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ABSTRACT

Geogenic lead (Pb) is considered to be less bioavailable than anthropogenic Pb and exerts less effect on the soil fauna. However,

Pb contamination in vegetables has been reported in the case of geogenic anomalies, even at moderate concentrations (around 170 mg

kg−1). In this study, we investigated collembolan communities using both taxonomic- and trait-based approaches and observed fungal

communities to assess the effects of a moderate geogenic Pb anomaly on collembolans and fungi in an urban vegetable garden soil.

Results indicated that geogenic Pb indeed modified fungi communities and altered the functional structure of collembolan communities

in garden soils. Although geogenic Pb presented low bioavailability, it affected soil fauna and vegetables similar to anthropogenic Pb.
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INTRODUCTION

Urban allotment gardening is currently a growing

worldwide phenomenon, especially in industrialized

countries (Guitart et al., 2012). The chemical study

of topsoil quality along an anthropization gradient has

shown that these garden soils may contain metals, es-

pecially lead (Pb) (Joimel et al., 2016). Lead is consi-

dered to be neurotoxic, even at low concentrations, be-

ginning at 12 µg L−1 in the blood (European food safe-

ty norm). Thus, high Pb concentrations could induce

health risks through the consumption of contaminated

vegetables from allotment gardens. Lead contamina-

tion results not only from human activities such as

industry, car traffic, and refuse (El Khalil et al., 2013;

Huot et al., 2013) but also from intensive gardening

practices, such as the use of pesticides containing Pb

(Belon et al., 2012). The presence of metals, such as

Pb, may also be of geogenic origin, resulting from me-

talliferous mineralization, inducing local naturally high

concentrations in soils (Bourennane et al., 2010; An-

der et al., 2013). However, urban vegetable garden soils

usually also have a basic pH and a high rate of organic

matter (Joimel et al., 2016), contributing to reduced

Pb mobility. This assumption is especially true for ge-

ogenic Pb, which is often considered to present lower
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bioavailability than anthropogenic Pb.

Recent soil analyses, performed in 2011 and 2012

on allotment gardens in Nantes (France) (Bouquet et

al., 2017), found elevated Pb concentrations avera-

ging 170 mg kg−1, mainly of geogenic origin due to

the alteration of a particular parent rock, rich in Pb-

bearing minerals (Jean-Soro et al., 2015). Despite Pb

being primarily of geogenic origin and presenting mo-

derate anomaly (2.5-times higher than background le-

vels) (Bouquet et al., 2017), health risks have been

demonstrated due to the consumption of contamina-

ted vegetables from these allotment gardens, with the

Pb concentrations in leeks, cabbage, and carrots ex-

ceeding the European regulatory standards by up to

25 times (Jean-Soro et al., 2015).

These results raise questions as to the effects of

moderate anomalies in geogenic Pb on the soil bio-

ta. In fact, metals, such as Pb, could also affect soil

organisms, thereby inducing a decrease both in bio-

diversity and in soil biological activity (Giller et al.,

1998), which are important factors in the provision of

ecosystem services, such as food production (Scheu,

2003). Anthropogenic Pb contamination is often ac-

cused of impacting the soil fauna by inducing a de-

crease either in biodiversity or in the biological activity

of some soil fauna groups, such as macrofauna (Nah-

mani et al., 2003), collembolans (Fountain and Hopkin,

2004a), and nematodes (Campos-Herrera et al., 2016;

Gutiérrez et al., 2016).

However, to date, numerous studies have only con-

cerned the effects of anthropogenic Pb contamination

and/or elevated geogenic Pb concentrations (higher

than 1 000 mg kg−1 soil) (Russell and Alberti, 1998). In

contrast, the effects of moderate geogenic Pb anoma-

lies on soil fauna have as yet been scarcely studied.

The relationships between metal in the soil and

fungi communities have been widely explored, but re-

sults of the studies trying to establish the effect of me-

tal toxicity to soil microorganisms vary greatly (Giller

et al., 1998). The increase in studies of the effects of

metals on soil microorganisms is related to an increas-

ing awareness of pollution issues (B̊åath, 1989). A shift

in a fungi species’ composition induced by Pb contami-

nation was found when Pb was present with Cd, Cu,

and Zn as well as for Zn and Cd alone (B̊åath, 1989). A-

gain, major gaps in knowledge and theory exist as to

how the microorganisms are exposed and respond to

the metals in soils (Giller et al., 2009).

Among the soil fauna, collembolans are a key com-

ponent of the food web and play a key role both in

litter decomposition (Cortet et al., 2003) and nitrogen

and carbon cycling (Filser, 2002) as well as in soil mi-

croaggregation, and, therefore, in soil productivity as

a whole. The primary role of collembolan is decompo-

sition and the way the soil functions because they feed

on detritus and/or fungi (O’Brien et al., 2005). In ad-

dition, soil fungi are partly influenced by collembolan

grazing activity.

Relationships between metal in the soil and collem-

bolan communities have mainly been explored u-

sing taxonomic approaches (including species richness,

abundance, and community structure and composi-

tion). A functional trait-based approach would be com-

plementary to these approaches because traits are

properties of individuals that govern the responses to

their environment (Pey et al., 2014b). For inverte-

brates, Pey et al. (2014b) defined a functional trait

as being any morphological, physiological, phenologi-

cal, or behavioral (MPPB) feature measurable at the

individual level, without reference to any other level of

organization. Over the last 20 years, functional trait

investigations have contributed to highlighting the way

in which environmental stressors impact plant selection

(Lavorel and Garnier, 2002; Garnier et al., 2007) and

more recently have included the effects on soil fauna

too (Hedde et al., 2012; Santorufo et al., 2014a). For

example, a study of the functional traits of ground bee-

tles has shown their sensitivity to anthropogenic Zn

contamination (Skalski et al., 2010).

Our study focuses on an allotment garden, which

presents a local geogenic Pb anomaly with concentra-

tions ranging from 97 to 314 mg kg−1 soil, which con-

sequently induces Pb contamination in the vegetables

consumed by gardeners (Jean-Soro et al., 2015). Wi-

thin this framework, our objective was to evaluate the

effect of this geogenic anomaly on collembolan and fun-

gal communities. A single garden on an urban allot-

ment with a pronounced Pb gradient was studied. We

hypothesized that the total Pb concentration induced

a direct chemical constraint on soil fauna that reduces

the relative abundance of taxa exhibiting traits linked

to Pb exposure (body length and localization in soil

profile), avoidance (motion strategy), population re-

covery (reproduction type), and/or an indirect effect

as a result of the change in the structure of the fungal

community.

MATERIALS AND METHODS

Experimental site and soil characteristics at plot scale

An experiment was carried out on a 280-m2 indivi-

dual plot at the Eglantiers allotment garden located in

Nantes (Loire-Atlantique, France). The climate is tem-

perate oceanic with a mean temperature of 12 ◦C and
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a mean rainfall of 820 mm per year. At the beginning,

the garden plot was divided into two sub-plots. Soil

analysis was performed in autumn 2012. Twenty sub-

samples of cultivated topsoils (0–20 cm) were collected

from each sub-plot and then mixed and homogenized

to obtain two representative samples. Few differences

were noticed in the main soil characteristics analyzed

(Table I). The soil had a sandy loam texture and high

nutrient contents. Its mineralogy mainly consisted of

quartz (71%); feldspars such as orthoclase (9%) and

plagioclase (8%); phyllosilicates such as kaolinite (6%);

and traces of chlorite and illite or micas (6%). Cd, Cu,

and Zn were not considered as possible contaminants

in this garden, conversely to the usually observed le-

vels in urban vegetable gardens (Joimel et al., 2016).

In contrast, Pb was the major concern in this allot-

ment garden, with a median of 171 mg kg−1, which was

considered as highly anomalous compared to usual Pb

concentrations both in French soils in general (Baize et

al., 2008) and particularly in the district (Le Guern et

al., 2013a, b). Lead in this garden is known to be ge-

ogenic, probably linked to mineralized veins rich in Pb-

bearing minerals in the parent material, which is con-

stituted of mica schists (Jean-Soro et al., 2015). Lead

speciation in the garden was also assessed through se-

quential extraction (Ure, 1996) following the Commu-

nity Bureau of Reference (BCR) procedure (Bouquet

et al., 2017). Four fractions were obtained: exchange-

able Pb (1.2%), Pb linked to the oxy/hydroxides of

Mn and Fe (11.9%), Pb linked to sulfides and organic

matter (4.6%), and the residual fraction (82%).

TABLE I

Topsoil characteristics of an urban vegetable garden at the gar-

den plot scale (values for two replicates, which were derived from

20 sub-replicates each) and sub-plot scale (32 sub-plots)

Characteristics Scale

Plot Sub-plot

Sand (%) 57, 58a)

Silt (%) 28, 28a)

Clay (%) 13, 14a)

pH 7.4, 7.4a) 5.75–7.63b)

Organic matter (g kg−1) 36, 29a)

C:N 14, 13a)

CEC (cmol+ kg−1) 8.7, 7.4a)

Total Pb (mg kg−1) 133, 208c) 97–314b),c)

Total Cu (mg kg−1) 38, 28c)

Total Zn (mg kg−1) 94, 79c)

Total Cd (mg kg−1) 0.15, 0.12c)

CaCl2-extractable Pb (µg kg−1) 34–285b)

a)Joimel (2015).
b)Jean-Soro et al. (2014).
c)Béchet et al. (2018).

Soil characteristics at sub-plot scale

In order to study the variations in Pb concentra-

tion at plot scale in greater detail, the garden was divi-

ded into 32 sub-plots of 6 m2 each separated by 50-cm

wide grass strips (Fig. 1). Total Pb, CaCl2-extractable

Pb, and pH were analyzed in each of the 32 sub-plots.

Total Pb concentrations ranged from 97 to 314 mg

kg−1, with a median of 197 mg kg−1 (Jean-Soro et

al., 2015). These values increased along the west-east

gradient. Values of CaCl2-extractable Pb and pH also

Fig. 1 Distribution of total Pb concentrations (values in the parentheses) in the soil of urban vegetable garden (modified from Béchet

et al., 2016). The garden plot was divided into 32 sub-plots of 6 m2 each separated by 50-cm wide grass strips. Q = quartile.
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varied according to this gradient.

Total Pb level of each sub-plot was analyzed u-

sing a portable X-ray fluorescence tool (Niton 792). A

selection of soil samples set for laboratory analy-

sis by inductively coupled plasma mass spectrome-

try (ICP/MS) was obtained to calibrate the device.

This method provides a semi-quantitative analysis of

Pb concentrations, with a detection threshold of 4 mg

kg−1 (in a SiO2 matrix). Blank tests and internal qua-

lity control samples were introduced into each series.

The quality of the analyses was assessed by analyzing

a reference soil, BCR-7002, using the same procedure.

The quantification threshold was 0.1 µg L−1 for Pb.

Soil samples were dried for 5 d at 40 ◦C and prepared

according to the NF ISO 11464 standard (AFNOR,

2006). Soil pH was measured according to the NF ISO

10390 standard (AFNOR, 1994), and mobile Pb was

extracted with 0.01 mol L−1 CaCl2 for 2 h according

to the NEN 5704 standard (1996).

Soil fungi diversity sampling at sub-plot scale

Fungi were sampled in April 2013. Among the 32

sub-plots, twelve replicates were randomly sampled a-

long the concentration gradient (Fig. 1). Fifty grams of

litter-free topsoil were collected from each of the sub-

plots selected.

Fungal DNA diversity analysis

The fungal community structure was studied u-

sing polymerase chain reaction-temporal temperature

gel electrophoresis (PCR-TTGE). DNA was extracted

from soil samples (0.5 g) using the Nucleospinr soil kit

(Macherey-Nagel GmbH & Co, Düren, Germany). Be-

fore DNA analyses, soil samples were ground using a

mixer mill (MM 400, Retsch, Haan, Germany) three

times for a period of 30 s each at a frequency of 25

Hz. The extracted DNA was quantified, and its qua-

lity was controlled using SPECTROstar Nano (BMG

LABTECH LVi Plate, Offenburg, Germany). The 5.8S

DNA region was amplified using ITS5-gc (forward) and

ITS2 (reverse) primers (Joly et al., 2012). The final re-

action volume totaling to 50 µL comprised 1.2 ng L−1

of DNA template, 0.3 mol L−1 of each primer, 200

mol L−1 of dNTPs, 0.012 unit (U) L−1 of Taq poly-

merase, 1× reaction buffer, 2.5 mmol L−1 of MgCl2,

and 500 ng L−1 of bovine serum albumin. The cycling

conditions were set as follows: 1 cycle at 95 ◦C for

15 min, followed by 35 cycles of 95 ◦C for 30 s, 55
◦C for 45 s, and 72 ◦C for 30 s, and a final extension

cycle at 72 ◦C for 7 min (CFX96 TouchTM, Thermal

Cycler, Bio-Rad, USA). Analyses of TTGE were per-

formed using a DCodeTM system (Bio-Rad, Hercules,

USA). The polyacrylamide gel (9.5%) (volume:volume)

was composed of two parts: the upper, urea-free, “con-

centration” (stacking gel) of about 1 cm upward from

the base of the wells, and the lower, “denaturation”

part (resolving gel), at 8 mol L−1 urea. Fifteen mi-

croliters of PCR products were deposited in each well.

Migration was performed in Tris-acetate-EDTA 1.25×
buffer for 750 min at 50 V, with a temperature gradi-

ent from 65 to 70 ◦C, i.e., increasing the temperature

at the rate of 0.4 ◦C h−1. The gels were stained using

GelRedTM (Biotium, Hayward, USA) and then imaged

under ultraviolet (UV) light (Molecular Imagerr Gel

DocTM XR System and Image LabTM Software, Bio-

Rad, Hercules, USA). Microbial community structure

analysis was performed from genetic fingerprints.

Fungal communities were described by composi-

tion, richness (mean number of taxa per sample), Shan-

non diversity index, and evenness index (diversity and

distribution index per sample).

Collembolan diversity sampling at sub-plot scale

Collembolans were sampled in April 2013. Among

the garden plots, 24 replicates were randomly sampled

along the concentration gradient (Fig. 1). One sample

of intact soil core (5 cm depth and 6 cm diameter) was

collected per replicate.

Collembolan diversity analysis

Collembolans were extracted from soil samples u-

sing a high-gradient McFadyen extractor for one week

(Petersen et al., 2003). Except for Mesaphorura, iden-

tified only at the genus level, collembolans were iden-

tified at the species level using various available di-

chotomous keys (Gisin, 1943; Zimdars and Dunger,

1995; Dunger, 1999; Potapow, 2001; Thibaud et al.,

2004; Hopkin, 2007; Dunger and Schlitt, 2011; Jor-

dana, 2012).

For the taxonomic approach, collembolan commu-

nities were described by density (abundance of each

taxon per m2, richness (mean number of taxa per sam-

ple), Shannon diversity index, and evenness index (di-

versity and distribution index per sample).

For the functional approach, 8 functional traits and

ecological performances were selected for their ability

to reflect the effect of Pb exposure or avoidance on po-

pulation recovery (Table II). Body shape, body length,

visual organs, and pigmentation are related to the ver-

tical distribution of collembolans in the soil (Ponge et

al., 2006; Farská et al., 2014; Salmon et al., 2014). Re-

production type is related to their ability to colonize or

survive after disturbances (Chernova et al., 2010). Mo-

tion strategy determines the ability of collembolan to
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TABLE II

Description and attributes of morphological, behavioral, and physiological traits considered for the trait-based approach of the collem-

bolan community

Trait Abbreviation Attributes

Body shape BSH Spherical, cylindrical

Body length BLR < 1, 1–2, 2–3, > 3 mm

Motion strategy MS With, without furcula

Pigmentation PIG With, without coloration

Visual organ VO With, without ocelli

Reproduction REP Sexual, asexual

Habitat HABI Forest, agricultural, anthropogenic areas

Microhabitat MHABI Organic matter in decomposition, mineral soil, vegetation

jump using its furcula, e.g., to avoid predators. The

ability to jump is defined by the presence of a short, re-

duced, or long furcula. Habitat and microhabitat indi-

cate ecological preference and trophic strategy (Salmon

et al., 2014).

Traits were obtained from the BETSI (biological

and ecological functional traits of soil invertebrates)

database on functional traits (CESAB/FRB) (Pey et

al., 2014a). Data on functional traits were primari-

ly adopted from identification keys in the literature

(Gisin, 1943; Zimdars and Dunger, 1995; Dunger,

1999; Potapow, 2001; Thibaud et al., 2004; Hopkin,

2007; Dunger and Schlitt, 2011; Jordana, 2012). The

trait matrix contained trait attribute scores, encoded

using a fuzzy method (Chevene et al., 1994) and adap-

ted to soil organisms (Hedde et al., 2013). Briefly, a

species affinity percentage for each attribute of a trait

was determined per source and then averaged through

the sources to obtain the mean distribution of species

affinity across the different attributes of a trait (i.e.,

the species trait profile).

In order to study the repartition of traits within

the communities, we calculated the community weigh-

ted mean (CWM) for each trait. Community weighted

mean is the sum of species trait profiles weighted by

their relative abundance in the community (Lavorel et

al., 2008). The multidimensional functional structure

of collembolan communities was characterized by three

distance-based functional diversity indices (Laliberté

and Legendre, 2010), viz., functional richness (FRic),

functional evenness (FEve), and functional divergence

(FDiv), and Rao’s quadratic entropy (RaoQ). These

indices quantify different facets of the functional di-

versity for a community (Villéger et al., 2008); FRic

represents the volume of the functional space occupied

by a community, FEve corresponds to the regularity

of the distribution of species abundance in a given vo-

lume, and FDiv is the divergence in the distribution

of abundance in this volume (Laliberte and Legendre,

2010). In addition, we used the RaoQ index, which

incorporates both the relative abundance of a species

and a measure of the pairwise functional differences

between the species (Botta-Dukát, 2005). The RaoQ

index is a suitable approach to measure functional di-

versity, where several traits are considered (Pelosi et

al., 2014). The maximum functional dissimilarity wi-

thin the collembolan community was observed at a va-

lue of 1.

Statistics

The effects of Pb concentrations on fungi and co-

llembolan communities were investigated. Pearson’s

test was used to compare TTGE profiles between the

fungi communities. The unweighted pair group method

with an arithmetic mean (UPGMA) was used to con-

struct a dendrogram from similarity coefficients (Ibek-

we et al., 2010).

We analyzed the effect of Pb on the specific compo-

sition of collembolans by performing a principal coor-

dinate analysis (PCoA) using the Bray-Curtis index to

explore dissimilarities between the communities. The

CWM values were compiled into a single matrix (26

taxa × 16 CWM). Then, we performed principal com-

ponent analysis (PCA) to investigate the functional

composition of collembolan communities. For binary

attributes, only one attribute per taxa was used in P-

CA to avoid auto-correlation. Moreover, each variable

in PCA was weighted by the number of attributes for

each functional trait.

Pearson’s test was again used to assess the correla-

tions of the parameters describing fungal and collem-

bolan communities with the Pb concentration gradient.

The significance level for all analyses was fixed at

the rejection level of P = 0.05. Analyses of TTGE pro-

file were performed with FPQuestTM software (Bio-

Rad, Hercules, USA). Fungal community structure

analysis was performed from genetic fingerprints. All

statistical analyses for collembolan communities were
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performed using R software version 3.2.2 (R Develop-

ment Core Team, 2015) with vegan packages (Oksanen

et al., 2014) for the taxonomic approach and the FD

package (Laliberté and Legendre, 2010) for the fun-

ctional approach. The ade4 package (Thioulouse et

al., 1997) was used for multivariate analysis. All data

mentioned in the results are mean values.

RESULTS

Fungi

Species richness varied between 5 and 10 species

per plot, with 8 species on an average. Analysis of the

fungal structure community revealed two clusters with

64.5% of similitude (Fig. 2). These two clusters were re-

lated to total Pb concentration. The first group inclu-

ded sub-plots with low Pb concentrations (< 197 mg

kg−1), except for Sub-plot 6 (204 mg kg−1). The se-

cond group was composed of sub-plots with higher Pb

concentrations (> 197 mg kg−1), except for Sub-plot

20 (176 mg kg−1). The species richness, Shannon diver-

sity index, and evenness index of fungal communities

were not correlated to total and CaCl2-extractable Pb

concentrations or to pH (Table III).

Taxonomic composition and structural collembolan co-

mmunities

A total of 26 taxa were found in the garden top-

soil, belonging to nine families, Brachystomellidae, En-

tomobryidae, Hypogastruridae, Isotomidae, Neelidae,

Onychiuridae, Sminthuridae, Sminthurididae and Tull-

bergiidae. Three species were singletons and six species

were doubletons. The most abundant species were Pro-

isotoma minuta (Tullberg, 1871) (36%), Parisotoma

notabilis (Schaeffer, 1896) (29%), and Folsomia similis

(Bagnall, 1939) (18%). Species with lower abundances

were Protaphorura armata (Tullberg, 1869) and En-

tomobrya multifasciata (Tullberg, 1871). Mesaphorura

sp. was also a frequent taxon.

Total collembolan density in the soil samples ran-

Fig. 2 Similarity between the fungi community of each sub-plot in garden soil along the gradient of total Pb concentration increase-

in soil. Q = quartile.

TABLE III

Species richness, Shannon diversity index, and evenness index of fungal community and Pearson’s correlation coefficients (r) with total

Pb, CaCl2-extractable Pb, and pH in garden soil

Parameter Min.a) Max.b) Mean r

Total Pb CaCl2-extractable Pb pH

Species richness 5 10 7.8 −0.20nsc) −0.30ns 0.48ns

Shannon diversity index 1.1 2.1 1.8 −0.40ns −0.31ns 0.20ns

Evenness index 0.4 0.6 0.6 −0.48 ns −0.22ns −0.11ns

a)Min. = minimum.
b)Max. = maximum.
c)Not significant.
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TABLE IV

Species richness, Shannon diversity index, evenness index, and density of collembolan community and Pearson’s correlation coefficients

(r) with total Pb, CaCl2-extractablePb, and pH in garden soil

Parameter Min.a) Max.b) Mean r

Total Pb CaCl2-extractable Pb pH

Species richness 6 13 10 −0.38nsc) 0.06ns −0.16ns

Shannon diversity index 0.6 2.1 1.5 −0.35ns −0.29ns 0.18ns

Evenness index 0.3 0.8 0.6 −0.22ns −0.32ns 0.25ns

Density (× 103 individuals m−2) 19 505 123 0.03ns 0.21ns −0.36ns

a)Min. = minimum.
b)Max. = maximum.
c)Not significant.

ged from about 19 × 103 to 505 × 103 individuals m−2

(Table IV). Other parameters also ranged widely. On

an average, there were ten species, with the Shannon

diversity index of 1.5 and evenness index of 0.6 per

sub-plot. The first two axes of PCoA for collembolan

species composition represented 51% of the total iner-

tia (Fig. 3). The collembolan species composition va-

ried depending on the sub-plot considered. No defined

response to soil parameters, such as Pb concentration,

was observed. The number of species, Shannon diver-

sity index, evenness index, and density of collembolan

communities were not correlated to total and CaCl2-

extractable Pb concentrations and to pH.

Fig. 3 Principal coordinate analysis (PCoA) of the specific

composition of collembolans in garden soil along the gradient of

total Pb concentration increase (4th quartile (Q) > 3rd Q > 2nd

Q > 1st Q) in soil.

Functional parameters of collembolan communities

Based on CWM values, the main characteristics of

collembolan communities were small bodied (1–2 mm)

(CWM = 76%), cylindrical (CWM = 99%), with ocel-

li (CWM = 85%), with furcula (CWM = 90%), pig-

mented (CWM = 61%), and with sexual reproduction

(CWM = 74%). Concerning the ecological preferences

for habitat, CWM values were 52% for forest, 28% for

anthropogenic, and 19% for agricultural habitats. For

microhabitat, CWM values were 7% for vegetation and

44% and 48% for decomposing organic matter and mi-

neral soil, respectively.

The first two axes of PCA on CWM represented

68% of the total variability (Fig. 4). Axis 1 seemed to

be related to species habitat and microhabitat pre-

ferences. Axis 2 represented an opposition between

the organisms presenting pigmentation, ocelli, furcu-

la, spherical body, and body length > 2 mm living in a

vegetation microhabitat. The trait profile for Sub-plot

26 presented a higher differentiation than that of the

other sub-plots.

However, two functional parameters of collembolan

communities were significantly correlated to total Pb

concentrations (Table V), viz., FRic and the RaoQ in-

dex, which significantly decreased as total soil Pb con-

centration increased. Concerning other indices and soil

parameters, no significant relationship was observed,

even if a tendency existed along the gradient towards

a decrease in FEve.

TABLE V

Functional richness (FRic), functional divergence (FDiv), fun-

ctional evenness (FEve), and Rao’s quadratic entropy (RaoQ)

of collembolan community and Pearson’s correlation coefficients

(r) with total Pb, CaCl2-extractable Pb, and pH in garden soil

Para- Mean r

meter
Total Pb CaCl2-extractable Pb pH

FRic 8.06 × 10−5 −0.41* −0.17nsa) −0.19ns

FDiv 0.78 −0.07ns 0.24ns −0.25ns

FEve 0.53 −0.31ns −0.02ns −0.05ns

RaoQ 0.03 −0.43* −0.37ns 0.18ns

*Significant at P < 0.05.
a)Not significant.
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Fig. 4 Principal component analysis (PCA) of functional composition of collembolans based on values of community weighted mean

(CMW) for 8 traits (a) in the 26 sub-plots of garden soil (b) (26 taxa, 24 CWM). Labels in Fig. 4b correspond to plot numbers

along the decrease in total Pb concentration in soil. VO abs = visual organ, without ocelli; BSH sphe = body shape, spherical;

BLR <1, BLR 1-2, BLR 2-3, and BLR >3 = body length, < 1, 1–2, 2–3 or > 3 mm, respectively; PIG with = pigmentation, with

coloration; REP asex = parthogenesis reproduction; HABI fore, HABI agri, and HABI anth = forest, agricultural, anthropogenic

habitats, respectively; MHABI orga, MHABI mine, and MHABI vege = microhabitat, organic matter in decomposition, mineral soil,

and vegetation, respectively; MS with = motion strategy, with furcula.

DISCUSSION

Numerous studies have dealt with the effect of an-

thropogenic Pb contamination on the microfauna and

microorganisms, but only a few relate to geogenic Pb.

Yet, environmental and sanitary risks do indeed exist,

even with this geogenic Pb. In the present study, we in-

vestigated the effect of a moderate geogenic Pb anoma-

ly in an urban vegetable garden on fungi, using a ge-

netic fingerprinting method, as well as on its collem-

bolan communities, using taxonomic and trait-based

approaches.

Our results showed that geogenic Pb affected the

composition of fungi communities. These results could

be related to the potential toxicity of metals, as pre-

viously reported for anthropogenic metals on soil mi-

croorganisms (Giller et al., 1998), in particular on fun-

gal diversity (Yang et al., 2015). The review of B̊åath

(1989) regarding the effects of metals on microbial

populations noted, in numerous investigations, a re-

duction in both the abundance and biomass of fun-

gi due to metals, often with a selection of tolerant

species, but no clear effect on the number of taxa (or

colony forming unit). Other effects on fungal biodiver-

sity could be related to accumulation of metals in the

fungal hyphae. However, in the present study, no cor-

relation was demonstrated between the taxonomic pa-

rameters of fungi communities and total or extractable

Pb. These contrasting results could also be induced by

the influence of other factors such as vegetation or cul-

tivation practices. Several factors have been reported

that influence the whole vegetable garden (Chenot et

al., 2012) and, perhaps, soil biodiversity.

The collembolan community interacts with soil fun-

gi within the soil food web. The metals in soil are

largely transferred to and accumulated in collembo-

lans, which are known to feed on fungi. To maximize

their fitness, collembolans are able to adjust the pro-

portion of food material they ingest (Scheu and Folger,

2004). In addition, collembolans can discriminate be-

tween fungal mycelium grown on a metal-contaminated

medium and a medium that is not metal-contaminated

(Pfeffer et al., 2010). Therefore, a Pb-related modifica-

tion to fungal communities may, in turn, have affected

collembolan communities.

In the vegetable garden, as 83% of the total collem-

bolan abundance comprised only three species, the

evenness index was low. This dominance of a few spe-

cies in the collembolan community structure is often

related to highly disturbed or contaminated sites (Rus-

sell and Alberti, 1998). Among the three abundant

species, P. minuta and P. notabilis are widely distribu-

ted and frequently dominant in soils, including urban

soils (Kuznetsova, 2003; Santorufo et al., 2014a). P.

minuta predominance may be due both to the prefere-

nce of this species for manure, which is widely used for

managing garden soil fertility, and its high tolerance

to stress (Santorufo et al., 2015). Although F. sim-

ilis is rarely observed in Europe, it has been already

noticed in garden soils. In this context, its relatively

high abundance is not surprising, since the species is

associated with composts (Gisin, 1943; Hopkin, 2007),

which are widely present in gardens. The abundances

of a dominant species and the evenness index were not,
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however, related to the soil Pb concentration. The hy-

pothesis that the selection of tolerant taxa is associa-

ted to the conservation of more sensitive species at low

abundance, involving a decrease in evenness (Fountain

and Hopkin, 2004b), was not proven in the present stu-

dy. However, the evenness index was very low across

the whole garden, which could indicate that the index

was not sensitive along a gradient but only to marked

differences in metal concentration. Thus, in our stu-

dy, the taxonomic diversity of collembolan species was

not altered by higher geogenic Pb concentrations (total

and extractable). This result is in accordance with pre-

vious studies on anthropogenic metals. For example,

Winkler (2014) showed that, in a forest contaminated

by various metals, including Pb, collembolan species

richness was almost the same in both metal-polluted

and control forests. In contrast, Santorufo et al. (2012,

2014a) demonstrated a correlation between a decrease

in species number and increased concentrations of Cu,

Pb, and Zn. However, our garden soil had a lower me-

tal concentration than those of soils from other studies

conducted in urban environments on anthropogenic Pb

alone (i.e., higher than 200 mg kg−1 of anthropogenic

Pb in Santorufo et al., 2012).

Moreover, even if collembolans feed mostly on fun-

gi (Pollierer et al., 2012), they can also feed on organic

matter such as feces (Ponge, 1991). The high organic

matter content in garden soil (Joimel et al., 2016), of-

ten imported from non-contaminated sites, could pro-

vide a variety of food resources for collembolans, poten-

tially allowing collembolan communities to avoid the

negative effects of metal.

However, although there were differences between

the community compositions of each sub-plot, no clear

relationship between taxonomic composition and Pb or

pH was observed. This shift in species distribution indi-

cates the divergent responses of the community struc-

ture to their soil habitat.

Our results also showed an effect of geogenic Pb

concentrations, but no effect of pH, on the functio-

nal structure and composition of collembolan commu-

nities.

According to the functional trait-based approach,

most collembolans in the garden shared a common trait

profile, i.e., small-bodied (< 2 mm), cylindrical, pig-

mented, and with ocelli, furcula, and sexual reproduc-

tion. Santorufo et al. (2014a) observed that the species

most tolerant to urban environmental conditions, of-

ten in multi-contaminated soil, had a small body size,

jumping motion strategy, sexual reproduction, and pig-

mentation. Furthermore, in our results, FRic and FDiv

indices decreased along the gradient of total Pb con-

centration increase, indicating a clear trend for species

to share the same traits when Pb concentrations in-

crease.

Higher pigmentation protects the organisms from

UV radiation (Hopkin, 2007), whilst allowing sexual

identification (Santorufo et al., 2015), thereby permit-

ting organisms to survive on the surface. These orga-

nisms also have a high mobility owing to furcula and

ocelli, thereby pointing to the ability of these organi-

sms to avoid contamination. Natal da Luz et al. (2004)

demonstrated the use of avoidance behavior by Folso-

mia candida in highly contaminated soils. Austruy et

al. (2016) confirmed these exclusion/avoidance mecha-

nisms for Pb in the case of highly polluted soils or soils

with low metal bioavailability. Geogenic contamina-

tion often occurs at low bioavailability, which could

explain the shifts in functional profiles along the con-

tamination gradient.

Sexual reproduction could also represent an ad-

vantage over asexual reproduction in contaminated

soil. Gillet and Ponge (2003) noted that Mesaphorura

macrochaeta, a parthenogenic collembolan, can switch

to sexual reproduction in soil polluted by Zn.

In fact, the increased proportion of individuals with

pigmentation, furcula, or ocelli is related to the sele-

ction of epigeic organisms (Salmon et al., 2014), which

are less sensitive to environmental stress (Kærsgaard

et al., 2004). These characteristics are more frequent-

ly observed in open habitats, such as vineyards and

arable soils (Auclerc et al., 2009), and could also oc-

cur in vegetable gardens. Furthermore, this selection

could be due to the advantages of epidaphic collembo-

lans vs. eudaphic collembolans, which more frequently

live in contact with more deeply contaminated soils.

The taxonomic approach provided no indication of

the degree of Pb concentration, whereas changes in

morphological traits and ecological preferences were in-

deed observed. Moreover, it seemed that the taxonomic

indices of the fungal communities were less sensitive

than fungal composition. This underlines the idea put

forward by Ladygina et al. (2008) that it is not possi-

ble to detect responses to stress using general methods

(e.g., determining the microbial biomass or numbers of

collembolans) to determine food web components. In

contrast, functional traits provide information on the

community responses to Pb concentration effects, even

if the concentration is moderate.

Finally, all these results highlight both a direct

and perhaps an indirect effect of total geogenic Pb on

soil biota. However, no relationship was reported with

extractable Pb, which could be explained by its low

bioavailability. Similarly, the geogenic Pb transferred
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to vegetables (Jean-Soro et al., 2015) was not clearly

related to extractible Pb. However, it should be no-

ted that the geogenic origin of Pb does not prevent its

accumulation by vegetables or by soil biota. Indeed,

the relationship between soil biota and extractable Pb

or other metals is often complex. Some studies on

collembolan failed to determine its relationship with

extractable Pb (Santorufo et al., 2014b), whereas ano-

ther study demonstrated the opposite (Luo et al.,

2014). Beaumelle et al. (2014) mentioned this lack of

genericity when studying the response of earthworms

to moderately and multi-contaminated soils. Many ot-

her parameters could be involved and affect the rela-

tionship, in particular the divergent effects of different

metals and complexity of soil textures (Beaumelle et

al., 2014).

There is still no universally acceptable method for

assessing soil bioavailable metal concentrations (Giller

et al., 2009), and our results further highlight the need

for reliable indicators to predict the effects of metals

on soil biota, especially in case of moderate or geogenic

contamination.

CONCLUSIONS

The geogenic origin of Pb, even at moderate con-

centrations, does not prevent it from affecting the soil

biota. These effects cause modifications to the fungal

community and to the functional traits of collembolan

communities. Indices based on functional structure,

such as functional traits, are more sensitive than those

based on taxonomic structure, when used to study the

effect of Pb, even of geogenic origin. These indicators

could also be used to better understand the relation-

ship between organisms in soil food web.
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Peigné J, Piron D, Bertrand M, Cluzeau D. 2014. Reducing

tillage in cultivated fields increases earthworm functional di-

versity. Appl Soil Ecol. 83: 79–87.

Petersen S O, Henriksen K, Mortensen G K, Krogh P H, Brandt

K K, Sørensen J, Madsen T, Petersen J, Grøn C. 2003. Re-

cycling of sewage sludge and household compost to arable

land: Fate and effects of organic contaminants, and impact

on soil fertility. Soil Till Res. 72: 139–152.

Pey B, Laporte M A, Nahmani J, Auclerc A, Capowiez Y,

Caro G, Cluzeau D, Cortet J, Decaëns T, Dubs F, Joimel

S, Guernion M, Briard C, Grumiaux F, Laporte B, Pasquet

A, Pelosi C, Pernin C, Ponge J F, Salmon S, Santorufo L,

Hedde M. 2014a. A thesaurus for soil invertebrate trait-based

approaches. PLoS ONE. 9: e108985.

Pey B, Nahmani J, Auclerc A, Capowiez Y, Cluzeau D, Cortet
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