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Nonlinear systems coupled through multi-marginal transport problems

In this paper, we introduce a dynamical urban planning model. This leads us to study a system of nonlinear equations coupled through multi-marginal optimal transport problems. A simple case consists in solving two equations coupled through the solution to the Monge-Ampère equation. We show that the Wasserstein gradient flow theory provides a very good framework to solve this highly nonlinear system. At the end, an uniqueness result is presented in dimension one based on convexity arguments.

Introduction

Recently, Kinderlehrer, Monsaingeon and Xu proposed in [START_REF] Kinderlehrer | A Wasserstein gradient flow approach to Poisson-Nernst-Planck equations[END_REF] a gradient flow approach to solve the Poisson-Nernst-Planck system

   ∂ t ρ 1 -α∆ρ m 1 -div(ρ 1 ∇(V 1 + ϕ)) = 0, ∂ t ρ 2 -β∆ρ m 2 -div(ρ 2 ∇(V 2 -ϕ)) = 0, -∆ϕ = ρ 1 -ρ 2 .
This system is, for instance, used to model ionic transport of sereval interacting species. Inspired by this work we are interested in a "nonlinear" version where species ρ 1 and ρ 2 are coupled through the Monge-Ampère equation instead of the Poisson equation,

   ∂ t ρ 1 -α∆ρ m 1 -div(ρ 1 ∇(V 1 + ϕ)) = 0, ∂ t ρ 2 -β∆ρ m 2 -div(ρ 2 ∇(V 2 + ϕ c )) = 0, det(I -D 2 ϕ)ρ 2 (Id -∇ϕ) = ρ 1 , (1.1)
where ϕ c is the c-transform of ϕ, ϕ c (x) = sup y |x -y| 2 -ϕ(y) and |x| 2 -ϕ is convex. This kind of systems can arise naturally in urban planning. In a series of works [START_REF] Buttazzo | A model for the optimal planning of an urban area[END_REF][START_REF] Buttazzo | A mass transportation model for the optimal planning of an urban region[END_REF][START_REF] Carlier | A variational model for urban planning with traffic congestion[END_REF][START_REF] Carlier | The structure of cities[END_REF][START_REF] Carlier | Equilibrium structure of a bidimensional asymmetric city[END_REF][START_REF] Santambrogio | Transport and concentration problems with interaction effects[END_REF][START_REF] Santambrogio | Variational problems in transport theory with mass concentration, volume 4 of Tesi[END_REF][START_REF] Santambrogio | Models and applications of optimal transport in economics, traffic, and urban planning[END_REF] (non-exhaustive list), static models of urban planning were proposed. A simplified model consists in considering an urban area region Ω where residents and services, given by two probability densities on Ω, ρ 1 and ρ 2 , want to minimize a quantity, E(ρ 1 , ρ 2 ), to reach an ideal organization in the city. The total cost has to take into account a transportation cost between residential areas and service areas, a congestion effect for residential areas due to the fact that the population does not want to live in very crowded area and, on the contrary, services want to be more concentrated in order to increase efficiency and decrease management costs. Particularly, the cost functional E can be taken as

E(ρ 1 , ρ 2 ) = W c (ρ 1 , ρ 2 ) + F(ρ 1 ) + G(ρ 2 ), (1.2) 
where W c is the value of an optimal transport problem with cost c. Several interpretations may be given to this cost. For example, it might represent the gas cost paid by workers to reach services area and then workers want to live close to services in order to decrease car travel. F is an internal energy given by a convex superlinear function F ,

F(ρ) := ´Ω F (ρ(x)) dx if F (ρ) ∈ L 1 (Ω), +∞ otherwise.
Since F is superlinear and convex, F can be rewritten as

F(ρ) = ˆΩ F (ρ) ρ ρ,
where ρ → F (ρ) ρ is a increasing function which can be seen as the unhapiness of a citizen when he lives in a place where the population density is ρ. Finally, G is on the form

G(ρ) = ¨Ω×Ω h(|x -y|) dρ(x)dρ(y),
where h is an increasing function modeling interactions between different services.

However, since a city is constantly evolving, it seems natural to study how evolve ρ 1 and ρ 2 in time. This leads to study the gradient flow of E in a Wasserstein product space. In the case where c is the quadratic cost, at least formaly, we find a system on the form (1.1) where ϕ is a Kantorovich potential of W 2 (ρ 1 , ρ 2 ) which implies that it satisfies the Monge-Ampère equation

det(I -D 2 ϕ)ρ 2 (Id -∇ϕ) = ρ 1 .
In this paper, we propose to investigate a generalization of problem (1.1). We extend to more than two populations, then the transport problem becomes a multi-marginal transport problem. In other hand, the cost that workers want to minimize is not the same as the one of services or firms. Indeed, they have to take into account the gas cost to reach their work whereas this cost is not relevant for services. Thus it is natural to assume that each population wants to minimize a transport problem with its own cost. Since the system is not a gradient flow anymore, we will use a semi-implicit JKO scheme introduced in [START_REF] Francesco | Measure solutions for non-local interaction PDEs with two species[END_REF] to deal with these different costs.

The organization of the paper is the following. Section 2 recalls results from Optimal Transport and Multi-Marginal Transport theories. In section 3, we specify our problem and state our main result. Section 4 is devoted to the demonstration of the existence of solutions for the evolution problem (1.1). The proof is based on a semi-implicit JKO scheme and on an extension of the Aubin-Lions Lemma in order to obtain strong regularity. At the end in section 5, by convexity arguments, we give a uniqueness result in dimension one for some class of functionals.

Preliminaries

In the sequel, Ω represents a smooth open bounded subset of R n .

Wasserstein space

For a detailed exposition, we refer to reference textbooks [START_REF] Villani | Topics in optimal transportation[END_REF][START_REF] Villani | Optimal transport, volume 338 of Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences[END_REF][START_REF] Ambrosio | Gradient flows in metric spaces and in the space of probability measures[END_REF][START_REF] Santambrogio | Optimal Transport for Applied Mathematicians[END_REF]. We denote M + (Ω) the set of nonnegative finite Radon measures on Ω, P(Ω) the space of probability measures on Ω, and P ac (Ω), the subset of P(Ω) of probability measures on Ω absolutely continuous with respect to the Lebesgue measure. For all ρ, µ ∈ P(Ω), we denote Π(ρ, µ), the set of probability measures on Ω × Ω having ρ and µ as first and second marginals, respectively. If γ ∈ Π(ρ, µ), then γ is called a transport plan between ρ and µ. For all ρ, µ ∈ P(Ω), we denote by W 2 (ρ, µ) the Wasserstein distance between ρ and µ,

W 2 2 (ρ, µ) = inf ¨Ω×Ω |x -y| 2 dγ(x, y) : γ ∈ Π(ρ, µ) .
Since this optimal transportation problem is a linear problem under linear constraint, it admits a dual formulation given by

W 2 2 (ρ, µ) = sup ˆΩ ϕ(x) dρ(x) + ˆΩ ψ(y) dµ(y) : ϕ(x) + ψ(y) |x -y| 2 .
Optimal solutions of the dual problem are called Kantorovich potentials between ρ and µ. If ρ ∈ P ac (Ω), Brenier proves in [START_REF] Brenier | Polar factorization and monotone rearrangement of vector-valued functions[END_REF] that the optimal transport plan, γ, is unique and induced by an optimal transport map, T , i.e γ is on the form (Id × T ) # ρ, where T # ρ = µ and T is the gradient of a convex function. Moreover, the optimal transport map is given by T = Id -∇ϕ where ϕ is a Kantorovich potential between ρ and µ.

It is well known that P(Ω) endowed with the Wasserstein distance defines a metric space and W 2 metrizes the narrow convergence of probability measures. If ρ = (ρ 1 , . . . , ρ l ) and µ = (µ 1 , . . . , µ l ) are in P(Ω) l , we define the product distance by

W 2 (ρ, µ) = l i=1 W 2 2 (ρ i , µ i ) 1/2 .

Multi-marginal transportation problem

In this section, we recall some results from the multi-marginal transport theory that we will used in the sequel. We refer, for instance, to [START_REF] Pass | Multi-marginal optimal transport: theory and applications[END_REF][START_REF] Marino | Optimal transportation theory with repulsive costs[END_REF] for a complete survey on this topic. The usual transport optimal can be extended to several marginals ρ 1 , . . . , ρ l ∈ P(Ω). Let c be a cost function from Ω l to R, the multi-marginal transport problem, W c , is defined by

W c (ρ 1 , . . . , ρ l ) := inf ˆΩl c(x 1 , . . . , x l ) dλ(x 1 , . . . , x l ) : λ ∈ Π(ρ 1 , . . . , ρ l ) ,
where Π(ρ 1 , . . . , ρ l ) := λ ∈ P(Ω l ) : π i # λ = ρ i and π i denotes the canonical projection from Ω l to Ω. By standard arguments, the existence of an optimal transport plan is guaranteed as in the two marginals case. Then, if we assume that c is continuous on Ω l , the following dual formulation holds

W c (ρ 1 , . . . , ρ l ) = sup l i=1 ˆΩ u i (x i ) dρ i (x i ) : l i=1 u i (x i ) c(x 1 , . . . , x l ) .
Any optimal u 1 , . . . , u l for the dual formulation are called Kantorovich potentials and are c-conjugate functions, i.e

u i (x i ) = inf    c(x 1 , . . . , x l ) - l j=1,j =i u j (x j ), x j ∈ Ω   
, for all i = 1, . . . , l.

For any λ optimal transport plan and u 1 , . . . , u l Kantorovich potentials, we get

l i=1 u i (x i ) = c(x 1 , . . . , x l ), λ -a.e.
In addition, assuming that ρ i is absolutely continuous with respect to the Lebesgue measure and c is differentiable in the i-th variable, then u i is a Lipschitz function and

∇u i (x i ) = ∇ x i c(x 1 , . . . , x l ), λ -a.e.
(2.1)

Assumptions and main result

In the following, we assume that we have l > 1 different populations. The congestion fonctional associated to the population ρ i is given by

F i (ρ) := ´Ω F i (ρ(x)) dx if F i (ρ) ∈ L 1 (Ω), +∞ otherwise.
where F i : R + → R is a strictly convex superlinear function of class C 2 . Define P i (x) := xF i (x) -F i (x) the pressure associated to F i , we assume

F i (0) = 0 and P i (x) C(1 + F i (x)). (3.1)
The typical examples of energies with have in mind are F (ρ) := ρ log(ρ), which gives a linear diffusion driven by the Laplacian, and F (ρ) := ρ m (m > 1), which corresponds to the porous medium diffusion. The multi-marginal interaction energy W i : P(Ω) l → R is defined by

W i (ρ 1 , . . . , ρ l ) := inf ˆΩl c i (x 1 , . . . , x l ) dλ(x 1 , . . . , x l ) : λ ∈ Π(ρ 1 , . . . , ρ l ) .
where the cost function c i : Ω l → R is assumed to be continuous on Ω l and differentiable with respect to x i such that ∇ x i c i is continuous on Ω l and bounded on Ω l .

Example 3.1 (Barycenter). Assume l = 3 and ρ 1 evolves minimizing at each step the functional

(ρ 1 , ρ 2 , ρ 3 ) → αW 2 2 (ρ 1 , ρ 2 ) + βW 2 2 (ρ 1 , ρ 3
). That means that ρ 1 wants to reach the barycenter in the Wasserstein space of ρ 2 , ρ 3 with weight α, β > 0, see [START_REF] Agueh | Barycenters in the Wasserstein space[END_REF]. This functional can be rewritten as the multi-marginal problem

inf γ∈Π(ρ 1 ,ρ 2 ,ρ 3 ) ˆΩ c(x, y, z) dγ(x, y, z),
where c(x, y, z) = α|x -y| 2 + β|x -z| 2 satisfies the assumptions above.

The goal of this paper is to study existence and uniqueness of solution to the following nonlinear diffusion system with nonlocal interactions

∂ t ρ i = ∆P i (ρ i ) + div(ρ i ∇u i ) in R + × Ω, ρ i|t=0 = ρ i,0 , , i ∈ {1, . . . , l}, (3.2) 
where u i is an optimal Kantorovich potential of

W i (ρ 1 , . . . , ρ l ) := inf ˆΩl c i (x 1 , . . . , x l ) dλ(x 1 , . . . , x l ) : λ ∈ Π(ρ 1 , . . . , ρ l ) . (3.3)
Since Ω is a bounded subset of R n , (3.2) is supplemented with Neumann boundary conditions on ∂Ω,

(∇P i (ρ i ) + ∇u i ρ i ) • ν = 0 on R + × ∂Ω, (3.4) 
where ν is the outward normal to ∂Ω. To simplify the exposition, we do not treat potentiels or nonlocal interactions in (3.3) even if this can be added easily.

The main difficulty is to handle the nonlinear cross term div(ρ i ∇u i ). However, we remark that if λ i is an optimal transport plan in (3.3) and ρ i is absolutely continuous with respect to the Lebesgue measure then, by (2.1),

∇u i (t, x i ) = ∇ x i c i (x 1 , . . . , x l ), λ i (t) -a.e. (3.5) 
Consequently, for all

Φ ∈ C ∞ c ([0, +∞) × R n ), ˆ+∞ 0 ˆΩ ρ i (t, x)∇u i (t, x) • ∇Φ(t, x) dxdt = ˆ+∞ 0 ˆΩl ∇ x i c i (x 1 , . . . , x l ) • ∇Φ(t, x i ) dλ i (t, x 1 , . . . , x l )dt,
since λ i (t) solves W i (ρ 1 (t), . . . , ρ l (t)), t-a.e, and (3.5). Since the right hand side is a linear term with respect to λ i , it is easier to work with this one and then, we define a weak solution of (3.2)-(3.4) in the following way.

Definition 3.2. A weak solution of (3.2)-(3.4) is a curve t ∈ (0, +∞) → (ρ 1 (t), . . . , ρ l (t)) ∈ P ac (Ω) l such that ∇P i (ρ i ) ∈ M n ((0, T ) × Ω)
, for all T < +∞, and

ˆ+∞ 0 ˆΩ ∂ t Φρ i dx -ˆΩ ∇Φ • d∇P i (ρ i ) - ˆΩl ∇ x i c i (x 1 , . . . , x l ) • ∇Φ(t, x i ) dλ i (t, x 1 , . . . , x l ) dt = -ˆΩ Φ(0, x)ρ i,0 (x) dx, for every Φ ∈ C ∞ c ([0, +∞)×R n ), where λ i (t) is an optimal transport plan of W i (ρ 1 (t), . . . , ρ l (t)), t-a.e.
Our main result is the following:

Theorem 3.3. If ρ i,0 ∈ P ac (Ω) satisfy F i (ρ i,0 ) < +∞, (3.6) 
Then (3.2)-(3.4) admits at least one weak solution.

Remark 3.4. To simplify the analysis we assume that each population has an individual diffusion. This implies that solutions are absolutly continuous with respect to the Lebesgue measure and then the Kantorovivh potentials are Lipschitz. Theorem 3.3 can be generalized replacing ∇u i by

U i (x i ) = ˆΩl-1 ∇ x i c i (x 1 , . . . , x l ) dλ x i i (x i ),
where xi = (x 1 , . . . , x i-1 , x i+1 , . . . , x l ) and λ x i i is obtained by disintegrating the optimal transport plan λ i with respect to ρ i ,

λ i = λ x i i ⊗ ρ i .

Existence result

The proof of Theorem 3.3 is based on a variant of the well-known JKO scheme introduced by Jordan, Kinderlherer and Otto, [START_REF] Jordan | The variational formulation of the Fokker-Planck equation[END_REF]. We construct by induction with a semi-implicit Euler scheme l sequences (ρ k i,h ) k∈N ⊂ P ac (Ω), where h > 0 is a given time step. Since the multi-marginal functional W i depends on the density i, system (3.2)-(3.4) is not a gradient flow in a Wasserstein product space. We introduce the functional W i (•|µ), where µ = (µ 1 , . . . , µ l ), defined by

W i (ρ|µ) := W i (µ 1 , , µ i-1 , ρ, µ i+1 , . . . , µ l ).
In other words, W i (ρ|µ) is the multi-marginal problem with marginals µ 1 , . . . , µ i-1 , ρ, µ i+1 , . . . , µ l . Sequences (ρ k i,h ) k∈N are then constructed using the following semi-implicit JKO scheme: for all i ∈ [[1, l]], ρ 0 i,h = ρ i,0 and for all k 0, ρ k+1 i,h minimizes

E i,h (ρ|ρ k h ) := W 2 2 (ρ, ρ k i,h ) + 2h F i (ρ) + W i (ρ|ρ k h ) , (4.1) 
on ρ ∈ P ac (Ω), where ρ k h := (ρ k 1,h , . . . , ρ k l,h ). At each step, all the marginals are frozen except the i-th marginal in the functional (3.3). These sequences are well defined by standard arguments. Define the piecewise constant interpolations by, ρ i,h (0) = ρ i,0 and for all t > 0,

ρ i,h (t) := ρ k+1 i,h if t ∈ (hk, h(k + 1)]. (4.2) 
Let λ k+1 i,h be an optimal transport map for

W i ρ k 1,h , . . . , ρ k i-1,h , ρ k+1 i,h , ρ k i+1,h , .
. . , ρ k l,h and λ i,h be the piecewise constant interpolation defined by

λ i,h (t) := λ k+1 i,h if t ∈ (hk, h(k + 1)]. (4.3)

Basic a priori estimates

In this section we retrieve the usual estimates in the Wasserstein gradient flow theory. First, we show that W i is Lipschitz in the Wasserstein space.

Lemma 4.1. There exists a constant C > 0 such that, for all µ := (µ 1 , . . . , µ l ) ∈ P(Ω) l , and for all ρ 1 , ρ 2 ∈ P ac (Ω),

W i (ρ 1 |µ) -W i (ρ 2 |µ) CW 2 (ρ 1 , ρ 2 ).
Proof. Let γ be the W 2 -optimal transport plan between ρ 1 and ρ 2 and T the W 2 -optimal transport map associated to γ i.e γ = (T × I) # ρ 2 . Let λ ∈ Π (µ 1 , . . . , µ i-1 , ρ 2 , µ i+1 , . . . , µ l ) optimal for W i (ρ 2 |µ). Define λ T by ˆΩl ϕ(x 1 , . . . , x l ) dλ T (x 1 , . . . , x l ) := ˆΩl ϕ(x 1 , . . . , T (x i ), . . . , x l ) dλ(x 1 , . . . , x l ), for all ϕ ∈ C(Ω l ). By definition, λ T ∈ Π (µ 1 , . . . , µ i-1 , ρ 1 , µ i+1 , . . . , µ l ). Then,

W i (ρ 1 |µ) -W i (ρ 2 |µ) ˆΩl [c i (x 1 , . . . , T (x i ), . . . , x l ) -c i (x 1 , . . . , x l )] dλ(x 1 , . . . , x l ) ∇ x i c i L ∞ ˆΩl |T (x i ) -x i | dλ(x 1 , . . . , x l ) CW 2 (ρ 1 , ρ 2 ),
where we used the assumption on ∇ x i c i and Cauchy-Schwarz inequality.

In the next proposition, we state usual estimates from JKO scheme.

Proposition 4.2. For all T > 0, there exists C T > 0 such that, for all h, k, with hk < T ,

N = T h , for i ∈ [[1, l]],
we have

F i (ρ k i,h ) C T , (4.4) 
N -1 k=0 W 2 2 (ρ k i,h , ρ k+1 i,h ) C T h. (4.5) 
Proof. We first prove (4.5). Since ρ k+1 i,h is optimal in the minimization of (4.1) and ρ k i,h is a competitor, we have

W 2 2 (ρ k i,h , ρ k+1 i,h ) 2h F i (ρ k i,h ) -F i (ρ k+1 i,h ) + W i (ρ k i,h |ρ k h ) -W i (ρ k+1 i,h |ρ k h ) . (4.6) 
Then using Lemma 4.1 in (4.6) and Young's inequality, we obtain

W 2 2 (ρ k i,h , ρ k+1 i,h ) 2h F i (ρ k i,h ) -F i (ρ k+1 i,h ) + CW 2 (ρ k i,h , ρ k+1 i,h ) 2h F i (ρ k i,h ) -F i (ρ k+1 i,h ) + 1 4h W 2 2 (ρ k i,h , ρ k+1 i,h ) + 4C 2 h .
We can thus absorb the W 2 2 term in the left-hand side,

1 2 W 2 2 (ρ k i,h , ρ k+1 i,h ) 2h F i (ρ k i,h ) -F i (ρ k+1 i,h ) + Ch .
Summing over k, we find

N -1 k=0 W 2 2 (ρ k i,h , ρ k+1 i,h ) 4h N -1 k=0 (F i (ρ k i,h ) -F i (ρ k+1 i,h )) + C 2 T 4h F i (ρ i,0 ) -F i (ρ N i,h ) + C 2 T . (4.7)
Since Ω is bounded, F i is bounded from below and using the assumption (3.6), we conclude (4.5). The proof is completed noticing that the estimate (4.4) comes from (4.7) and (3.6).

Refined a priori estimates

The goal of this section is to obtain stronger estimates on P i (ρ i,h ) in order to deal with the nonlinear diffusion term.

Proposition 4.3. For all i ∈ [ [1, l]] and for all k 0, we have P i (ρ k+1 i,h ) ∈ W 1,1 (Ω) and

h ∇u k+1 i,h ρ k+1 i,h + ∇P i (ρ k+1 i,h ) = -∇ϕ k+1 i,h ρ k+1 i,h a.e, (4.8) 
where ϕ k+1 i,h is a Kantorovich potential (so that its gradient is unique

ρ k+1 i,h -a.e.) from ρ k+1 i,h to ρ k i,h for W 2 .
Proof. The proof is the same as in [START_REF] Agueh | Existence of solutions to degenerate parabolic equations via the Monge-Kantorovich theory[END_REF][START_REF] Laborde | On some nonlinear evolution systems which are perturbations of Wasserstein gradient flows[END_REF] for example. We start by taking the first variation in the semi-implicit JKO scheme. Let ξ ∈ C ∞ c (Ω; R n ) be given and Φ τ the corresponding flow defined by

∂ τ Φ τ = ξ • Φ τ , Φ 0 = Id.
Define the pertubation ρ τ of ρ k+1 i,h by ρ τ := Φ τ # ρ k+1 i,h . Then we get

1 τ E i,h (ρ τ |ρ k h ) -E i,h (ρ k+1 i,h |ρ k h ) 0. (4.9) 
By standard computations, we have

lim sup τ 0 1 τ (W 2 2 (ρ τ , ρ k i,h ) -W 2 2 (ρ k+1 i,h , ρ k i,h )) ˆΩ×Ω (x -y) • ξ(x) dγ k+1 i,h (x, y), (4.10) 
where γ k+1 i,h is an W 2 -optimal transport plan in Π(ρ k+1 i,h , ρ k i,h ) and

γ k+1 i,h = (Id × T k+1 i,h ) # ρ k+1 i,h
with T k+1 i,h = Id -∇ϕ k+1 i,h . Moreover, by (3.1), (4.4) and Lebesgue's dominated convergence Theorem, we obtain

lim sup τ 0 1 τ (F i (ρ τ ) -F i (ρ k+1 i,h )) -ˆΩ P i (ρ k+1 i,h (x)) div(ξ(x)) dx. (4.11) 
Finally, by definition of λ k+1 i,h , we have

lim sup τ 0 1 τ (W i (ρ τ |ρ k h ) -W i (ρ k+1 i,h |ρ k h )) ˆΩl ∇ x i c i (x 1 , . . . , x l ) • ξ(x i ) dλ k+1 i,h (x 1 , . . . , x l ). (4.12)
Combining (3.5), (4.9), (4.10), (4.11), (4.12), and replacing ξ by -ξ, we find, for all

ξ ∈ C ∞ c (Ω; R n ), ˆΩ ∇ϕ k+1 i,h • ξρ k+1 i,h -h ˆΩ P i (ρ k+1 i,h ) div(ξ) + h ˆΩ ∇u k+1 i,h • ξρ k+1 i,h = 0, (4.13) 
Now we claim that P i (ρ k+1 i,h ) ∈ W 1,1 (Ω). Indeed, since P i is controled by F i , (4.4) gives P i (ρ k+1 i,h ) ∈ L 1 (Ω) and, by (4.13), we obtain

ˆΩ P i (ρ k+1 i,h ) div(ξ) ˆΩ |∇ϕ k i,h (y)| h ρ k+1 i,h + ∇ x i c i L ∞ ξ L ∞ (Ω) W 2 (ρ k i,h , ρ k+1 i,h ) h + C ξ L ∞ (Ω) .
By duality, this implies P i (ρ k+1 i,h ) ∈ BV (Ω) and ∇P i (ρ k+1 i,h ) = -∇u k+1 i,h ρ k+1 i,h -

∇ϕ k+1 i,h h ρ k+1 i,h in M n (Ω). In fact, P i (ρ k+1 i,h ) is in W 1,1 (Ω) because ∇u k+1 i,h ρ k+1 i,h + ∇ϕ k i,h
h ρ k+1 i,h ∈ L 1 (Ω) and then (4.8) is proved.

We deduce from (4.8) an L 1 ((0, T ), BV (Ω)) estimate for P i (ρ i,h ).

Corollary 4.4. For all T > 0, we have

P i (ρ i,h ) L 1 ((0,T );W 1,1 (Ω)) CT.
Proof. Integrating (4.8), we obtain

h ˆΩ |∇P i (ρ k+1 i,h )| W 2 (ρ k i,h , ρ k+1 i,h ) + Ch,
Then summing from k = 0 to N -1 and thanks to (4.5), we have

ˆT 0 ˆΩ |∇P i (ρ i,h )| CT.
We conclude thanks to (3.1) and (4.4).

4.3

Convergences and proof of Theorem 3.3

Weak and strong convergences of ρ i,h

From the total square distance estimate (4.5), we deduce the classical W 2 -convergence, Proposition 4.5. For all T > 0 and i ∈ {1, . . . , l}, there exists ρ i ∈ C 1/2 ([0, T ], P ac (Ω)) such that, up to extraction of a discrete subsequence,

sup t∈[0,T ] W 2 (ρ i,h (t), ρ i (t)) → 0.
Proof. The proof is classical and is a consequence of (4.5) and a refined version of Arzelà-Ascoli's Theorem [START_REF] Ambrosio | Gradient flows in metric spaces and in the space of probability measures[END_REF]Proposition 3.3.1].

In order to handle the nonlinear diffusion term, the next proposition proves strong convergence in time and space. Proposition 4.6. Up to a subsequence, for all i ∈ {1, . . . , l}, ρ i,h converges strongly in L 1 ((0, T ) × Ω) to ρ i and ∇P i (ρ i,h ) converges narrowly to ∇P i (ρ i ).

Proof. The proof is now well-known. We apply an extension of Aubin-Lions Lemma proved by Rossi and Savaré [20, Theorem 2], see for example [START_REF] Laborde | On some nonlinear evolution systems which are perturbations of Wasserstein gradient flows[END_REF][START_REF] Carlier | A splitting method for nonlinear diffusions with nonlocal, nonpotential drifts[END_REF]. Then we obtain that ρ i,h converges to ρ i strongly in L 1 ((0, T ) × Ω).

It remains to prove that P i (ρ i,h ) converges strongly to P i (ρ i ) in L 1 ((0, T ) × Ω). First, we know that P i (ρ i,h ) is uniformly bounded in L ∞ ((0, T ), L 1 (Ω)), using (3.1), and thanks to Corollary 4.4, we have that P i (ρ i,h ) is uniformly bounded in L 1 ((0, T ), W 1,1 (Ω)). Then the Sobolev embedding gives that P i (ρ i,h ) is uniformly bounded in L ∞ ((0, T ), L 1 (Ω)) ∩ L 1 ((0, T ), L n/n-1 (Ω)). We deduce that P i (ρ i,h ) is uniformly bounded in L (n+1)/n ((0, T ) × Ω), [START_REF] Carlier | A splitting method for nonlinear diffusions with nonlocal, nonpotential drifts[END_REF]Lemma 5.3]. This implies that P i (ρ i,h ) is uniformly integrable and Vitali's convergence Theorem gives that P i (ρ i,h ) converges strongly to P i (ρ i ) in L 1 ((0, T ) × Ω). Then we conclude the narrow convergence of ∇P i (ρ i,h ) to ∇P i (ρ i ) in M n ((0, T ) × Ω) thanks to Corollary 4.4.

Convergence of W i -optimal transport plans

First, let us recall some notations. Let λ k+1 i,h be an optimal transport plan for W i ρ k 1,h , . . . , ρ k i-1,h , ρ k+1 i,h , ρ k i+1,h , . . . , ρ k l,h and λ i,h the piecewise constant interpolation of (λ k i,h ) k , defined in (4.3).

In this section, the goal is to prove that λ i,h converges to λ i , where λ i (t) is an optimal transport plan for W i (ρ 1 (t), . . . , ρ l (t)), t-a.e. To simplify the exposition, we focus on the case i = 1 and the analysis is similar for i > 1. We introduce the shifted piecewise constant interpolations for all i ∈ {2, . . . , l},

ρi,h (t) := ρ k i,h if t ∈ (hk, h(k + 1)] and ρi,h (0) := ρ i,0 if t = 0.
and we denote, ρ1,h , the (l -1)-tuple (ρ 2,h , . . . , ρl,h ) so that λ 1,h (t) ∈ Π ρ 1,h (t), ρ1,h (t) , for all t > 0.

Proposition 4.7. For all T > 0, λ 1,h narrowly converges to λ

1 in P([0, T ] × Ω l ) and λ 1 (t) ∈ Π (ρ 1 (t), . . . , ρ l (t)),
Proof. Proposition 4.5 implies that ρi,h narrowly converges to ρ1 :

= (ρ 2 , . . . , ρ l ) in L ∞ ([0, T ], P ac (Ω) l-1 ). Define λ T 1,h := T -1 λ 1,h (t) ⊗ dt ∈ P([0, T ] × Ω l ). Since [0, T ] × Ω l is bounded, the sequence λ T 1,h is tight then, by Prokhorov's Theorem, λ T 1,h narrowly converges to λ T 1 in P([0, T ] × Ω l ). It remains to show that λ T 1 can be written as T -1 λ 1 (t) ⊗ dt, where λ 1 (t) ∈ Π(ρ 1 (t), . . . , ρ l (t)) t-a.e. Denote π 1 , π 1,i the projections from [0, T ] × Ω l to [0, T ] × Ω and [0, T ] with π 1,i (t, x 1 , . . . , x l ) = (t, x i ), and π 1 (t, x 1 , . . . , x l ) = t. Then we have π 1,1 # λ 1,h = ρ 1,h (t)dt, π 1,i # λ 1,h = ρi,h (t)dt, for i = 1 and π 1 # λ 1,h = T -1 L |[0,T ] .
When h goes to 0, since ρ 1,h (t)dt and ρi,h (t)dt narrowly converge to ρ 1 (t)dt and ρ i (t)dt, we obtain

π 1,i # λ 1 = ρ i (t)dt and π 1 # λ i = T -1 L |[0,T ]
, which concludes the proof.

It remains to prove that the transport plan obtained in the last Proposition 4.7, λ 1 (t), is optimal for W 1 (ρ 1 (t), . . . , ρ l (t)). We start establishing an approximation result for an optimal transport plan between ρ 1 (t), ρ 2 (t), . . . , ρ l (t). Lemma 4.8. Let λ 1 (t) be an optimal transport plan for W 1 (ρ 1 (t), . . . , ρ l (t)). There exists a sequence of transport plans

λ 1,h (t) ∈ Π(ρ 1,h (t), ρ1,h (t)) such that sup t∈[0,T ] W 1 (λ 1 (t), λ 1,h (t)) → 0.
Proof. The proof is an adaptation of the one from [4, Lemma 6.2]. Let γ 1 (t) ∈ Π(ρ 1 (t), ρ 1,h (t)) be the optimal transport plan for W 2 and, for i > 1, let γi (t) ∈ Π(ρ i (t), ρi,h (t)) be the optimal transport plan for W 2 . Let us disintegrate γ 1 (t) and γi (t) as γ

1 (t) = ρ 1 (t) ⊗ γ x 1 (t) and γi (t) = ρi (t) ⊗ γx i (t). Now define λ 1,h (t) by λ 1,h (t) = ˆΩl γ x 1 1 (t) ⊗ γx 2 2 (t) ⊗ • • • ⊗ γx l l (t) dλ 1 (t, x 1 , . . . , x l ).
By construction, λ 1,h (t) ∈ Π(ρ 1,h (t), ρ1,h (t)). Then we introduce π a transport plan between λ 1 (t) and λ 1,h (t) defined, for all ϕ ∈ C(Ω 2l ), by ˆΩ2l ϕ(x, y) dπ(x, y) = ˆΩl ˆΩl ϕ(x, y) γ x 1 1 (t, dy 1 )γ x 2 2 (t, dy 2 ) ⊗ • • • ⊗ γx l l (t, dy l ) λ 1 (t, dx), where x = (x 1 , . . . , x l ), y = (y 1 , . . . , y l ) are in Ω l . Since π ∈ Π(λ 1 (t), λ 1,h (t)) we have

W 1 (λ 1 (t), λ 1,h (t)) ˆΩ2l (|x 1 -y 1 | + l i=2 |x i -y i |) dπ(x, y) ˆΩ2 |x 1 -y 1 |γ x 1 1 (t, dy 1 )ρ 1 (t, dx 1 ) + l i=2 ˆΩ2 |x i -y i |γ x i i (t, dy i )ρ i (t, dx i ) ˆΩ2 |x -y|γ 1 (t, dx, dy) + l i=2 ˆΩ2 |x -y|γ i (t, dx, dy) W 2 2 (ρ 1,h (t), ρ 1 (t)) + l i=2 W 2 2 (ρ i,h (t), ρi (t)).
Then Proposition 4.5 concludes the proof.

From the previous Lemma, we show that λ 1 (t) is optimal for W 1 (ρ 1 (t), . . . , ρ l (t)) t-a.e in [0, T ].

Proposition 4.9. For almost every t ∈ [0, T ], λ 1 (t) is optimal for W 1 (ρ 1 (t), . . . , ρ l (t)).

Proof. Let λ 1 (t) be an optimal transport plan for W 1 (ρ 1 (t), . . . , ρ l (t)). First, define λ Since Ω is bounded and according to Lemma 4.8,

ˆT 0 ˆΩl c 1 (x)λ 1,h (t, dx)ϕ(t) dt → ˆT 0 ˆΩl c 1 (x)λ 1 (t, dx)ϕ(t) dt,
as h → 0. In addition, since λ 1,h narrowly converges to λ 1 in P([0, T ] × Ω l ), we have

ˆT 0 ˆΩl c 1 (x)λ 1,h (t, dx)ϕ(t) dt → ˆT 0 ˆΩl c 1 (x)λ 1 (t, dx)ϕ(t) dt.
And then

ˆT 0 ˆΩl c 1 (x)λ 1 (t, dx)ϕ(t) dt ˆT 0 ˆΩl c 1 (x)λ 1 (t, dx)ϕ(t) dt.
The inequality holds for all nonnegative function ϕ ∈ C ∞ ([0, T ]), we thus obtain, for almost every t ∈ [0, T ],

W 1 (ρ 1 (t), . . . , ρ l (t))

ˆΩl c 1 (x)λ 1 (t, dx),
and the proof is concluded.

Proof of Theorem 3.3

First, we show that (ρ 1,h , . . . , ρ l,h ) is solution of a discrete approximation of system (3.2).

Proposition 4.10. Let h > 0, for all T > 0, let N such that N h = T and for all

φ ∈ C ∞ c ([0, T ) × Ω), then ˆT 0 ˆΩ ρ i,h (t, x)∂ t φ(t, x) dxdt = h N -1 k=0 ˆΩ ∇P i (ρ k+1 i,h (x)) • ∇φ(t k , x) dx + h N -1 k=0 ˆΩl ∇ x i c i (x) • ∇φ(t k , x i ) dλ k+1 i,h (x) + N -1 k=0 ˆΩ×Ω R[φ(t k , •)](x, y)dγ k+1 i,h (x, y) -ˆΩ ρ i,0 (x)φ(0, x) dx, with, for all φ ∈ C ∞ c ([0, T ) × R n ), |R[φ](x, y)| 1 2 D 2 φ L ∞ ([0,T )×Ω) |x -y| 2 , γ k+1 
i,h is an optimal transport plan in Γ(ρ k i,h , ρ k+1 i,h ). Proof. This is a consequence of (4.8) (see [START_REF] Agueh | Existence of solutions to degenerate parabolic equations via the Monge-Kantorovich theory[END_REF][START_REF] Laborde | On some nonlinear evolution systems which are perturbations of Wasserstein gradient flows[END_REF]). Now, we have to take the limit in the system of Proposition 4.10. The linear term (with time derivative) and the diffusion term converge to the desired result thanks to Proposition 4.6. The remainder term goes to 0 as h goes to 0 because of (4.5). So it remains to check the convergence of multi-marginal interaction terms. By Proposition 4.7, λ i,h converges to λ i in P([0, T ] × Ω l ) and then,

h N -1 k=0 ˆΩl ∇ x i c i (x) • ∇φ(t k , x i ) dλ k+1 i,h (x) → ˆT 0 ˆΩl ∇ x i c i (x) • ∇φ(t, x i ) dλ i (t, x)dt.
and, by Proposition 4.9, λ i (t) is an optimal transport plan for W i (ρ 1 , . . . , ρ l ).

Uniqueness in dimension one

In this section, Ω is a compact convex subset in R. We give an uniqueness result based on a displacement convexity argument and some examples of functionals satisfying this condition. Although Theorem 5.7 holds in dimension higher than one, we retrict ourselves to the dimension one because as far as we know, there is no example of multi-marginal functional geodesicaly convex in higher dimension.

Displacement convexity in product Wasserstein space

For the purpose of this paper, it is enough to restrict ourselves to absolutely continuous probability measures. Given ρ 0 and ρ 1 in P ac (Ω), there exists a unique optimal transport map T between ρ 0 and ρ 1 i.e T # ρ 0 = ρ 1 and

W 2 2 (ρ 0 , ρ 1 ) = ˆΩ |x -T (x)| 2 ρ 0 (x) dx.
to conclude the proof. Define for all i, the set A i = Π i-1 j=1 [a j , +∞)×(-∞, a i ]×Π l j=i+1 [a j , +∞). Since γ satisfies (5.2), for all i = j we cannot have both γ(A i ) > 0 and γ(A j ) > 0. Then,

γ((-∞, a 1 ] × • • • × (-∞, a l ]) = min i γ((-∞, a 1 ] × • • • × (-∞, a l ] ∪ A i ) = min i γ(R × • • • × R ×(-∞, a i ] × R • • • × R) = min i ρ i ((-∞, a i ]) = min i G i (a i ).
This lemma allows us to study the geodesic convexity of multi-marginal functionals for a large class of costs. Proposition 5.3. Let c : Ω l → R be a C 2 convex function satisfying ∂ i,j c 0 for all i = j. The functional W c : P ac (Ω) l → R defined by

W c (ρ 1 , . . . , ρ l ) := inf ˆΩl c(x 1 , . . . , x l ) dγ(x 1 , . . . , x l ) : γ ∈ Π(ρ 1 , . . . , ρ l ) , is geodesically convex in P ac (Ω) l .
Proof. Given (ρ 0 1 , . . . , ρ 0 l ) and (ρ 1 1 , . . . , ρ 1 l ) in P ac (Ω) l , define the constant speed geodesic between ρ 0 i and ρ 1 i , ρ t i = T t i # ρ 0 i . Let γ 0 be an optimal transport plan for the multimarginal problem W c (ρ 0 1 , . . . , ρ 0 l ). By [8, Theorem 4.1], there exist l -1 nondecreasing maps S 2 , . . . , S l such that γ 0 = (Id, S 2 , . . . , S l ) # ρ 0 1 . Define the interpolation plan γ t by γ t = (T t 1 , . . . , T t l ) # γ 0 = (T t 1 , T t 2 • S 2 , . . . , T t l • S l ) # ρ 0 1 .

Observe that γ 1 = (T 1 , T 2 • S 2 , . . . , T l • S l ) # ρ 0 1 and since T 1 and for all i 2, T i • S i are nondecreasing maps, γ 1 satisfies (5.2). We want to show that γ 1 is an optimal transport plan for W c (ρ 1 1 , . . . , ρ 1 l ). Theorem 4.1 from [START_REF] Carlier | On a class of multidimensional optimal transportation problems[END_REF] says that the optimal transport plan γ opt of W c (ρ 1 1 , . . . , ρ 1 l ) is of the form γ opt = (Id, S2 , . . . , Sl ) # ρ 1 1 , where Si is nondecreasing. Then γ opt also satisfies (5.2) and then by Lemma 5.2, we conclude that γ 1 is an optimal transport plan for W c (ρ 1 1 , . . . , ρ 1 l ). By convexity of c, we have W c (ρ t 1 , . . . , ρ t l ) ˆΩl c(x 1 , . . . , x l ) dγ t ˆΩl c(T t 1 (x 1 ), . . . , T t l (x l )) dγ 0

(1 -t) ˆΩl c(x 1 , . . . , x l ) dγ 0 + t ˆΩl c(T 1 (x 1 ), . . . , T l (x l )) dγ 0

(1 -t)W c (ρ 0 1 , . . . , ρ 0 l ) + tW c (ρ 1 1 , . . . , ρ 1 l ), which concludes the proof.

Remark 5.4. This result cannot be generalized in higher dimension. Indeed, in dimension n > 1, it is well known that W 2 (•, σ) is not λ-convex along geodesic on P(Ω) (see example 9.1.5 from [START_REF] Ambrosio | Gradient flows in metric spaces and in the space of probability measures[END_REF]).

Proof. Using Theorem 5.24, Corollary 5.25 from [START_REF] Santambrogio | Optimal Transport for Applied Mathematicians[END_REF] and assumption (5.6) 
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	Summing over i and combining these inequalities, we obtain
				d dt	W 2 2 (ρ 1 t , ρ 2 t )	-2	l i=1	λ i W 2 2 (ρ 1 t , ρ 2 t ).

Gronwall's Lemma concludes the proof.

In addition, T : Ω → Ω is a nondecreasing map. The Wasserstein geodesic between ρ 0 and ρ 1 is the curve t ∈ [0, 1] → ρ t given by the McCann's interpolation ρ t := T t # ρ 0 , where T t = (1 -t)Id + tT is the optimal transport map between ρ 0 and ρ t , and ρ t is a constant speed geodesic:

W 2 (ρ t , ρ s ) = |t -s|W 2 (ρ 0 , ρ 1 ).

Now we recall the definition of geodesically convex functional in Wasserstein product space.

] and for every couple

where µ t i is a constant speed geodesic between µ 0 i and µ 1 i and W 2 is the product distance on P(Ω) l .

Note that if

then it is well-known that

is geodesically convex (λ = 0), see [START_REF] Mccann | A convexity principle for interacting gases[END_REF].

In the following we give a class of multi-marginal functionals geodesically convex. First, we provide a characterization of the co-monotone transport plan as in [START_REF] Santambrogio | Optimal Transport for Applied Mathematicians[END_REF]Lemma 2.8].

Lemma 5.2. For l 2, let γ be a transport plan having ρ 1 , . . . , ρ l as marginals. If γ satisfies the property

(5.2)

Proof. This lemma is an extension of [24, Lemma 2.8] (where the case l = 2 is studied) and the proof is similar. First, for all a 1 , . . . , a l ∈ R, we know that γ mon ((-∞,

Since the knowledge of γ((-∞, a 1 ] × • • • × (-∞, a l ]), for all a 1 , . . . , a l ∈ R is enough to characterize γ, we just need to show that

Wasserstein contraction

First, let us define the Fréchet subdifferential for W : P ac (Ω) l → (-∞, +∞] by extending the definition given in [START_REF] Ambrosio | Gradient flows in metric spaces and in the space of probability measures[END_REF]. Definition 5.5. Let W : P ac (Ω) l → (-∞, +∞] be a functional and let ξ = (ξ 1 , . . . , ξ l ) ∈ L 2 ((µ 1 , . . . , µ l ), Ω), i.e

We say that ξ is in the Fréchet subdifferential ∂W(µ 1 , . . . , µ l ) if

where µ := (µ 1 , . . . , µ l ) and T ν i µ i is the optimal transport map between µ i and ν i .

The next proposition characterizes the subdifferential of λ-geodesically convex functionals.

Proposition 5.6. Let W : P ac (Ω) l → (-∞, +∞] be a λ-geodesically convex functional. Then a vector ξ ∈ L 2 (µ, Ω) belongs to the Fréchet subdifferential of W at µ if and only if

for all ν ∈ P ac (Ω) l . Moreover, if ξ ∈ ∂W(µ) and κ ∈ ∂W(ν) then

(5.5)

Proof. The proof is the same as in the characterization by Variational inequalities and monotonicity done in [START_REF] Ambrosio | Gradient flows in metric spaces and in the space of probability measures[END_REF] p. 231.

We can now prove the following uniqueness result.

Theorem 5.7. Assume F i satisfies (5.1) and W i is a λ i -geodesically convex functional. Let ρ 1 := (ρ 1 1 , . . . , ρ 1 l ) and ρ 2 := (ρ 2 1 , . . . , ρ 2 l ), in P ac (Ω), two weak solutions of (3.2) with initial conditions ρ 1 i (0, •) = ρ 1 i,0 and ρ 2 i (0, •) = ρ 2 i,0 . If for all T < +∞, ˆT 0

with, for j ∈ {1, 2}, v j i,t := -∇F i (ρ j i,t ) -∇u j i , then for every t ∈ [0, T ],

t ) e -(2 l i=1 λ i) t W 2 2 (ρ 1 0 , ρ 2 0 ),