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Abstract 

The energy spectrum of common two-dimensional electron gases consists of a harmonic, i.e. 

equidistant ladder of Landau levels, thus preventing the possibility to optically address 

individual transitions. In graphene, however, due to its non-harmonic spectrum, individual 

levels can be addressed selectively. We report here the first time-resolved experiment directly 

pumping discrete Landau levels in graphene. Energetically degenerate Landau-level 

transitions from n = -1 to n = 0 and from n = 0 to n = 1 are distinguished by applying 

circularly polarized THz light. In agreement with our experimental results, an analysis based 

on microscopic theory shows that the zeroth Landau level is actually depleted by strong 

Auger scattering, even though it is optically pumped at the same time. Such a phenomenon 

has never been observed before in any system to our knowledge. The surprisingly strong 

electron-electron interaction responsible for this effect is directly evidenced through a sign 

reversal of the pump-probe signal.  
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Transport experiments on graphene in magnetic fields have revealed a number of fascinating 

phenomena such as quantum ratchet effects
1
, the Hofstadter butterfly

2-4
 and the fractional 

quantum Hall effect
5,6

. The anomalous quantum Hall effect, which is a consequence of a 

Landau level at zero energy in graphene (cf. Fig. 1a), is considered a hallmark of the Dirac-

fermion nature of charge carriers in graphene
7 ,8

. The non-equidistant Landau-level (LL) 

structure has been observed in various continuous-wave (cw) magneto-spectroscopy 

experiments
9 - 12

, which provided evidence for the Dirac-cone band structure at various 

energies
10,11

. Furthermore this technique allowed one to determine the Fermi velocity
9
 and to 

identify graphene of extremely high quality
12

. The observation of a giant Faraday rotation of 

light passing through graphene in magnetic fields as well as the demonstration of tunable THz 

detectors highlight the application potential of graphene in magneto-optic devices
13,14

. For 

more sophisticated applications such as light emitters, however, a detailed knowledge of the 

carrier dynamics is required.  

 

While the relaxation dynamics in graphene at zero magnetic field has been studied 

intensively
15-20

 there is so far only one time-resolved spectroscopy study in the presence of a 

magnetic field
21

. Plochocka and co-workers performed a pump-probe study at high energies 

corresponding to the excitation of a quasi-continuum of LLs characterized by a LL separation 

smaller than the LL broadening. The observed increase in relaxation time at enhanced 

magnetic fields was attributed to a suppression of Auger processes
21

. The role of Auger 

scattering bridging the valence and conduction bands and changing the number of charge 

carriers has been controversially discussed for graphene in the absence of magnetic 

fields
19,22,23

. Charge carriers fulfill energy and momentum conservation for Auger processes 

only along a straight line on the Dirac cone. It has been argued that the contribution of 

processes restricted to lines in k-space vanishes in the two-dimensional phase space. However, 

full quantum-mechanical treatments of the ultrafast carrier dynamics indicate that Auger 
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processes, i.e. Auger recombination and impact ionization, are very efficient in graphene
19,24-

26
. Impact ionization can result in carrier multiplication in graphene on sub-ps timescales, 

which has recently been verified experimentally
19,20,27

. Due to their specific energy structure, 

the energetically lowest Landau levels, which can be selectively excited in the experiment, 

open a unique route to investigate the importance of Auger scattering in graphene.
 

 

In this Article, we present a joint experiment-theory study investigating the carrier dynamics 

in Landau-quantized graphene by selectively pumping and probing transitions between low-

energy Landau levels. Hence, for the first time, the discrete graphene LL system is 

investigated in a time-resolved study. We apply radiation with a photon energy of 75 meV 

(wavelength: 16.5 µm) and magnetic fields of up to 7 T to address the possible relaxation 

channels of excited electrons in the presence of a magnetic field. Thorough understanding of 

the dynamics in this unique discrete-level system is obtained by performing pump-probe 

experiments with circularly polarized radiation, which allows one to selectively address the 

degenerate LL-1  LL0 and LL0  LL1 transitions (cf. Fig. 1a). Our main observation is that 

for one of the four possible combinations of pumping and probing with left and right-

circularly polarized radiation, the differential transmission signal (DTS) shows the opposite 

sign with respect to the signal expected from the usually applied single particle absorption 

bleaching scheme. This observation reveals a highly efficient elastic relaxation channel that 

we can unambiguously identify by performing microscopic time-resolved calculations of the 

carrier dynamics. The experiments and calculations show that Auger scattering is the 

predominant relaxation process giving rise to a redistribution of carriers in Landau-quantized 

graphene on a ps timescale.  The obtained fundamental insights into the nature of carrier-

carrier scattering in graphene in the presence of a magnetic field are relevant for novel 

applications, such as graphene-based Landau lasers.  

 



4 

 

The time-resolved experiments were performed on multilayer (~40 layers) epitaxial graphene 

(MEG) grown by thermal decomposition on the C-terminated face of SiC
28

. The decoupled 

nature of the layers of the sample was evidenced by Raman spectroscopy
29

 and cw magneto-

spectroscopy
9
. The majority of graphene layers is quasi-intrinsic

11,18
, while the layers close to 

the interface of SiC exhibit a pronounced n-type doping
16,30,31

. The free-electron laser FELBE 

delivered radiation pulses with a duration of 2.7 ps (full width at half maximum, FWHM) and 

a photon energy of 75 meV. Various pump-probe experiments were performed involving 

linear polarization as well as left and right-circularly polarized radiation for pumping and 

probing. A simplified sketch of the experiment with linearly polarized radiation is shown in 

the inset of Fig. 1b. Details on the experimental configuration can be found in the methods 

section. In all experiments, the sample temperature was kept at 10 K in a cryostat that allows 

for applying magnetic fields up to 7 T. 

 

In the following, induced transmission transients (Fig. 1b) are analyzed. The features of the 

induced transmission amplitudes (Fig. 1d) and the initial relaxation time (Fig. 1e) are 

identified by comparing their B-field dependence to the dynamic conductivity of a graphene 

layer (Fig. 1c). The dynamic conductivity that is proportional to the absorption is calculated 

using the Kubo formalism
9
, considering the dipole radiation selection rule │ n│= 1. A width 

of 7 meV is chosen in accord with cw magneto-spectroscopy data
11

. The calculation allows us 

to attribute peaks in the induced transmission to the interband transitions LL-1(0)  LL0(1), LL-

2(-1)  LL1(2), and LL-3(-2)  LL2(3) in quasi-intrinsic graphene layers (cf. Fig. 1c and 1d). 

Upon resonance with these transitions the induced transmission is enhanced.  The strongest 

resonant enhancement (factor of 2.5 relative to the signal at B = 0) is observed for the 

energetically lowest transition that exhibits the largest oscillator strength (cf. Fig. 1d). Note 

that due to the vanishing density of states between LLs (e.g. for 1 T < B < 3 T), the pump-
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probe signal is expected to vanish in this region. The observed non-zero signals in the 

experiment most likely stem from intraband LL transitions in the highly doped graphene 

layers close to the interface to the SiC substrate. In cw magneto-spectroscopy experiments, 

broad absorption features from doped layers have already been observed
32,33 

supporting this 

interpretation.  

 

For B = 0, the carrier relaxation dynamics is characterized by a single exponential decay with 

a time constant of  = 18±3 ps (cf. Figs. 1b and 1e). In a previous study, this time constant 

was attributed to scattering via optical phonons
18

. For finite magnetic fields, a double-

exponential behavior is found (cf. Fig. 1b). The observed initial decay time  slightly 

increases with the magnetic field up to 22±3 ps for B = 3 T (cf. Fig. 1e). For B = 4.2 T, the 

excitation energy is in resonance with the energetically lowest LL-1(0)  LL0(1) transition. 

Here, we observe a pronounced reduction of the decay time to  = 3±1 ps, i.e., the dynamics 

becomes almost by one order of magnitude faster than in the case of B = 0. This very fast 

decay of the pump-probe signal is surprising, since the Landau level spacing does not match 

the energy of optical phonons and thus the carrier-phonon scattering is expected to be strongly 

quenched
34,35

.  

 

To shed light on the nature of the observed fast population change responsible for the 

acceleration of the carrier dynamics, we employ circularly polarized radiation (
+
 and 

-
-

radiation). We record DTS successively for all four combinations of pumping and probing 

with 
+
 and 

-
-radiation, cf.  Fig. 2a. According to the optical selection rules, 

+
-radiation 

pumps the LL-1  LL0 and 
-
-radiation the LL0  LL1 transition

36
, cf. Fig. 2b. It is 

instructive to visualize the expected DTS sign in the absence of scattering for intrinsic 

graphene, i.e. for initial occupations 0 = 0.5, -1 = 1, and 1 = 0. In this fully symmetric 
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system assuming that the dynamics is only determined by Pauli-blocking, one expects positive 

DTS (increased transmission) for pumping and probing with the same polarization state and 

negative pump-probe signals (increased absorption) for pumping and probing with the 

opposite polarization state, cf. Fig. 2b. The signals within one pair of similar and opposite 

polarization feature similar amplitudes. For doped graphene the symmetry of the system is 

broken and hence, the absolute values of the induced transmission differ for the four different 

polarization combinations. Nevertheless, this does not change the expected DTS sign 

discussed above. Also energy relaxation via phonons as well as defect-mediated phonon 

scattering has no influence, as these processes relax the carrier distribution back into the 

equilibrium state.  

 

The experiments show the following behavior: The  DTS for pumping with 
-
-radiation (Fig. 

2c and 2e) exhibit a fast initial decay of the order of the pulse duration and a slower relaxation 

component. The sign of the DTS is in accord with the expectation considering the pump 

scheme depicted in Fig. 2b. In particular, negative DTS is observed for pumping with 
-
-

radiation and probing with 
+
-radiation (Fig. 2e). For pumping with 

+
-radiation and probing 

with 
-
-radiation (Fig. 2g), however, an unexpected positive signal is observed indicating that 

a strong redistribution of carriers must take place, beyond the effect induced by the photon 

field. A possible explanation is efficient Auger scattering, which can lead to a fast 

redistribution of carriers giving rise to a different sign of the DTS. One can distinguish two 

counteracting Auger scattering processes inducing LL0  LL-1, LL0  LL1 and LL-1  LL0, 

LL1  LL0 transitions, respectively, as indicated in the sketches left of the panels containing 

the experimental data (cf. Fig. 2). Generally, they are referred to as Auger recombination and 

impact ionization, respectively. In graphene, the terminology is not straightforward, since LL0 

is shared by the valence and the conduction band. Therefore, in the following, we will refer to 
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LL0  LL-1 and LL0  LL1 (LL-1  LL0 and LL1  LL0) as outward (inward) Auger 

scattering with respect to the zeroth Landau level. Finally, the DTS for pumping with 
+
-

radiation and probing with 
+
-radiation contains a negative tail after an initially positive peak, 

cf.  Fig. 2i. Such a behavior cannot be understood by just considering optical pumping and 

energy relaxation suggesting again a crucial contribution from Auger scattering. 

 

To obtain a thorough understanding of the underlying elementary scattering processes 

microscopic calculations were performed. In this section, the foundation of the model is 

described,  then, we compare experimental and calculated DTS results, and finally, we discuss 

the  microscopic mechanism behind the experimentally observed and theoretically confirmed 

unexpected DTS behavior. Our model is based on the density matrix formalism
37,38

. Similar to 

previous modeling in the absence of the magnetic field
39,18

, we derive a set of equations 

describing time-resolved microscopic polarizations pnn’(t) and population probabilities ρn(t) 

  

Here, the magnetic field was introduced in the Dirac equation via the Peierls substitution
36

. 

The equations include the optical excitation as well as Coulomb- and phonon-induced many-

particle scattering processes. The strength of the carrier-light interaction is given by the 

optical matrix element and depends on the excitation field, both being incorporated into the 

Rabi frequency Ωnn’(t). The time- and LL-dependent in- and out-scattering rates Sn
in/out

(t)= 

Sn
in/out

|Coulomb(t)+ Sn
in/out

|phonon(t) describe energy-conserving many-particle Coulomb processes 

and inelastic scattering with phonons. The efficiency of the former is determined by the 

Coulomb matrix elements that are obtained using tight-binding wave functions. The 

microscopic treatment of the Coulomb interaction is crucial for understanding the 

experimentally observed fast carrier dynamics. In contrast, the carrier-phonon scattering is 
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negligibly small at the beginning due to the mismatch of the optical phonon energy and the 

investigated inter-Landau-level transitions. Scattering with acoustic phonons assisted by 

impurities is expected to contribute to the experimentally observed slower component in the 

differential transmission spectra (for details refer to methods section on the modelling). The 

modeling was performed for low n-type graphene with a carrier concentration of 6 × 10
10

 cm
-2

 

that corresponds a filling of LL0 of 64 % (At B=0 this would correspond to a Fermi energy of 

28 meV, see also methods section on sample doping). First, we optically generate a non-

equilibrium distribution by applying a circularly polarized pulse with a width of 2.7 ps, a 

pump fluence of 0.1 μJ/cm
2
, and an excitation energy 75 meV corresponding to the 

experimental realization. Then, we investigate the temporal evolution of the microscopic 

polarization pnn’ and the carrier occupations ρn(t) in the involved Landau levels. We focus on 

the carrier dynamics within the energetically lowest Landau levels.  

 

The calculated differential transmission reproduces well all qualitative features of the 

measured DTS, cf. Fig. 2, right column. For pumping with 
+
-radiation, the theoretical curves 

show the same surprising result as observed in the experiment, namely the unexpected 

positive signal for probing with 
-
-radiation and the initially positive and subsequently 

negative signal for probing with 
+
-radiation (cf. Fig. 2h and 2j). We note that by artificially 

weakening the electron-electron coupling  the expected negative DTS is obtained for pumping 

and probing with opposite polarization (not shown), confirming that Auger processes are 

indeed the reason for the surprising positive DTS observed in the experiment, as further 

discussed below. Note that for pumping with 
-
-radiation, the signals are in accord with the 

expectations considering the optical selection rules, however, when probing with 
+
-radiation 

a plateau after the initial peak is observed in the DTS (cf. Figs. 2f). This is an indication that 

also in this configuration the underlying dynamics is more complex than a simple relaxation 
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to the equilibrium. The processes leading to the plateau are further discussed in the 

supplementary information. 

 

Since our calculations give microscopic access to the time-resolved populations of the Landau 

levels, we can reveal the underlying elementary scattering processes responsible for the 

observed and theoretically predicted surprising features in the differential transmission spectra. 

Our calculations clearly reveal that Auger processes play the crucial role. They give rise to an 

efficient redistribution of carriers in the energetically equidistant LL0, LL1, and LL-1. The 

time-resolved occupations of the energetically lowest Landau levels are shown in Fig. 3: For 

pumping with 
-
-radiation, optical excitation depopulates LL0 leading to a decrease of 0(t) 

(cf. Fig. 3b). At the same time, LL1 becomes populated resulting in an increase of 1(t). In the 

case of pumping with 
-
-radiation, inward Auger scattering dominates, since it counteracts the 

optical pumping (cf. Fig. 3a). This effect causes the decreased occupation of LL-1, which is 

not affected by the optical pumping (cf. Fig. 3b). In contrast, for pumping with 
+
-radiation, 

outward Auger scattering dominates over inward processes (cf. Fig. 3c). In n-type graphene, 

the Auger scattering is so efficient, that after an initial increase of 0(t) due to the optical 

pumping an Auger-induced decrease is found cf. Fig. 3d. As a result, we do not observe 

enhanced absorption and negative DTS as expected for pumping with 
+ 

and probing with 
-
-

radiation (cf. Fig. 2b), but rather a positive pump-probe signal, cf. Figs. 2g and 2h. The Auger 

scattering efficiently populates LL1 giving rise to absorption bleaching of the 
-
-probe pulse 

resulting in positive differential transmission. The calculations reveal that -1(t) quickly 

recovers, while the depopulated LL0 relaxes back much more slowly to its equilibrium 

occupation. This difference in the carrier dynamics causes the sign change of the DTS 

observed for pumping and probing with 
+
-radiation, cf. Figs. 2i and 2j.  
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Note that for intrinsic graphene the effect of the Auger processes on the carrier distribution is 

not strong enough to change the sign of the DTS. Already small doping breaks this symmetry 

and results in the observed surprising effects. The same effects observed for n-doped 

graphene under pumping with 
+
-radiation occur for p-doped graphene under pumping with 

-
-radiation. A discussion how this is related to basic thermodynamic principles is provided in 

the supplementary material. 

 

Our study conclusively shows that carrier-carrier scattering is the predominant mechanism for 

carrier redistribution in Landau-quantized graphene. Scattering with optical phonons, on the 

other hand, is expected to be strongly suppressed unless the LLs are resonant with the optical 

phonon energy
34,35

. In the performed experiments, we find only a moderate increase of the 

decay time with the increasing magnetic field from 18±3 ps at 0 T to 22±3 ps at 3 T (cf. Fig. 

1b and 1e). A possible explanation for this decay component could be defect-assisted 

scattering with acoustic phonons, which has been identified as an important scattering 

mechanism in the absence of magnetic fields
40,41

. The role of these relaxation channels for 

Landau-quantized graphene still needs to be thoroughly investigated in future studies. 

 

In conclusion, our results show that Landau quantized graphene is ideal to investigate strong 

carrier-carrier scattering processes. The levels LL-1, LL0 and LL1 are decoupled from the 

remaining spectrum both with respect to optical excitation and scattering. The equidistant but 

optically selectively addressable three-levels are an ideal system to study energy-conserving 

carrier-carrier scattering processes. The possibility of polarization sensitive induced 

absorption and induced transmission can be applied for concepts of optical switching with 

high functionality. In quantum information processing, circularly polarized radiation is often 

used to address quantum bits. The switching in Landau quantized graphene can be controlled 

all-optically by the polarization state of the radiation. Electric gating allowing one to switch 



11 

 

from n-type to p-type graphene would add even more functionality. Furthermore the non-

equidistant Landau spectrum of graphene offers the possibility to develop a tunable laser. For 

example, pumping the LL-2  LL1 transition should result in population inversion between 

LL1 and LL0 for samples with a low initial population of LL0 (p-type graphene). For realizing 

this scheme, detailed knowledge of Auger processes is essential, as they non-radiatively 

depopulate LL1 and thereby limit the performance of such a laser. On the other hand, Auger 

scattering may be directly exploited to realize carrier multiplication in Landau quantized 

graphene. To this end, pumping the LL-3  LL4 transition Auger-scattering between the 

equidistant LL4, LL1 and LL0 can facilitate carrier multiplication.  

 

Methods 

Pump-probe spectroscopy 

The free-electron laser FELBE provided frequency tunable Fourier-limited radiation pulses. 

In the experiments described in the paper a photon energy of 75 meV was chosen. The pulse 

duration of the 75-meV pulses was 2.7 ps (repetition rate 13 MHz). The pulses were split into 

pump and probe pulses by a pellicle beam splitter. The polarization of pump and probe beam 

were controlled independently. Frequency-tunable quarter-wave plates (from Alphalas 

GmbH) were used for generating circularly polarized radiation. Both the pump and probe 

beam were focused on the sample in the magnet cryostat by an off-axis parabolic mirror 

(effective focal length: 178 mm). The spot size on the sample was ~0.5 mm (full width at half 

maximum). The pump fluence was ~0.1 µJ/cm
2
, in this range the DTS increased linearly with 

pump fluence. The fluence of the probe beam was about 10 % of the pump fluence. The time 

delay between pump and probe pulses was varied by a mechanical delay stage. 
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Microscopic modelling 

In this study, we focus on the impact of Coulomb interaction and include carrier-phonon 

scattering on a phenomenological level. To this end, the full scattering rate Sn
in/out

|phonon 

including Pauli-blocking terms and phonon occupations is considered, while the 

corresponding electron-phonon matrix elements are adjusted to the experimentally observed 

decay. The phonons are assumed to be in equilibrium with a phonon bath and their 

occupations are described by the Bose-Einstein distribution. In contrast, the Coulomb 

interaction is entirely considered on a microscopic footing. We also take dynamical screening 

of the Coulomb potential into account by evaluating  the dielectric function ε(q,ω) in the 

random phase approximation following the approach of Ref. 36, 42 . The Landau level 

broadening is calculated self-consistently taking into account scattering of electrons on an 

impurity potential with a Gaussian white noise distribution
43

 . This electron-impurity 

scattering yields the dominant contribution to the dephasing Γ(t) of the microscopic 

polarization, which also comprises contributions of Coulomb- and phonon-induced many-

particle scattering.  

 

Sample doping 

MEG samples grown on the C-terminated face of SiC consist of a number of layers that are 

rotated against each other. Charge transfer from the SiC substrate results in high doping of the 

first layer at the interface with carrier concentration of 10
13

 cm
-2

. Successive layers exhibit a 

doping of ~30 % of the previous layer, hence after five layers low carrier concentrations in the 

range of 10
10

 cm
-2

 - 10
11

 cm
-2

 are reached
16,30

. Pump-probe experiments, cw magneto-

spectroscopy and angle-resolved photoemission spectroscopy indicate that a substantial 

number of layers exhibits doping in the range of 10
10

 cm
-2

 
9,18,44

. For the sample used in our 

experiment layers with carrier concentrations of ~10
10

 cm
-2

 were evidenced by magneto-

spectroscopy and pump-probe experiments. The experiments in all four combinations of 
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pumping and probing with 
+
 and 

-
-radiation in magnetic fields directly indicate that LL0 

can neither be completely filled nor completely empty. The completely filled zeroth LL is 

populated with of 2 × 10
11

 cm
-2

 electrons. For B = 0 this corresponds to a Fermi energy of 

53 meV. Note that intrinsic graphene is characterized by 50 % filling of LL0. For the 

microscopic modelling a value of 6 × 10
10

 cm
-2

 was used. This value, being in between the 

experimentally determined borders, provides an overall good agreement between 

experimental and calculated DTS. By varying the carrier concentration in the calculation, 

individual features of the DTS change slightly, however, the surprising DTS sign change 

remains. The experimental signals contain contributions from graphene of different doping 

due to the gradient in doping towards the substrate. Furthermore, there are slight lateral 

inhomogeneities that are averaged by the applied infrared beams with a diameter of ~0.5 mm.   
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Figure 1: Pump-probe spectroscopy on graphene with linearly polarized radiation. a, 

Landau level spectrum of graphene with allowed dipole transitions for 
- 
and 

+
-radiation. b, 

Pump-probe signals for different magnetic fields. In the inset the pump-probe experiment 

involving linearly polarized beams is depicted. In this case, transitions allowed for 
-
-

radiation as well as 
+
-radiation are excited and probed. c, The dynamic conductivity, which 

is proportional to the absorption, of one graphene layer. The calculation, as well as all 

experimental data in the other panels, corresponds to a photon energy of 75 meV. d, B-

dependent pump-induced maximum transmission change normalized to the case at zero 

magnetic field. e, Initial decay time of the pump-probe signal for varied magnetic fields.  
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Figure 2: Pump-probe spectroscopy on graphene with circularly polarized radiation. a, 

Configuration of the experiments for pumping and probing with 
-
 and 

+
-radiation. b, 

Pumping and probing with same polarization results in induced transmission, while applying 

opposite polarization results in induced absorption. c, e, g, i, Experimental pump-probe 

signals for all four combinations of pumping and probing with 
- 
and 

+
-radiation. Blue and 

red shaded regions highlight positive and negative DTS, respectively. d, f, h, j, Differential 

transmission calculated by microscopic theory for all four combinations of pumping and 

probing with 
- 
and 

+
-radiation. The diagrams left of the panels indicate the polarization of 

pump and probe beam as well as the dominating Auger scattering process, i.e. either inward 

or outward Auger scattering. 
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Figure 3: Level occupation for pumping with circularly polarized radiation. a, c, 

Illustration of the transitions between LL-1, LL0 and LL1 induced by optical pumping and the 

net Auger scattering. The green arrows symbolize the predominant contribution of inward (a) 

or outward (c) Auger scattering. b, d, Occupations of the Landau levels calculated by 

microscopic modeling taking into account the optical excitation, carrier-carrier, and carrier-

phonon scattering. The orange shaded area indicates the duration of the pump pulse. 
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