 F D → 0 as ∆t → 0
must hold for consistency. (In our Matlab implementation, this was achieved with cubic-spline interpolation-but not necessarily so with the other available methods.) The resulting linear system to be solved at each time step has a block pentadiagonal structure (there are linear algebra routines tailored to such systems, see [START_REF] Benkert | An efficient implementation of the Thomas algorithm for block pentadiagonal systems on vector computers[END_REF]).

Hamilton-Jacobi PDEs such as (2.5) are well known to often lack a solution in the classical sense [START_REF] Barles | Convergence of approximation schemes for fully nonlinear second order equations[END_REF]. For that reason, numerical schemes for solving scalar equations such as (2.5) must be designed to pick up the unique, sought-for viscosity solution. With FDs in particular, this is enforced with monotone discrete operators [START_REF] Barles | Convergence of approximation schemes for fully nonlinear second order equations[END_REF][START_REF] Tourin | An introduction to finite difference methods for PDEs in finance[END_REF] In contrast to the scalar case-and to the best of our knowledge-there is not a systematic theory of viscosity solutions for systems of equations such as (3.1) [START_REF] Liu | Viscosity solutions of fully nonlinear parabolic systems[END_REF]. Therefore, we will always assume that either a classical solution does exist, or that our numerical method is able to pick up the viscosity solution, otherwise. With this proviso, we have dropped the requirement of monotonicity of the finite difference operators. For instance, (3.3) and cubic-spline interpolation are not monotone, but they are more accurate than monotone versions, which typically are just O(∆x).

The code has been written in vectorized style in Matlab R2017 and run on a laptop.

Numerical validation

In order to assess empirically the accuracy and stability of the numerical scheme, we consider the PDE in (2.5) with an additional source term B:

∂ t u - σ 2 (ξ) 2 ∂ 2 xx u + αx∂ x u -Z q M 1 Z>0 + q m 1 Z<0 = B(t, x, y, ξ). (4.1)
Analogously to Section 2.2.3, we derive the PC equations for (4.1) up to truncation level n. For convenience, let us rewrite the resulting PC system (k = 0, . . . , n) without the semilagrangian approximation as

∂ t ũk - ν 2 2 ∂ 2 xx ũk-2 -µν∂ 2 xx ũk-1 - µ 2 + (2k + 1)ν 2 2 ∂ 2 xx ũk -(k + 1)µν∂ 2 xx ũk+1 - (k + 2)(k + 1)ν 2 2 ∂ 2 xx ũk+2 + αx∂ x ũk - 1 k! E φ k (ξ)Z t, x, y, u n (ξ) q M 1 Z>0 + q m 1 Z<0 = 1 k! E[φ k (ξ)B(t, x, y, ξ)]. (4.2)
The difference between (4.2) and (2.16) is the presence of the vector of source terms

E[φ k (ξ)B(t, x, y, ξ)]/k! (k = 0, . . . , n).
Let us choose as exact solution of the benchmark problem (or simply, the benchmark)

u ex (t, x, y, ξ) = nex k=0 ṽk (t, x, y)φ k (ξ), (4.3) 
with

ṽk (t, x, y) = 1 + t (k + 1) √ k! sin 2πx 3 sin πy 2 ,
which complies with (2.14). Moreover, we let u ex (t, x, y, ξ) serve as initial condition and Dirichlet BCs for the benchmark problem (4.1). (Note that it can no longer be associated with the fair price of a gas swing option). We highlight from the onset that results turn out to be remarkably insensitive to discretization in the random dimension (provided it is adequate). Therefore, we set L w = 13, n w = 200 in all the ensuing experiments. Regarding the spatial domain, we set x m = -3, x M = 3 y M = 4, and take Dirichlet BCs along {|x| = 3, 0 ≤ y ≤ y M } and {x m ≤ x ≤ x M , y = y M }. The spatial discretization is discussed in terms of either n x and n y , or of ∆x = 6/n x and ∆y = 4/n y , equally. The remaining parameters are: F (0, t) = .15 1 + (sin 2πt)/3 , K = .1, q m = .1, q M = .7, µ = 1, α = .3 and (unless stated otherwise) ν = .3. The variables n and T remain to be set, as well as the value n ex for the u ex in (4.3). Given N ev = 500 fixed, uniformly scattered points across the domain, the error of the PC expansion is characterized by In a first set of experiments, we enforce the truncation error of the PC expansion to be zero by always setting n ex = n, and focus on the discretization error with respect to ∆t, ∆x and ∆y. This is shown both with n = n ex = 0 (left side of Figure 1), and with n = n ex = 16 (right side). A few remarks are in place:

RM S(t) = 1 N ev Nev j=1 n k=0 ṽk (t, x j , y j ) -ũk (t, x j , y j ) 2 .
• Using cubic-spline interpolation, consistency with respect to ∆t is clear (also for smaller values than shown on Figure 1). Furthermore, stability is apparent.

• While the accuracy noticeably improves with decreasing ∆t and ∆x, it is barely sensitive to ∆y.

• The pentadiagonal coupling notwithstanding, accuracy is scarcely affected by the number n + 1 of PC equations in the system. However, when n is very large, the evaluation of high-order Hermite polynomials may overflow (not shown). This is a well known issue which can be ameliorated by ad-hoc procedures, for instance by resorting to the Cauchy-Schwartz bound

|H ± jk (t, x, y)| ≤ E [|φ j (ξ)||φ k (ξ)|] ≤ j! √ k!.
Then, if the numerical evaluation of |H ± jk (t, x, y)| overshoots the above bound, H ± jk (t, x, y) must be replaced by sign H ± jk (t, x, y)

√ j! √ k!.
• With n = 0, the PC system is effectively an HJB equation. While the FD operators being used are not monotone, there is no need for them in the first place, since the benchmark solution is guaranteed to be smooth.

In Figure 1, the RMS error decreases roughly linearly w.r.t. ∆t as n x ∞ and n y ∞. In order to better assess the convergence rate of the numerical scheme, we produce an ensemble of simulations with discretization values randomly picked from uniform distributions in the ranges 0 ≤ n = n ex ≤ 20, 50 ≤ ∆x ≤ 200, 50 ≤ ∆y ≤ 200, and log (10 -3 ) ≤ log (∆t) ≤ log (.025). Then, we fit the resulting RM S(t = 1) errors to the nonlinear model

RM S(t = 1) = 1 + c 4 n c 1 ∆t + c 3 (∆x) c 2 ,
yielding as best-fit constants c 1 ≈ .26, c 2 ≈ 2.26, c 3 ≈ .55 and c 4 ≈ .0025, roughly in agreement with the expected second order convergence rate along x. This fit is plotted in Figure 2, and it turns out to be distinctly the best (in a least-squares sense) over several plausible nonlinear convergence models, including floating powers of ∆t and ∆y (not shown). (The outliers in Figure 2 are simulations with small ∆t and large ∆x.)

In the second part of this numerical study we focus on the effect of the truncation level n. Henceforth, we set n ex = 16 and allow n to differ from it.

In Figure 3, the longer-term behaviour of the RMS error is plotted. Observe that: • Asymptotically, all the instances of the RM S error tend to grow at a constant, sublinear rate (check the dashed lines of slope one on Figure 3). This means that relative errors are actually decreasing with increasing t (recall that the benchmark solution (4.3) grows linearly with t). Moreover, it strongly suggests stability of the numerical PC code for longer terminal times.

0 1 2 3 4 5 6 7 8 9 z = ( 1 + c 4 n )( c 1 t + c 3 x c 2 )
• When the PC solution lives in a smaller random space than the benchmark (i.e. when n < n ex = 16), errors are almost always larger when ν is larger. On the other hand, when n = n ex = 16, the RM S error is virtually insensitive to ν. Moreover, truncating beyond n ex does not improve accuracy (as expected).

A well known issue of PC is that the moments of the PC solution (specially from the variance onwards) tend to deteriorate rather rapidly as t ∞, unless the truncation level is also constantly raised or the random basis adaptively changed [START_REF] Gerristma | Timedependent generalized polynomial chaos[END_REF]. Figure 4 shows the propagation of the error of the mean and that of the variance (with respect to the mean and variance of the benchmark solution) at (x 0 , y 0 ) = ( √ 2, √ 3). The relative error of the variance grows faster than that of the expectation and-unless n is very close to n ex -becomes O(1) by time t 2.

Finally, in Figure 5 we study the dependence of the PC numerical solution on the random variable ξ ∼ N (0, 1). We focus on the interval -3 ≤ ξ ≤ 3 which has an aggregate probability of over 99%. When n n ex = 16, the error (with respect to the benchmark) is small and increases with T and with (∆t, ∆x, ∆y). On the other hand, when n is too low, the truncation error overrides that of discretization and can be unacceptably large (O(1) and bigger). Summing up, the numerical scheme (3.2) has been validated with a smooth solution.

Uncertainty quantification on gas swing option

We consider the gas swing option priced under one-factor dynamics in [START_REF] Bardou | Optimal quantization for the pricing of swing options[END_REF]. The parameters are: T = 1 (in years) , µ = .7, α = 4, F 0t = 20 (a constant), q m = 0, q M = 2190, Q max = 1900, Q min = 1300 and K = {5, 10, 15, 20}. In a slight departure from our own framework, the contract described there does not allow to adjust the gas drawing rate continuously, but only once a day over one year (i.e. it depends on 365 discrete variables rather than on a continuous function y(t)). There are two cases:

• Unconstrained contract: in this scenario, there are no upper or lower limits to the total amount of gas that can be withdrawn over the entire contract period (the swing option contract is in fact equivalent to a string of 365 call options). Therefore, P (x, y) = 0 in (2.5) (so that the initial condition is smooth).

• Constrained contract: this is the most usual contractual scenario, when there are strict limits on the total amount of gas that can be withdrawn, i.e.

Q min ≤ Y T ≤ Q max .
(5.1) Strictly speaking, (5.1) amounts to a penalty function which is zero for Q min ≤ y ≤ Q max and infinity outside that interval. For numerical purposes, it is approximated by the double ramp function where A is a user-defined positive constant. We take A = 10000 as recommended by [START_REF] Bardou | Optimal quantization for the pricing of swing options[END_REF]. Note that A = 0 recovers the unconstrained case.

P (x, y) = A s(0, σ)e x min (0, y -Q min ) -max (0, y -Q max ) , 20 -3 -2 - 
The solution is to be evaluated at y T = 0 (no initial gas) and

x T = µ 2 4α (1 -e -2αT ) + log F 0t (T ) F 0t (0) ≈ .03061.
The initial conditions for the PC equations now read:

ũk (0, x, y) = Ae x k! min (0, y -Q min ) -max (0, y -Q max ) E s σ(ξ), 0 φ k (ξ) , (5.2)
which is again approximated by trapezoidal quadrature for simplicity. Numerical experiments show that taking L w = 10 and n w = 100 is sufficient in all the cases. Due to the nonsmooth initial condition, in this problem linear interpolation performs better than cubic splines, so that we use the former instead. x M 15µ/ √ 2α for the solution to be unaffected by the finite computational domain.

Computational domain and BCs. As discussed in Section 2.1, the computational domain D = [x m , x M ]×[0, y M > q M T ] must be large enough that the numerical solution at point (x T , y T ) at time T is not affected by the BCs enforced up to time T . We set y M = 1.3q M T = 2847, and choose as BCs: u µ+νξ n (t, x, y) = P (x, y), if (x, y) ∈ ∂D and t = 0, 0, if (x, y) ∈ ∂D and 0 < t ≤ T .

In this way, only the effect of the initial condition along ∂D must be reckoned with. Owing to the e x factor in (5.2), u µ+νξ n (T, x T , y T ) is rather insensitive to x m < 0 (we set x m = -1.24), but x M > 0 must be handled with more care. The reason is that the influence of the initial condition on the boundary decays as O(e -x 2 M /(2µ 2 ) ), but the BC itself grows as O(e x M ). The value of x M is estimated as follows: we wish to keep the "boundary pollution" (let us call it b) smaller than of the solution at (T, x T y T ). According to Table 1 

(more on it later), b = 30 > .001 × E[u µ+νξ n (T, x T , y T )] ≥ .001 × |ũ k (T, x T y T )| (0 ≤ k ≤ n) is a conservative bound.
Combining the estimate (2.6) and the BC (at t = 0) given by (5.2) yields x M ≈ 15µ/ √ 2α ≈ 3.72 (i.e. 15 standard deviations of the OU process (2.1)). Figure 6 shows the effect of the "boundary pollution" for several x M . unconstrained (A = 0) constrained (A = 10000) K u µ 0 (T, x T , y Using the PC code in "scalar mode". The PC algorithm can, in principle, also be used for scalar HJB equations such as (2.5)-and hence for pricing swing options without uncertainty, too. This is possible by letting n = 0, ν = 0, and µ = σ in (3.1). In the sequel, u σ 0 (•) is to be understood as the numerical solution of an HJB equation with volatility σ obtained by so using the PC code (in "scalar mode").

Since some of the FD operators in Section 3 are not monotone, u σ 0 (•) is not guaranteed to pick up viscosity solution. (This is particularly relevant in the constrained case, where the initial conditions are non-differentiable.) On the other hand, comparison with the results of a separate viscosity-capturing HJB code (based on Howard's algorithm [START_REF] Tourin | An introduction to finite difference methods for PDEs in finance[END_REF]) shows no difference with u σ 0 (•)-while the latter enjoys a higher convergence rate w.r.t. ∆x. Therefore, we stick to the PC code henceforth.

In order to get a feeling about the several discretization parameters involved, we calculate the swing option prices for K = {5, 10, 15, 20} with no uncertainty (i.e. u σ 0 (T, x T , y T )), and compare it with the values given in [START_REF] Bardou | Optimal quantization for the pricing of swing options[END_REF]. In Table 1, u EX has been calculated with the Black-Scholes formula, and u RQ with a quantization method (see [START_REF] Bardou | Optimal quantization for the pricing of swing options[END_REF] for details). In the remaining of the paper, we will use either the

• "coarser discretization": ∆t = 1/365, n x = 160 (and n y = 200), or the • "finer discretization": ∆t = 1/(2 × 365), n x = 320 (and n y = 200 as well).

Reference solution. In order to assess the quality of the PC solution, we will fix ν first, and then compare u µ+νξ n (T, x T , y T ) inside a given interval of ξ with the HJB solution u σ 0 (T, x T , y T ), where σ = µ + νξ. Specifically, for each K we precompute a set of {u σ i 0 (T, x T , y T )} 90 i=1 HJB solutions with the "finer" discretization at 90 equispaced volatilities σ 1 = 0.1, . . . , σ 90 ≈ 1.75. For a given ν, the comparable interval of ξ is thus (σ 1 -µ)/ν ≤ ξ ≤ (σ 90 -µ)/ν. 2. (ν = .5; "finer" discretization)

We start the numerical study by investigating the interplay between the discretization and the truncation level, n. In order to better highlight the effect of n, we first pick the relatively large value ν = .5. The dashed curves in Figure 7 are based on a subset of 70 of those HJB simulations. They represent u σ 0 (T, x T , y T ) in the interval 0.1 ≤ σ ≤ 1.3 (i.e. centered around µ). It can be seen that the delta of the swing option is nearly constant.

The red curves in Figure 7 are the PC approximation u µ+νξ n (T, x T , y T ) for n = {2, 4, 8}. The fit to the reference HJB curves improves as n grows. In order to systematically check this, we track the RMS error between each pair of curves, defined as (we include a superindex K to specify the pair of curves):

K n = 2 n = 4 n = 8 n =
R K = 1 70 70 i=1 u K,σ i 0 (T, x T , y T ) -u K,σ i n (T, x T , y T ) 2 .
(5.4)

The values of R K for the "finer" and "coarser" discretization are listed on Table 2. As expected, R K usually improves (i.e. diminishes) as the discretization is refined and n grows. The exception are the entries with K = 5, for which neither discretization is fine enough at ν = .50. (Since Hermite polynomials oscillate with ever larger amplitude as |ξ| increases, numerical errors accumulate at the tails of the higher-order components of u µ+νξ n (•)-check also Figure 5.) Figure 8 zooms in on the fit between u µ+νξ n (T, x T , y T ) and HJB reference curve with K = 15, for n = {2, 4, 8, 16} and the "finer" discretization. It is apparent that as n grows, the errors accumulate on the higher end of ξ. Therefore, the truncation level can be increased only so much for a given discretization. For this reason, when computing the cdf of the swing prices under uncertainty, the integration w.r.t. ξ must be cut short above. Furthermore, since σ = µ + νξ must be positive, swing prices for ξ < -µ/ν are meaningless. In sum, we introduce the following truncated cdf:

CDFT[u µ+νξ n , z] := 1 √ 2π ξ M max (ξm,-µ/ν) e -ξ 2 /2 1 u µ+νξ n (T,x T ,y T )≤z dξ,
where ξ m and ξ M are respectively negative and positive enough that the distribution is well represented. (Note that this may not be possible if the cut-off |µ/ν| is too small). By differentiating CDFT[u µ+νξ n

, z] with respect to z, one obtains the approximate pdf of the Swing option price under uncertainty. The error tends to accumulate at the tails, thus having a larger adverse effect on the higher moments of the distribution. This is illustrated in Figure 9, where the more realistic uncertainty ν = .1 has been In Figure 9, and in all the remaining simulations in the paper, the following values have been used: K = 15, ξ m = -3.5, ξ M = 3.5. (We point out that no smoothing has been applied either to the truncated cdfs or to the pdfs.)

Uncertainty Value Adjustment

Consider now the following practical situation. The swing option is sold at the price v σ (0) corresponding to a medium estimation of the volatility: this may be an equilibrium price in the market. However, the seller of the contract wants to assess the risk for volatility misspecification: he could consider a worst-case analysis by computing sup σ v σ (σ) but this may be too conservative. More reasonably, he incorporates the distribution on σ (coming from his calibration/estimation procedure) and aims at computing E [(v σ (σ) -z) + ] with z ≥ v σ (0). The above quantity can be seen as an Uncertainty Value Adjustment (UVA), whose purpose is to give a financial evaluation of the possibility of misspecification of σ in the swing problem, beyond a risk threshold z. In finance (like for CVaR), z is a given by a quantile at 95% or 99%.

We proceed to explore this idea using the gas swing option in the previous Section. Let us consider three quantiles q = {99%, 95%, 90%}. For each of them, and given a PC expansion u µ+νξ n (T, x T , y T ), the risk threshold z q is defined by CDFT[u µ+νξ n , z q ] = q/100.

After solving for z q with Newton's method, the UVA is calculated as

UVA[u µ+νξ n , q] = 1 √ 2π ξ M
max (ξm,-µ/ν) min 0, u µ+νξ n -z q e -ξ/2 dξ. , q]/E[u µ+νξ n (T, x T , y T )] %. For the Monte Carlo (MC) references, the entries are 100×UVA[u σ 0 , q]/E[u σ 0 (T, x T , y T )] %.

swing option. They are compared with the "Monte Carlo" reference based on stochastic collocation of the HJB equation. A relatively coarse discretization and low n are enough to get adequate acccuracy. With µ = .7 and ν = .25 the cut-off value |µ/ν| = 2.8 is already small (less than 3 standard deviations of the distribution of ξ). In order to investigate UVA at larger uncertainties than 10%, we set µ = 1.3 (and keep K = 15, ξ m = -3.5, ξ M = 3.5, and the other parameters as before). See Table 4 for the UVA percentages in that case. ν q = 99% q = 95% q = 90% 10% . 0062 Table 4: UVA (in terms of a percentage over the expected price of swing option) for µ = 1.3, K = 15, and the other parameters as in Section 5. (The "coarse" discretization was employed.)

We conclude that settling for n = 2 and the "coarser" discretization is adequate for an accurate estimation of UVA. On a laptop and in Matlab, it takes about 3-4 minutes to calculate u µ+νξ
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 1 Figure 1: Convergence of RM S(t = 1) w.r.t. ∆t, ∆x and ∆y (separately), with n = n ex .

Figure 2 :

 2 Figure 2: Best fit of RM S(t = 1) error to a nonlinear convergence rate model. Colours: n = 0 (white), 1 ≤ n ≤ 6 (green), 7 ≤ n ≤ 13 (blue), 14 ≤ n ≤ 20 (red); and n ex = n.

Figure 3 :

 3 Figure 3: Propagation of the RM S error. Auxiliary dashed lines have slope 1.

Figure 4 :

 4 Figure 4: Error of the expectation (left) and variance (right) of the PC expansion for various truncation levels (∆t = .005, n x = 200, n y = 100). Dashed lines have slope 1.

Figure 5 :

 5 Figure 5: Relative error in the random dimension with respect to the benchmark (n ex = 16) at (x 0 , y 0 ) = ( √ 2, √ 3) and: t = 1 (left), t = 5 (middle) , and t = 10 (right). Dashed curves represent a rougher discretization (∆t = .02, n x = 90, n y = 60). Solid curves are a finer discretization (∆t = .005, n x = 150, n y = 100). For n = 4, both sets are nearly indistinguishable to the naked eye.

Figure 6 :

 6 Figure 6: Illustration of the "boundary pollution" effect with K = 5 and n = 8:x M 15µ/ √ 2α for the solution to be unaffected by the finite computational domain.

Figure 7 :

 7 Figure7: Comparison between the PC expansion with increasing n, and the HJB reference curves, at (T, x T , y T ). With n > 4, the improvement becomes harder to tell with the naked eye; use the zoom and/or check Table2. (ν = .5; "finer" discretization)

Figure 8 :

 8 Figure 8: Comparison of the PC expansions ("finer" discretization) with increasing n to the reference HJB curve for K = 15 and ν = .5. For the sake of clarity, only a few individual values of the PC curves are displayed instead of the continuous curves.

Figure 9 :

 9 Figure 9: Pdf of the swing option price (with K = 15) under 10% uncertainty on the volatility. The error of discretization overrides that of truncation. The black curve is the reference "Monte Carlo" pdf, based on stochastic collocation of the HJB equation.

Table 1 :

 1 Using the PC algorithm (3.2) with n = 0 and ν = 0 as an HJB solver for pricing gas swing options without uncertainty. (∆t = 1/365, n x = 320, n y = 200, x M = 3.72). References u EX and u RQ are the solution of the slightly different problem in[START_REF] Bardou | Optimal quantization for the pricing of swing options[END_REF].

		T ) u EX	u µ 0 (T, x T , y T ) u RQ
	5 33274	32760	29361	29342
	10 22298	21844	19987	19866
	15 11760	11381	10867	10698
	20 4181	3966	2580	2680

Table 2 :

 2 Improvement of the PC solution as n grows and the discretization is refined, as measured by R K (5.4). For K = 5 and n = 16, both discretizations are inadequate.

	16

Table 3 :

 3 Table 3 compiles UVA approximations for K = 15 and ν = 10% using several PC expansions. The entries are the percentage of UVA relative to the mean price of the ν = .10 and K = 15 q MC n = 2 n = 4 n = 8 n = 16 99% .0067 .0072 .0070 .0071 .0069 .0071 .0069 .0071 .0069 95% .0453 .0476 .0463 .0470 .0457 .0470 .0457 .0470 .0457 90% .1031 .1075 .1045 .1065 .1036 .1066 .1035 .1066 .1036 disc. coarser finer coarser finer coarser finer coarser finer Relative (percentual) UVA: 100×UVA[u µ+νξ n

  .0062 .0424 .0424 .0973 .0974 20% .0126 .0128 .0857 .0858 .1964 .1960 30% .0197 .0204 .1322 .1323 .3014 .2990 40% .0267 .0276 .1832 .1797 .4156 .4042

	n	2	4	2	4	2	4

(•) and the UVA. While the risk premium against misspecification of the volatility is quite small when the calibration is precise, it grows roughly linearly as the calibration uncertainty increases.

* This research is part of the Chair Financial Risks of the Risk Foundation, the Finance for Energy Market Research Centre (FiME) and the ANR project CAESARS (ANR-15-CE05-0024).