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In this paper, we prove that the Extended Courant Property fails to be true for certain smooth, strictly convex domains with Neumann boundary condition: there exists a linear combination of a second and a first Neumann eigenfunctions, with three nodal domains. For the proof, we revisit a deformation argument of Jerison and Nadirashvili (J. Amer. Math. Soc. 2000, vol. 13). This argument being interesting in itself, we give full details. In particular, we carefully control the dependence of the constants on the geometry of our Lipschitz domains along the deformations. Résumé. Dans cet article, nous montrons que la "propriété étendue de Courant" est fausse pour certains domaines convexes lisses avec condition au bord de Neumann : il existe une combinaison linéaire d'une première et d'une seconde fonctions propres de Neumann ayant trois domaines nodaux. Pour la démonstration, nous reformulons un argument de

Introduction

Let Ω ⊂ R d be a bounded domain (open and connected), with d ≥ 2. We assume that Ω is smooth enough, and we consider the eigenvalue problem We write the eigenvalues of (1.1) in nondecreasing order, with multiplicities, starting with the index 1,

(1.2) µ 1 (Ω, a) < µ 2 (Ω, a) ≤ µ 3 (Ω, a) ≤ • • • ,
where a ∈ {d, n} denotes the boundary condition.

Given an eigenvalue µ(Ω, a) of (1.1), we denote by E (µ(Ω, a)) the corresponding eigenspace. Given an eigenfunction ϕ ∈ E (µ(Ω, a)), we denote by

(1.3) Z(ϕ) = {x ∈ Ω | ϕ(x) = 0}
the nodal set of ϕ, and by β 0 (ϕ) the number of nodal domains (the connected components of Ω\Z(ϕ)) of the function ϕ.

Given an eigenvalue µ = µ(Ω, a) of (1.1), we denote by κ(µ) the least index of µ,

(1.4) κ(µ) = min{k | µ k (Ω, a) = µ} .
The following classical theorem was proved by R. Courant in 1923, see for example [START_REF] Courant | Methods of mathematical physics[END_REF]§ VI.6].

Theorem 1.1 (Courant's nodal domain theorem). Let µ be an eigenvalue of (1.1), and ϕ ∈ E(µ) a corresponding eigenfunction. Then, 

First difference.

When d = 1, a classical theorem of C. Sturm [START_REF] Sturm | Mémoire sur les équations différentielles linéaires du second ordre[END_REF] states that the eigenvalues of (1.6) are all simple, and that an eigenfunction of (1.6), associated with the nth eigenvalue, has exactly n nodal domains.

When d ≥ 2, the eigenvalues of (1.1) may have multiplicities (this is for example the case for a square with either Dirichlet or Neumann condition on the boundary). By Courant's nodal domain theorem, an eigenfunction of (1.1), associated with the nth-eigenvalue has at most n nodal domains. However, (1) For the round sphere S 2 , and for the square with Dirichlet boundary condition, examples of A. Stern [START_REF] Bérard | Nodal sets of eigenfunctions, Antonie Stern's results revisited[END_REF]8] show that there is no general lower bound on β 0 (ϕ) for higher energy eigenfunctions, except the trivial bound β 0 (ϕ) ≥ 2 . Note that the example of the square suggests that such a statement might not be true for the Neumann boundary condition, see the paragraph before Proposition 10.2 in [START_REF] Helffer | Nodal domains in the square -The Neumann case[END_REF]. (2) A theorem of Å. Pleijel [START_REF] Pleijel | Remarks on Courant's nodal theorem[END_REF] shows that the upper bound β 0 (ϕ) ≤ κ(µ) is sharp for finitely many eigenvalues µ only.

Second difference.

Another, not so well-known, theorem of C. Sturm [42] states that, for n ≥ m ≥ 1, a linear combination n k=m a k V k of eigenfunctions of (1.6), in the range k ∈ {m, . . . , n}, has at least (m -1), and at most (n -1) zeros in the interval ]α, β[. We refer to [START_REF] Bérard | Sturm's theorem on zeros of linear combinations of eigenfunctions[END_REF] for a more precise statement of Sturm's theorem, and to [18], in particular Theorem 1 in Section IV.3, for a different point of view.

In dimension d ≥ 2, a similar statement (for the upper bound) appears in Footnote 1, page 454 of [START_REF] Courant | Methods of mathematical physics[END_REF]Chap. VI.6], namely: Any linear combination of the first n eigenfunctions divides the domain, by means of its nodes, into no more than n subdomains. See the Göttingen dissertation of H. Herrmann, Beiträge zur Theorie der Eigenwerte und Eigenfunktionen, 1932. This statement is sometimes referred to as the "Courant-Herrmann theorem" [21, § 9.2], or the "Courant-Herrmann conjecture" [19]. We shall call this statement the Extended Courant Property, and refer to it as the ECP(Ω, a), when applied to the boundary value problem (1.1), with the boundary condition a.

In [5], see also [START_REF] Arnold | Topological properties of eigenoscillations in mathematical physics[END_REF][START_REF] Kuznetsov | On delusive nodal sets of free oscillations[END_REF], V. Arnold points out that the ECP(RP 2 , g 0 ) is true for the round metric g 0 , and that the ECP(RP 3 , g 0 ) is false, with counterexamples constructed by O. Viro [START_REF] Viro | Construction of multi-component real algebraic surfaces[END_REF]. Arnold also claims that ECP(S 2 , g) is false for a generic metric g. As far as we understand, the only published proof that the assertion "the ECP(RP 2 , g 0 ) is true", is the real algebraic geometry proof given in [START_REF] Leydold | On the number of nodal domains of spherical harmonics[END_REF] (Theorem 1, and second remark on page 305). To our knowledge, no proof of the second claim has been published, see [6, Section 5] for a related result.

Little seems to be known on the ECP. In [START_REF] Bérard | On Courant's nodal domain property for linear combinations of eigenfunctions[END_REF][START_REF] Bérard | On Courant's nodal domain property for linear combinations of eigenfunctions[END_REF], we give some examples of domains such that ECP(Ω, a) is false, with either the Dirichlet or the Neumann boundary condition. However, all these examples are singular (domains or surfaces with cracks), or have a nonsmooth boundary (polygonal domains). A natural question is whether one can construct counterexamples to the ECP with a C ∞ boundary. Numerical simulations for the equilateral triangle with rounded corners (the corners of the triangle are replaced by circular caps tangent to the sides) suggest that this should be true. Note however that a triangle with rounded corners is

C 1 , not C 2 .
The pictures in the first row of Figure 1.1 display the level sets and nodal domains of a second Neumann eigenfunction φ of the equilateral triangle with rounded corners, as calculated by matlab. The function is almost symmetric1 with respect to one of the axes of symmetry of the triangle. The pictures in the second row display the nodal sets of the function a + φ for two values of a. They provide a numerical evidence that ECP is not true for the equilateral triangle with rounded corners, and Neumann boundary condition. In this paper, we prove, Theorem 1.2. There exists a one-parameter family of C ∞ , strictly convex domains {Ω t , 0 < t < t 0 } in R 2 , with the symmetry of the equilateral triangle T e , such that:

(1) The family is strictly increasing, and Ω t tends to T e , in the sense of the Hausdorff distance, as t tends to 0. The starting point of the proof of Theorem 1.2 is the fact, established in [START_REF] Bérard | On Courant's nodal domain property for linear combinations of eigenfunctions[END_REF], that the ECP(T e , a) is false for both the Dirichlet, and the Neumann boundary conditions on the equilateral triangle. The idea is then to show that one can find a deformation of T e by smooth strictly convex domains, in such a way that the symmetric second Neumann eigenfunction deforms nicely.

Organization of the paper. In Section 2, we revisit a deformation argument given by Jerison and Nadirashsvili [START_REF] Jerison | The "hot spots" conjecture for domains with two axes of symmetry[END_REF] in the framework of the "hot spots" conjecture. The main result is Lemma 2.14. This argument being interesting in itself, we give full details. In Section 3, we construct smooth strictly convex approximations of the equilateral triangle by using the convexity properties of its first Dirichlet eigenfunction (Proposition 3. [START_REF] Buhovsky | Eigenfunctions with infinitely many isolated critical points[END_REF] for the 2-torus, and in [START_REF] Bérard | Non-boundedness of the number of nodal domains of a sum of eigenfunctions[END_REF] for regular polygons with Neumann boundary condition, for the 2-torus and for the 2-sphere. More precisely, in the latter case, there exists a metric g on T 2 (resp. S 2 ), and an associated eigenfunction Φ of the Laplace-Beltrami operator ∆ g , such that the set {Φ > 1} has infinitely many connected components. Furthermore, the metric g can be chosen as close as desired from the flat (resp. the round) metric.

Acknowledgements. The authors would like to thank P. Bousquet, T. Hoffmann-Ostenhof, and H. Tamura, for providing useful references.

A deformation argument

In this section, we revisit a deformation argument of (2.2)

B(M -1 ) ⊂ Ω ⊂ Ω ⊂ B(M ) ,
where B(R) denotes the open ball centered at 0, with radius R, and B(R) denotes the corresponding closed ball.

(2.3) Ω is symmetric with respect to D := {(u, v) ∈ R 2 | u = 0} . (2.4) ∂Ω is regular at D ∩ ∂Ω , i.e. in a neighborhood of m ∈ D ∩ ∂Ω, the boundary ∂Ω is piecewise C 1 , and ∂Ω\{m} is C 1 .
The domain Ω can be described by a polar equation,

(2.5) Ω = {(r, θ) | 0 ≤ r < ρ(θ)} ,
where the function ρ is a 2π-periodic, Lipschitz function, with Lipschitz constant bounded from above by M .

We define the domain, (2.6)

Ω + := Ω ∩ {(u, v) ∈ R 2 | u > 0} .
We decompose its boundary ∂Ω + as (2.7)

∂Ω + = Γ Γ D , with Γ = ∂Ω + ∩ {u > 0}, and Γ D = D ∩ Ω + .
Notation. In the sequel, we denote by D both the line, and the mirror symmetry with respect to the line D. We denote by D * the action of the symmetry D on functions,

D * φ = φ • D.
Remarks 2.2. We note the following properties for later reference.

( (2) With the definitions of [START_REF] Grisvard | Elliptic problems in nonsmooth domains[END_REF], for such domains, the inclusion We are interested in the least positive eigenvalues of Ω associated with the symmetry D. More precisely, we introduce

) 1 
H 1 (Ω) → L 2 (Ω)
(2.8) ν -(Ω) := inf{ν i (Ω) | i ≥ 2 , ∃ϕ , -∆ϕ = ν i (Ω)ϕ , D * ϕ = -ϕ} ,

and

(2.9) ν + (Ω) :

= inf{ν i (Ω) | i ≥ 2 , ∃ϕ , -∆ϕ = ν i (Ω)ϕ , D * ϕ = ϕ} ,
where the equations -∆ϕ = ν i (Ω)ϕ are to be understood in Ω.

It is easy to see that (2.10)

       ν -(Ω) = µ 1 (Ω + , nd) , ν + (Ω) = µ 2 (Ω + , nn) , ν 2 (Ω) = min{ν -(Ω) , ν + (Ω)} .
Remarks 2.3. About the eigenvalues ν -(Ω) and ν + (Ω).

(1) Because µ 1 (Ω + , nd) is simple, there is, up to scaling2 , a unique anti-symmetric eigenfunction ψ Ω of -∆ in Ω, associated with the eigenvalue ν -(Ω), (2.11)

Ω ψ 2 Ω = 1 and ψ Ω | Ω + > 0 . (2) If ν 2 (Ω) is a simple eigenvalue, then either ν 2 (Ω) = ν + (Ω) < ν -(Ω) or ν 2 (Ω) = ν -(Ω) < ν + (Ω)
, and the corresponding eigenfunction is either invariant, or anti-invariant under D.

(

) If dim E ν 2 (Ω) ≥ 2, then E(ν 2 ) = (E(ν 2 ) ∩ S + ) (E(ν 2 ) ∩ S -) , with dim E(ν 2 ) ∩ S -≤ 1. 3 
Here, we have used the notation (2.12)

S σ := {φ | D * φ = σ φ} , σ ∈ {+, -} . ( 4 
)
If Ω is sufficiently regular, then dim E(ν 2 ) ≤ 3, see [START_REF] Cheng | Eigenfunctions and nodal sets[END_REF][START_REF] Hoffmann-Ostenhof | Bounds on the multiplicity of eigenvalues for fixed membranes[END_REF].

(5) Let T i (α) be an isosceles triangle with aperture α ∈]0, π[. According to [32, § 10],

ν 2 (T i (α)) = ν + (T i (α)) < ν -(T i (α)) when 0 < α < π 3 , ν 2 (T i (α)) = ν -(T i (α)) < ν + (T i (α)) when π 3 < α < π .
There is a bifurcation at π 3 , in which case

ν 2 (T i ( π 3 )) = ν -(T i ( π 3 )) = ν + (T i ( π 3 )) . ( 6 
)
In Section 3, we consider domains Ω which admit the symmetry group G 0 of the equilateral triangle, see (3.7). For such domains, Proposition 3.5 tells us that

ν -(Ω) = ν + (Ω) = ν 2 (Ω) = ν 3 (Ω) < ν 4 (Ω).
Notation. In (2.11), and henceforth, we skip the (Lebesgue) measure dx in the integrals.

We now introduce a technical assumption.

Assumption 2.4. The eigenvalue µ 2 (Ω + , nn) is simple.

Remark 2.3-( 6) tells us that Assumption 2.4 is satisfied by convex domains with the G 0 symmetry, see Proposition 3.5, and in particular by the domains Ω t constructed for the proof of Theorem 1.2.

Remark 2.5. Provided that Assumption 2.4 is satisfied, there is a Dsymmetric eigenfunction φ Ω of -∆ in Ω, associated with ν + (Ω). This eigenfunction is uniquely determined, up-to-sign, by the normalization

Ω φ 2 Ω = 1.
In Lemma 2.14, we will prove that one can actually make a unique choice of φ Ωt along a path of domains.

Preliminary estimates.

We shall now examine how the eigenvalues ν ± (Ω), and the corresponding eigenfunctions, vary with the domain Ω ∈ L M . For this purpose, and following [START_REF] Jerison | The "hot spots" conjecture for domains with two axes of symmetry[END_REF], we introduce the following distance in the class L M , (2.13)

d r (Ω 1 , Ω 2 ) = ρ 1 -ρ 2 ∞ ,
if the domains are defined by the functions ρ 1 and ρ 2 respectively, as in (2.5).

Note that this distance is bigger than the Hausdorff distance between open sets contained in a given compact ball D,

(2.14) d H (Ω 1 , Ω 2 ) := d H (D\Ω 1 , D\Ω 2 ) .
Here,

(2.15) d H (K 1 , K 2 ) := max sup x∈K 1 inf y∈K 2 d(x, y) , sup x∈K 2 inf y∈K 1 d(x, y) ,
is the Hausdorff distance between the compact sets K 1 and K 2 , and d(x, y) is the Euclidean distance between the points x, y ∈ R 2 .

Note that the distance defined in (2.14) does not depend on the choice of the compact D, once it contains both Ω 1 and Ω 2 .

Notation. In the sequel, |Ω| denotes the area of a domain Ω. We will also use the following convention. We use constants C i , i ∈ N in the statements, and local constants C i,j , i, j ∈ N inside the proofs. Note that the constants are not numbered linearly. When a constant appears, we mention which parameters it depends upon.

Lemma 2.6.

There exists a constant C 1 (M ) such that, for any domains

Ω 1 , Ω 2 ∈ L M , (2.16 
)

|Ω 1 \ Ω 2 | ≤ C 1 (M ) d r (Ω 1 , Ω 2 ) .
Proof. It suffices to notice that

Ω 1 \ Ω 2 = {(r, θ) | ρ 2 (θ) ≤ r < ρ 1 (θ)} ,
and to compute the area in polar coordinates.

Lemma 2.7.

There exists a constant C 2 (M ) such that, for any

Ω ∈ L M , (2.17) max{ν 2 (Ω) , ν + (Ω) , ν -(Ω)} ≤ C 2 (M ) . Proof. Since Ω ∈ L M , condition (2.
2) is satisfied. We then have,

         ν 2 (Ω) ≤ δ 2 (Ω) < δ 2 (B(M -1 )) , ν + (Ω) = µ 2 (Ω + , nn) ≤ δ 2 (Ω + ) ≤ δ 2 B(M -1 ) ∩ {u > 0} , ν -(Ω) = µ 1 (Ω + , nd) ≤ δ 1 (Ω + ) ≤ δ 1 B(M -1 ) ∩ {u > 0} ,
where we have used δ's to denote Dirichlet eigenvalues.

Proposition 2.8. Under the Assumption 2.4, there exists a constant C 3 (M ) such that, for any Ω ∈ L M , the normalized eigenfunction ψ Ω (defined in Remark 2.3-( 1)), and the normalized eigenfunction φ Ω (defined in Remark 2.5), belong to the Sobolev space H 2 (Ω), with corresponding Sobolev norm less than or equal to C 3 (M ),

(2.18) ψ Ω H 2 (Ω) + φ Ω H 2 (Ω) ≤ C 3 (M ) .
Proof. We refer to [START_REF] Grisvard | Elliptic problems in nonsmooth domains[END_REF], proofs of Theorem 3.2.1.2 and 3.2.1.3. The point we want to stress here, is that the bound is uniform with respect to the domains in L M .

Remark 2.9. The H 2 estimates in the proposition hold for convex domains. For more general Lipschitz domains, there are only H s estimates, with s = 3 2 in [START_REF] Jerison | The "hot spots" conjecture for domains with two axes of symmetry[END_REF], or s < 3 2 in [START_REF] Savaré | Regularity results for elliptic equations in Lipschitz domains[END_REF]. A counterexample is given in [START_REF] Grisvard | Elliptic problems in nonsmooth domains[END_REF].

Proposition 2.10 (Extension theorem). For any domain Ω ∈ L M , there exists a linear extension operator E Ω , such that for any s > 0,

E Ω : H s (Ω) → H s (R n ) ,
and there exists a positive constant C 4 (M, s), such that, for all ϕ ∈ H s (Ω),

(2.19)        E Ω (ϕ) H s (R n ) ≤ C 4 (M, s) ϕ H s (Ω) , E Ω (ϕ)| Ω = ϕ almost everywhere , E Ω (ϕ) is D-(anti)symmetric, if ϕ is. Furthermore, one can choose E Ω (ϕ) with compact support in B(2M ).
Proof. This proposition follows from Theorem 5 in [40, Chap. VI.3] and interpolation. We again point out that the constant

C 4 (M, s) is uniform in L M .
Finally, we mention the classical Sobolev embedding theorem, in the form we will use later on. Recall that B(R) is the open ball with center the origin, and radius R in R 2 . Proposition 2.11. For all α ∈ [0, 1[, the space H 2 (B(R)) embeds continuously in C 0,α (B(R)). The space H 1 (B(R)) embeds continuously in L p (B(R)) for all p ≥ 2. In particular, for any s, 1 ≤ s < 2, and for

any ϕ ∈ H 2 (B(R)), we have ϕ ∈ C 0,s-1 (B(R)), dϕ ∈ L 2 2-s (B(R), R 2 ),
and there exists a constant C 5 (R, s), such that

(2.20) ϕ L∞(B(R)) + dϕ L 2 2-s (B(R)) ≤ C 5 (R, s) ϕ H 2 (B(R)) .
Proof. See [START_REF] Grisvard | Elliptic problems in nonsmooth domains[END_REF], Theorem 1.4.4.1, and equations (1,4,4,3)- [START_REF] Adams | Sobolev spaces[END_REF][START_REF] Arnold | Topological properties of eigenoscillations in mathematical physics[END_REF][START_REF] Arnold | Topological properties of eigenoscillations in mathematical physics[END_REF][START_REF] Bérard | Non-boundedness of the number of nodal domains of a sum of eigenfunctions[END_REF], for the statements, and Adams [START_REF] Adams | Sobolev spaces[END_REF], Chap. IV and V, for the proofs.

Notation 2.12. From now on, we choose some s 0 ∈]1, 2[, and use the notation,

p 0 := p(s 0 ) = 2 2 -s 0
, and q 0 := q(s 0 ) = s 0 -1 > 0 .

2.3. Properties of ν + (Ω) and φ Ω . In this section, we are interested in how the D-symmetric eigenfunction φ Ω changes along a deformation Ω t of the domain. Note that in [START_REF] Jerison | The "hot spots" conjecture for domains with two axes of symmetry[END_REF], Jerison and Nadirashvili consider the D-anti-invariant eigenfunctions, in the context of the "hot spots" conjecture.

Lemma 2.13.

There exists a constant C 20 (M, s 0 ) such that, for any domains

Ω 1 , Ω 2 ∈ L M , (2.21) ν + (Ω 1 ) -ν + (Ω 2 ) ≤ C 20 d r (Ω 1 , Ω 2 ) q 0 .
Proof. For the proof, we use the following notation:

λ i = ν + (Ω i ); φ i = φ Ω i is a normalized D-invariant eigenfunction of -∆ in Ω i , belonging to ν + (Ω i ), in particular we have Ω i φ i = 0; Φ i = E Ω i (φ Ω i ) is a D-invariant extension of φ Ω i ,
given by Proposition 2.10. We also introduce the function Θ 2 such that

(2.22) Θ 2 = Φ 2 -|Ω 1 | -1 Ω 1 Φ 2 , so that Ω 1 Θ 2 = 0, and dΘ 2 = dΦ 2 .
Then, (

)

Ω 1 Θ 2 2 = Ω 1 Φ 2 2 -|Ω 1 | -1 Ω 1 Φ 2 2 .
Writing

Ω 1 Φ 2 = Ω 2 Φ 2 + Ω 1 \Ω 2 Φ 2 - Ω 2 \Ω 1 Φ 2 ,
using the fact that Ω 2 Φ 2 = Ω 2 φ 2 = 0, Lemma 2.6, Propositions 2.8, 2.10, and 2.11, we obtain,

Ω 1 Φ 2 ≤ Φ 2 ∞ (|Ω 1 \ Ω 2 | + |Ω 2 \ Ω 1 |) ,
so that there exists a constant C 20,1 (M, s 0 ) such that (2.24)

Ω 1 Φ 2 ≤ C 20,1 d r (Ω 1 , Ω 2 ) .
We also have

Ω 1 Θ 2 2 = Ω 2 Φ 2 2 + Ω 1 \Ω 2 Φ 2 2 - Ω 2 \Ω 1 Φ 2 2 -|Ω 1 | -1 Ω 1 Φ 2 2 .
Using the same arguments as above, as well as (2.2), we obtain that there exists a constant C 20,2 (M, s 0 ) such that

(2.25) 1 -C 20,2 d r (Ω 1 , Ω 2 ) ≤ Ω 1 Θ 2 2 ≤ 1 + C 20,2 d r (Ω 1 , Ω 2 ) .
Similarly, we write (2.26)

Ω 1 |dΦ 2 | 2 = Ω 2 |dΦ 2 | 2 + Ω 1 \Ω 2 |dΦ 2 | 2 - Ω 2 \Ω 1 |dΦ 2 | 2 .
Because (dΦ 2 )| Ω 2 = dφ 2 , the first integral in the right-hand side is equal to λ 2 . Letting Ω be either Ω 1 \ Ω 2 , or Ω 2 \ Ω 1 , we can write (2.27)

Ω |dΦ 2 | 2 ≤ Ω |dΦ 2 | 2/(2-s 0 ) 2-s 0 |Ω| q 0 ,
with the Notation 2.12.

As above, recalling that dΘ 2 = dΦ 2 , we conclude that there exists a constant C 20,3 (M, s 0 ) such that (2.28)

Ω 1 |dΘ 2 | 2 ≤ λ 2 + C 20,3 d r (Ω 1 , Ω 2 ) q 0 .
By symmetry between λ 1 and λ 2 , this completes the proof of the lemma.

We (2) When t tends to zero, Φ t | Ω 0 tends to φ 0 in L 2 (Ω 0 ). Furthermore, the family Φ t is relatively compact in C 0,s 0 -1 (R 2 ), and weakly compact in H 2 (R 2 ). (3) For any k ∈ N, and for any compact K ⊂ Ω 0 , the functions Φ t tend to φ 0 in C k (K).

Proof of Assertion [START_REF] Adams | Sobolev spaces[END_REF]. We begin as in the proof of Lemma 2.13. For the time being, φ t is well-defined up to sign. Let

(2.32) Θ t = Φ t -|Ω 0 | -1 Ω 0 Φ t ,
so that Ω 0 Θ t = 0, and dΘ t = dΦ t . Furthermore, the function Θ t is D-symmetric.

Then,

(2.33)

Ω 0 Θ 2 t = Ω 0 Φ 2 t -|Ω 0 | -1 Ω 0 Φ t 2 .
We introduce the notation,

δ(t) = d r (Ω t , Ω 0 ) .
The constants C 25,i which appear below only depend on M and s 0 .

Since Ωt φ t = 0, we conclude as in the proof of Lemma 2.13 that there exist constants C 25,1 and C 25,2 such that, 

   Ω 0 Φ t ≤ C 25,1 δ(t) , Ω 0 Φ 2 t -1 ≤ C 25, (2.34) 
Ω 0 |dΘ t | 2 ≤ λ t + C 25,4 δ(t) q 0 ≤ λ 0 + C 25,5 δ(t) q 0 .
Define the function

(2.37) Σ t := Θ t - Ω 0 Θ t φ 0 Φ 0 .
Then Σ t is D-symmetric and satisfies

(2.38)

Ω 0 Σ t = 0 and Ω 0 Σ t φ 0 = 0 .
It follows from our assumptions and notation that, (2.39)

Ω 0 |dΣ t | 2 ≥ µ 0 Ω 0 Σ 2 t ,
(2.40)

Ω 0 Σ 2 t = Ω 0 Θ 2 t - Ω 0 Θ t φ 0 2 .
Using the fact that (dΦ 0 )| Ω 0 = dφ 0 , and the variational definition of (λ 0 , φ 0 ), we also have (2.41)

Ω 0 |dΣ t | 2 = Ω 0 |dΘ t | 2 -λ 0 Ω 0 Θ t φ 0 2 .
From (2.41) and the estimates on Θ t , there exists a constant C 25,6 such that (2.42)

Ω 0 |dΣ t | 2 ≤ λ 0 -λ 0 Ω 0 Θ t φ 0 2 + C 25,6 δ(t) .
From (2.39), (2.40) and (2.42), it follows that there exist constants such that (2.43)

Ω 0 |dΣ t | 2 ≥ µ 0 1 -C 25,7 δ(t) - Ω 0 Θ t φ 0 2 .
and hence

(2.44)

Ω 0 Θ t φ 0 ≥ 1 - (1 + µ 0 ) C 25,8 µ 0 -λ 0 δ(t) q 0 .
From (2.44), we deduce that for δ(t) small enough, the integral

Ω 0 Θ t φ 0 is not zero. Note that Ω 0 Θ t φ 0 = Ω 0 Φ t φ 0 . Write Ω 0 Φ t φ 0 = Ω 0 ∩Ωt φ t φ 0 + Ω 0 \Ωt Φ t φ 0 ,
and note that the second term tends to zero with δ(t). It follows that Ω 0 ∩Ωt φ t φ 0 = 0 , provided that δ(t) is small enough. This means that we can choose the sign of φ t such that Ω 0 ∩Ωt φ t φ 0 > 0 , provided that δ(t) is small enough. This proves the first assertion.

Proof of Assertion [START_REF] Alessandrini | Nodal lines of eigenfunctions of the fixed membrane problem in general convex domains[END_REF]. We now assume δ(t) to be small enough, so that we can uniquely determine the eigenfunction φ t by φ t L 2 (Ωt) = 1, with Ω 0 ∩Ωt φ t φ 0 > 0. More precisely, by (2.44), there exists a constant C 25,9 (M, s 0 , λ 0 , µ 0 ) such that (2.45)

Ω 0 Φ t φ 0 ≥ 1 -C 25,9 δ(t) q 0 .
Using (2.34), (2.45), and the fact that φ 0 is normalized, there exists a constant C 25,10 (M, s 0 , λ 0 , µ 0 ) such that (2.46)

Ω 0 (Φ t -φ 0 ) 2 ≤ C 25,10 δ(t) q 0 .
It follows that the functions Φ t tend to φ 0 in L 2 (Ω 0 ).

The family {φ t , t ≥ 0} is uniformly bounded in the H 2 (Ω t ) (Proposition 2.8), and hence the family {Φ t , t ≥ 0} is uniformly bounded in H 2 (R 2 ), with compact support in B(2M ) (Proposition 2.10). It follows that it is relatively compact in C 0,s 0 -1 (R 2 ), and weakly compact in H 2 (R 2 ). The second assertion follows.

Proof of Assertion (3).

Let k be an integer, and let K ⊂ Ω 0 be any compact subset. For t small enough, we have K ⊂ Ω t . By interior regularity, Φ t | K = φ t | K is uniformly bounded in C k+1 (K) norm, and hence admits a convergent subsequence Φ t j in C k (K). Inequality (2.46) shows that the limit of this subsequence must be φ 0 . It follows that Φ t j converges to φ 0 in C k (K). Because the limit is independent of the subsequence, it follows that φ t tends to φ 0 in C k (K).

Remark.

Here is an alternative argument for the last assertion, which gives a stronger control of the convergence.

Let χ 1 , χ 2 ∈ C ∞ 0 (Ω 0 ) such that χ 2 = 1 on supp(χ 1 ). We have

(2.47) ∆χ 1 (φ t -φ 0 ) = [∆, χ 1 ](χ 2 (φ t -φ 0 )) -χ 1 (λ t φ t -λ 0 φ 0 ) = [∆, χ 1 ](χ 2 (φ t -φ 0 )) -χ 1 λ t (φ t -φ 0 ) -χ 1 (λ t -λ 0 )φ 0 .
Applying (I -∆) -1 2 to this equality, and using Lemma 2.13 and (2.46), we get

||χ 1 (φ t -φ 0 )|| H 1 ≤ Cδ(t) q 0 2 .
Hence, for any compact K ⊂ Ω 0 , we have

||φ t -φ 0 || H 1 (K) ≤ Cδ(t) q 0 2 .
Similarly, starting from (2.47), given any k ∈ N, and any compact K, we obtain,

||φ t -φ 0 || H k (K) ≤ C(k, K)δ(t) q 0 2 .

Domains with the symmetry of an equilateral triangle

3.1. Preparation. Let T e be the equilateral triangle, with vertices at (0, 0), (1, 0) and ( 12

, √ 3 
2 ). The symmetry group of T e is generated by the mirror symmetries with respect to the side bisectors.

Up to scaling, the positive first Dirichlet eigenfunction of T e is given by the formula (see [START_REF] Bérard | On Courant's nodal domain property for linear combinations of eigenfunctions[END_REF]),

(3.1) ξ d 1 (x, y) := sin( 4πy √ 3 ) + sin 2π(x - y √ 3 ) -sin 2π(x + y √ 3 
) , which can also be written

(3.2) ξ d 1 (x, y) = 4 sin 2πy √ 3 sin π(x - y √ 3 ) sin π(x + y √ 3 
) . This proposition is a consequence of [START_REF] Caffarelli | Convexity of solutions of semilinear elliptic equations[END_REF]Corollary 4.6]. We give an elementary proof using the following lemma [28]. Proof of the lemma. Let η := log(ϕ). Then,

ϕ 2 ∆η = ϕ ∆ϕ -|dϕ| 2 .
Since ϕ is positive and superharmonic, it follows that ∆η < 0, so that Hess(η) has at least one negative eigenvalue. On the other hand, since we work in dimension 2, the positivity of det Hess(η) implies that both eigenvalues of Hess(η) have the same sign. It follows that both eigenvalues are negative, and hence that Hess(η) is negative definite. The function ϕ is (strictly) log-concave, and the lemma follows.

Proof of the proposition. It is easy to see that the only critical points of the function ξ d 1 in the closed triangle are the vertices and the centroid. This function is invariant under the mirror symmetries with respect to the side bisectors of the triangle, and under the rotations with center the centroid, and angles ± 2π 3 . It follows that its level sets have the same symmetries. Clearly, ξ d 1 is positive and superharmonic. It remains to show that det Hess(log ξ d 1 ) is positive. This can be done by brute force. Let ξ := log(ξ d 1 ). A Maple-aided computation gives,

           det Hess(ξ) = 4π 4 3 N (ξ) D(ξ) , with N (ξ) = 2 -2 cos( 2πy √ 3 ) cos π(x -y √ 3 ) cos π(x + y √ 3 ) , D(ξ) = (ξ d 1 ) (3.3) 
2 . The proof of Proposition 3.1 is complete.

Notation.

We shall now work with the equilateral triangle T 0 , with vertices A = (-1 2 , -

√ 3 6 ), B = ( 1 2 , - √ 3 6 
) and C = (0, √

3 ), and centroid O = (0, 0). Making the change of coordinates x = 1 2 +u and y = √ 3 6 +v, in ξ d 1 , we obtain a first Dirichlet eigenfunction for T 0 ,

(3.4) ϕ d 1 (u, v) = 4 sin π 3 (1+2 √ 3v) sin π 3 (1-3u+ √ 3v) sin π 3 (1-3u- √ 3v) .
Define the function, Proof. We again make use of Lemma 3.2. The first two assertions are clear. The function f 0 is clearly invariant under the symmetries of T 0 , so are its level sets. An easy computation gives ∆f 0 = -36, so that f 0 is superharmonic. Let g := log(f 0 ). Define the functions A uu , A uv and A vv by the formulas 

(3.5) f 0 (u, v) := (1 + 2 √ 3v) (1 + 3u - √ 3v) (1 -3u - √ 3v) .
A uu = f 2 0 ∂ 2 g ∂u 2 , etc. .
A uu A vv -(A uv ) 2 = 324 f 2 0 (1 + 6u 2 + 6v 2 ) , so that (3.6) det Hess(g)(u, v) = 324 1 + 6u 2 + 6v 2 f 2 0 (u, v) .
This completes the proof of Proposition 3.3. The isometry group of T 0 is the group

(3.7) G 0 = I, D A , D B , D C , R, R 2 .
where D A , is the mirror symmetry with respect to the bisector D A , R the rotation with center 0 and angle 2π 3 . To construct smooth counterexamples to ECP, the idea is to start from the equilateral triangle, and to consider the class L M,0 of domains Ω with the following properties, One can show that these families of domains belong to the class L M,0 for some M > 0, see (3.8). In Section 4, in order to prove Theorem 1.2, we shall consider yet another family, and prove that it is indeed in the class L M for some M .

We conclude this section with a spectral property of the domains in the class L M,0 . Proposition 3.5. Let Ω be a smooth domain in the class (3.8). Then, the first Neumann eigenvalues of Ω satisfy

(3.9) 0 = ν 1 < ν 2 = ν 3 < ν 4 ≤ • • •
More precisely, the eigenspace E(ν 2 ) admits a basis {φ, ψ} such that

D * C φ = φ, and D * C ψ = -ψ. Furthermore, Z(φ) ∩ D C = {O}, and 
Z(ψ) = D C ∩ Ω.
Proof. The proof is based on the following properties: a Neumann eigenfunction ξ of Ω has finitely many interior critical zeros, finitely many boundary zeros, and its nodal set consists of finitely many simple regular arcs whose end points are either interior critical zeros, or boundary zeros. We do not need to know the local structure at boundary zeros.

Let ξ = 0 be a 2nd Neumann eigenfunction. Assertions (a)-(c) hold for a simply-connected regular domain.

(a)

The nodal set Z(ξ) cannot contain any interior closed curve. Indeed, there would otherwise exist an interior nodal domain ω of ξ, for which we could write ν 2 (Ω) = δ 1 (ω) > δ 1 (Ω), contradicting the inequality ν 2 (Ω) < δ 1 (Ω) due to to Pólya [38] and Szegö [43] (here the δ's refer to Dirichlet eigenvalues).

(b)

The nodal set Z(ξ) does not contain any interior critical zero. Assume this is not the case. Then, there would exist an interior critical x 0 , and at least four semi-arcs issuing from x 0 and contained in Z(ξ). Continuing these arcs, we either obtain a closed nodal curve, or reach the boundary at distinct points. The first case is impossible by (a). In the second case, because Ω is simply-connected, we would obtain at least four nodal domains, contradicting Courant's theorem.

(c) The nodal set of any 2nd Neumann eigenfunction ξ in Ω consists of a single simple curve without critical zeros, meeting the boundary at two distinct points.

The fact that such a curve must be simple and without critical zeros follows from (a) and (b). The fact that its boundary points must be distinct follows from (a). Assume that there exist two such curves. By (b), they cannot meet in the interior of Ω. If they had identical boundary points, we would get a contradiction by (a). In the other case, we would get a contradiction with Courant's theorem.

We now assume that Ω has the symmetries of the equilateral triangle.

Let D := D C , and define the set of functions (3.10)

S σ := {ϕ | D * ϕ = σϕ} , σ ∈ {+, -} .
Because D is an isometry, D * leaves E(ν 2 ) globally invariant, and the eigenspace decomposes as

(3.11) E(ν 2 ) = (E(ν 2 ) ∩ S + ) ⊕ (E(ν 2 ) ∩ S -) .
Because the rotation R is an isometry, R * leaves E(ν 2 ) globally invariant, and so does the map (3.12)

T := R * -R * 2
which commutes with the Laplacian ∆.

It is easy to see that (e) The dimension of E(ν 2 ) is at least 2. Indeed, we would otherwise have dim E(ν 2 ) = 1, and hence, for some 0 = ξ ∈ E(ν 2 ), R * ξ = ±ξ. Since R * = I, this would imply that R * ξ = ξ, contradicting (d).

D * • T = -T • D * , so that (3.13) T (E(ν 2 ) ∩ S ± ) ⊂ E(ν 2 ) ∩ S ∓ , (3.14 
(f) The dimension of E(ν 2 ) ∩ S -is at most 1. Indeed, if 0 = ξ ∈ E(ν 2 )∩S -, then ξ vanishes on D ∩Ω, and it cannot vanish elsewhere by Courant's theorem. This implies that ξ| Ω + is the first eigenfunction of Ω + (with mixed boundary conditions), and hence unique up to scaling. This implies that ξ itself is unique up to scaling.

(g) The dimension of E(ν 2 ) ∩ S + is at least 1. Indeed, by (e) and (f), there exists 0 = ξ ∈ E(ν 2 ) ∩ S -. This implies that φ :=

1 2 (ξ + D * ξ) is a nonzero function in E(ν 2 ) ∩ S + .
(h) Both spaces E(ν 2 ) ∩ S ± have dimension 1, and there exists a basis {φ, ψ} of E(ν 2 ), such that φ is D-symmetric, and ψ D-anti-symmetric. Using (3.12), we see that T (ξ) = 0 if and only if R * = ξ, so that T is injective from E(ν 2 ) into itself. Using (3.13) in both directions, we infer that dim E(ν 2 ) ∩ S ± = 1, and the assertion follows.

(i) We have Z(ψ) = D ∩ Ω and Z(φ) ∩ D = {O}. We have already proved the first part of the assertion in (f). Up to scaling, we have φ = T (ψ). Since R(O) = O, the definition of T implies that φ(O) = 0. The fact that Z(ψ) meets D at exactly one point follows from (a), (c) and the symmetry of φ. Remark 3.6. Note that the inequality ν 2 (ω) < δ 1 (ω) is valid for any sufficiently regular, bounded domain, without any convexity assumption. The fact that a second Neumann eigenfunction cannot have a closed nodal line motivated the "closed nodal line conjecture for a second Dirichlet eigenfunction", see [START_REF] Payne | Isoperimetric inequalities and their applications[END_REF], last paragraph on page 466, and Conjecture 5, and [29].

Remarks 3.7. Concerning the multiplicity of ν 2 , we can mention the following.

(1) According to [33, Remarks (2), p. 206], if Ω is close enough to T 0 in the sense of the Hausdorff distance, then

dim E (ν 2 (Ω)) = dim E (ν 2 (T 0 )) = 2 .
(2) For any smooth simply-connected domain

Ω, dim E (ν 2 (Ω)) ≤ 3.
This bound was first given by Cheng [START_REF] Cheng | Eigenfunctions and nodal sets[END_REF] for smooth simplyconnected compact surfaces without boundary, see also the assertion in [26, line (-8), p. 1170]. In this latter paper, the authors indicate that the assumption that Ω is smooth is probably too strong. The smoothness assumption is used to describe the local behaviour of the nodal set at a boundary point. In the non-smooth case, it might be possible to obtain a result on the local structure of the nodal set similar to the one described by Alessandrini [START_REF] Alessandrini | Nodal lines of eigenfunctions of the fixed membrane problem in general convex domains[END_REF] for the Dirichlet boundary condition. See also [22] (3) In [35, Theorem 2.3], Lin proved that the second Dirichlet eigenspace of a smooth convex domain has dimension at most 2.

Proof of Theorem 1.2

To prove Theorem 1.2, we apply the deformation technique of Section 2 to a special family of domains in the class L M,0 .

4.1. Construction of the family Ω t . Let t be a nonnegative parameter. Introduce the function

(4.1) f 0,t (u, v) = (1 + t + 2 √ 3v) (1 + t + 3u - √ 3v) (1 + t -3u - √ 3v) .
When t = 0, we recover the function f 0 defined by (3.5). When t > 0, the function f 0,t is a torsion function for the triangle T 0,t obtained from T 0 by dilation of ratio (1 + t). This equilateral triangle has vertices

A t = (-1+t 2 , - √ 3(1+t) 6 
), B = ( 1+t 2 , -√ 3(1+t) 6

) and C = (0,

√ 3(1+t) 3 
).

An immediate computation gives that

(4.2) f 0,t (A) = f 0,t (B) = f 0,t (C) = t 2 (3 + t) .
Definition 4.1. Define the domain Ω t to be the super-level set has the following properties.

(4.3) Ω t := f 0,t > t 2 (3 + t) .
(1) Ω 0 = T 0 .

( (5) For 0 ≤ t ≤ 1 2 , the domains Ω t belong to the class L M for some positive constant M .

) 2 
Proof. Assertion (1) is obvious. Assertion [START_REF] Alessandrini | Nodal lines of eigenfunctions of the fixed membrane problem in general convex domains[END_REF]. The first part follows from Proposition 3.3 by dilation of ratio (1 + t). For the second part, note that, by definition of Ω t , the vertices A, B and C belong to ∂Ω t . The inclusion (of open sets) T 0 ⊂ Ω t follows from the convexity of Ω t . Assertion (3). This follows from Proposition 3.3. Assertion [START_REF] Arnold | Topological properties of eigenoscillations in mathematical physics[END_REF]. The domain Ω t can also be defined by {g t > 0}, where

g t (u, v) = f 0,t (u, v) -t 2 (3 + t) = f 0 (u, v) + 3t -9t(u 2 + v 2 ) .
Let t 1 < t 2 . To prove that Ω t 1 ⊂ Ω t 2 , it suffices to consider the points (u, v) ∈ Ω t 1 \T 0 . For such (u, v), we have g t 1 (u, v) > 0 and f 0 (u, v) ≤ 0. This implies that 3t 1 (1 -3u 2 -3v 2 ) > -f 0 (u, v) ≥ 0 , and hence that 1 -3u 2 -3v 2 > 0. On the other hand, we have

g t 1 (u, v) -g t 2 (u, v) = 3(t 1 -t 2 )(1 -3u 2 -3v 2 ) < 0 , i.e., g t 2 (u, v) > 0, or (u, v) ∈ Ω t 2 .
Assertion (5). Since T 0 ⊂ Ω t ⊂ T 0,t , the domains satisfy condition (2.2). It remains to show that they satisfy condition (2.5), i.e., that they can be defined in polar coordinates, as Instead of polar coordinates (ρ, θ), we use "inverse" polar coordinates (r, θ), where r ρ ≡ 1. The inverse polar equation of the side BC of T 0 , is

Ω t = {(r, θ) | 0 ≤ r < ρ(t, θ)}
(4.4) r A (θ) = 2 √ 3 cos(θ - π 6 ) , for θ ∈ [- π 6 , π 6 
] .

Let r = r(t, θ) be the inverse polar equation of the arc BC ⊂ ∂Ω t . Because T 0 ⊂ T 0,t , we have

(4.5) 1 1 + t r A (θ) ≤ r(t, θ) ≤ r A (θ) for θ ∈ [- π 6 , π 6 ] .
Using the definition of Ω t , we also have that r(t, θ) is a root of the equation

(4.6) (1 + 3t) r 3 -9(1 + t) r + 6 √ 3 sin 3 (θ) -18 √ 3 sin(θ) cos 2 (θ) = 0 .
or, equivalently, (

(1 + 3t) r 3 -9(1 + t) r -6 √ 3 sin(3θ) = 0 .

Looking at the global picture of f -1 0,t (0), it is easy to see that this equation has one simple root satisfying (4.5). Taking the derivative r θ with respect to θ, we obtain, (4.8)

(1 + 3t) r 2 -3(1 + t) r θ -6 √ 3 cos(3θ) = 0 .

Note that (4.9) (1 + 3t) We now consider the family Ω t . Apply Lemma 2.14 to the family φ t , and get that for t sufficiently small 

r 3 -3(1 + t) r = (1 + 3t) r 3 -9(1 + t) r + 6(1 + t)
φ t (A ) + a = φ t (B ) + a < 0 . Call C(t)
∈ C 0 (R 2 )∩H 2 (R 2 )
such that m k converges to some m ∈ [CC(0)] and Φ t j converges to Φ uniformly in B(2M ), and in particular in T 0 . Since, by Lemma 2.14, Φ t j | T 0 converges to φ 0 in D (T 0 ), it follows that φ 0 = Φ| T 0 and this extends by continuity to T 0 . In particular, we would get Φ(m) + a = φ 0 (m) + a ≤ 0. A contradiction.

The claim proves that for t small enough, the points A and B belong to distinct connected components of Ω t \{φ t + a = 0}, so that φ t + a has at least three connected component (a "positive" one, and two "negative ones").

In particular this proves that, for t small enough, the domains Ω t provide a counterexample to the Extended Courant property.

We shall now prove that, for t small enough, φ t + a has exactly three nodal domains. We proceed with the proof that, for t small enough, φ t + a has exactly three nodal domains. According Lemma 4.3, we have to prove that {φ t + a < 0} has at most two connected components. The proof goes as follows.

First, we observe that φ 0 is naturally defined as a trigonometric polynomial on all R 2 . Observe that for t small enough, {φ 0 + a = 0} ∩ Ω t consists of two symmetric curves crossing ∂Ω t transversally at the points ac(t), ab(t), ba(t), bc(t). As t tends to 0, these points tend to the intersection points of {φ 0 + a = 0} with ∂T 0 , see Figure 4.5.

For > 0 small enough, we introduce, 

(4.14) Ω -(a + , φ 0 , t) := {φ 0 + a + ≤ 0} ∩ Ω t , ( 4 
) := {-ε ≤ φ 0 + a ≤ ε} ∩ Ω t .
These domains are displayed respectively in green, blue, and white in Claim 2. For t small enough, (4.17)

Ω -(a + , φ 0 , t) ⊂ {φ t + a < 0} , Ω + (a -, φ 0 , t) ⊂ {φ t + a > 0} .
Indeed, if the first inclusion were not true, there would exist a sequence t n > 0, tending to 0, and x n ∈ Ω tn , such that φ tn (x n ) + a ≥ 0 and Φ tn bounded in H 2 . As above, after extraction of a subsequence we can assume that x n → x ∞ , and that Φ tn tends to Φ in C 0 . This implies the existence of x ∞ such that Φ(x ∞ ) = φ 0 (x ∞ ) ≥ -a. But x ∞ ∈ Ω -(a + , φ 0 , 0) leading to a contradiction. The second inclusion can be proved in a similar way.

As a consequence, for t small enough, there are two symmetric components of {φ t + a < 0}, each one containing a component of {φ 0 + a + ≤ 0} ∩ Ω t . Furthermore, the "positive" component of φ t + a contains Ω + (a -, φ 0 , t). We deduce from this localization, that a third "negative" connected component of φ t + a, if any, is necessarily contained in Ω(a, ε, φ 0 ), hence stays away from the vertices A, B and C. where a 0 = 0 is a normalizing constant. 

2 ], the zero set of ∂ u φ 0 (green) and the zero set of ∂ v φ 0 (magenta). Claim 4. For t small enough, φ t + a < 0 has exactly two connected components. For the proof, we proceed by contradiction. If not, there exists a sequence t n → 0, and a connected component ω(t n ) of φ t + a < 0, which according to Claim 2 must be contained in Ω(a, ε, φ 0 ). Let x n ∈ ω(t n ) be the point at which φ tn achieves its minimum in ω(t n ). We have necessarily ∇φ tn (x n ) = 0. After extraction of a subsequence if necessary, we can assume that x n converged to some x ∞ which belongs to T 0 , and satisfies -≤ φ 0 (x ∞ ) + a ≤ . There are two possibilities. If x ∞ ∈ T 0 , using Lemma 2.14, we get that φ tn converges to φ 0 in a small ball around x ∞ in C 1 sense, and this implies that ∇φ 0 (x ∞ ) = 0. A contradiction with Claim 3. The second possibility is that x ∞ ∈ ∂T 0 . Here, we have to use a uniform boundary regularity for the Neumann Laplacian in Ω t when we are far from A, B, C. We consider a small ball centered at ∂T 0 ∩ {φ 0 + a = 0} of radius r( ) and containing ∂T 0 ∩ {-2 ≤ φ 0 + a ≤ 2 } (hence x ∞ ). For each t > 0, we consider a function χ(t, x) with support in the ball, equal to 1 in a fixed neighborhood of x ∞ and such that ∂ ν χ(t, x) = 0 on ∂Ω t . It is easy to get such a function C ∞ in both variables t and x due to the uniform regularity of ∂Ω(t) there (for t ∈ [0, t 0 ] with t 0 > 0 small enough). We now consider φt := χ(t, x)φ t in Ω t . This is a bounded family in H 2 , and φt satisfies the Neumann condition. We have -∆ φt = [-∆, χ(t, •)]φ t + λ t φt .

The left hand side is uniformly bounded in H 1 , and supported in the ball B(x ∞ , r( )). We have a uniform (with respect to t) regularity of this Neumann problem (with locally C ∞ boundary), and we get that the family φt is bounded in H 3 (Ω(t)). We now extend it in a bounded family Φt ∈ H 3 0 (B(0, 2M )). Coming back to our sequence φ tn , we observe that in particular Φtn is a bounded family in H 3 0 (B(0, 2M )). Extracting a subsequence if necessary, we can assume that Φtn converges in C 1 (B(0, 2M )) to Φ∞ . Now we have ∇ φtn (x n ) tends to ∇ Φ∞ (x ∞ ). For n large enough ∇ φtn (x n ) = 0 which implies ∇ Φ∞ (x ∞ ) = 0. Looking at the restriction to T 0 , we also have Φ∞ = χ(0, •)φ 0 in T 0 in D (T 0 ), which extends to T 0 by continuity. This implies 0 = ∇ Φ∞ (x ∞ ) = ∇φ 0 (x ∞ ), in contradiction with Claim 3.

Note. The preceding argument also shows that there cannot exist a second positive connected component for t > 0 small enough (without making use of the theorem of Gladwell and Zhu).

(1. 1 )

 1 -∆ϕ = µ ϕ in Ω , B(ϕ) = 0 on ∂Ω , where the boundary condition B(ϕ) is either the Dirichlet boundary condition ϕ| ∂Ω = 0, or the Neumann boundary condition ∂ϕ ∂ne | ∂Ω = 0 (here n e denotes the exterior unit normal).

( 1

 1 .5) β 0 (ϕ) ≤ κ(µ) . When d = 1, given a finite interval ]α, β[, instead of the eigenvalue problem for the Laplacian, we consider the Sturm-Liouville eigenvalue problem, (1.6) -y + q y = µ y in ]α, β[ , B(y) = 0 at {α, β} , where q is a smooth real function on [α, β]. There are striking differences between the eigenvalue problems (1.6) (d = 1) and (1.1) (d ≥ 2).

Figure 1 . 1 .

 11 Figure 1.1. Level sets of one of the second Neumann eigenfunctions of the equilateral triangle with rounded corners

( 2 )

 2 For any t ∈]0, t 0 [, the ECP(Ω t , n) is false. More precisely, for each t, there exists a linear combination of a symmetric 2nd Neumann eigenfunction and a 1st Neumann eigenfunction of Ω t , with precisely three nodal domains.

Proposition 3 . 1 ., √ 3 6

 313 The function ξ d 1 is positive in the interior of T e . It has a unique critical point at ( 1 2 ), the centroid of the triangle. For 0 < c < max Te ξ d 1 , the level curves {ξ d 1 = c} are smooth strictly convex curves which have the same symmetries as T e .

Lemma 3 . 2 .

 32 Let Ω be a convex bounded open set in R 2 . Let ϕ be a positive, superharmonic function (∆ϕ < 0) in Ω. If det Hess (log(ϕ)), the determinant of the Hessian of the function log(ϕ), is positive, then the super-level sets {ϕ > c} are (strictly) convex.

Proposition 3 . 3 .

 33 The function f 0 is positive in the interior of T 0 . It has a unique critical point at O, the centroid of the triangle. For 0 < c < 1, the level curves {f 0 = c} are smooth strictly convex curves which have the same symmetries as T 0 .

Figure 3 . 1 .

 31 Figure 3.1. Level sets of ϕ d 1 (left) and f 0 (right)

Remark 3 . 4 . 3 . 2 .

 3432 Note that the function f 0 is (up to scaling) the torsion (or warping) function of the equilateral triangle, see [24, Section 7]. The square root of the warping function f Ω is known to be strictly concave, see [30, Theorem 4.1] Domains with G 0 -symmetry. Recall that T 0 is the equilateral triangle with vertices A, B, and C, and centroid O. Call D A , D B and D C the bisectors of its sides. The coordinates are chosen so that D C = {u = 0}, see Figure 3.2.
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 3 .8) Ω ∈ L M , Ω admits G 0 as symmetry group, see Figure 3.3.
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 3233 Figure 3.2. The equilateral triangle T 0

  ) ker(T ) = ker(R * -I) , and that (3.15) S σ ∩ ker(T ) = ϕ | D * M ϕ = σ ϕ , ∀M ∈ {A, B, C} . The following assertions hold. (d) If 0 = ξ ∈ E(ν 2 ), then R * ξ = ξ. Indeed, using (c) and the Rinvariance of ξ, Z(ξ) would contain at least three boundary points, contradicting (c).

Figure 4 . 1 .Proposition 4 . 2 .

 4142 Figure 4.1. Domains Ω t

6 (

 6 where the functions ρ(t, •) are uniformly Lipschitz. Due to rotational invariance, it suffices to look at the part of ∂Ω t contained in the sector BOC, see Figure4.2. This part of the boundary is symmetric with respect to the bisector D A , so that it suffices to look at the sector BOa. With respect to the u-axis Ou, the angle θ then varies fromπ OB) to π 6 (Oa).
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 4 Figure 4.2.
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 22 Proof of Theorem 1.The fact that the equilateral triangle T 0 provides a counterexample to ECP(T 0 , n) follows from the analysis of the level lines of the D-symmetric second Neumann eigenfunction φ T 0 , see [11, Section 3]. Some of the levels lines of φ T 0 are displayed in Figure 4.3.
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 43 Figure 4.3. Level lines of the second symmetric Neumann eigenfunction of the equilateral triangle
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 44 Figure 4.4. Proof of Theorem 1.2.
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 4 Figure 4.5.

Claim 3 . 3 2

 33 The only critical points of the function φ 0 in the square [] are the vertices A, B, C, and the mid-point M C of the side AB. We refer to [9] for the explicit expression of the Neumann eigenvalues and eigenfunctions of the equilateral triangle T e . After translation and rotation, we find that the second Neumann eigenfunction of T 0 , which is symmetric with respect to D C is given by the formula, (4.18) φ0(u, v) = a0 cos 4πu
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 46 Figure 4.6. Localization
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 47 Figure 4.7. Localization of the critical points

  Let {Ω t } 0≤t≤a be a family of domains in the class L M , satisfying Assumption 2.4. Assume that d r (Ω t , Ω 0 ) tends to zero when t tends to zero.(1) For d r (Ω t , Ω 0 ) small enough, the function φ t can be uniquely defined by the normalization

	We also use the notation,		
	(2.30) λ Observe that Assumption 2.4 on Ω 0 implies that
	(2.31)	λ 0 < µ 0 .	
	Lemma 2.14. Ωt	φ 2 t = 1 and	Ωt∩Ω 0	φ t φ 0 > 0 .

now consider a family {Ω t } 0≤t≤a of domains in the class L M . We use the notation, (2.29) Ω t,+ := Ω t ∩ {u > 0} , and we decompose the boundary ∂Ω t,+ into two parts, ∂Ω t ∩ {u > 0} and D ∩ Ω t,+ . We assume furthermore that the domains Ω t satisfy the Assumption 2.4, i.e., that the eigenvalues ν + (Ω t ), or equivalently the eigenvalues µ 2 (Ω t,+ , nn), are simple. Call φ t an eigenfunction associated with ν + (Ω t ), with L 2 -norm 1. It is uniquely defined up to sign. Denote its extension E Ωt (φ t ) by Φ t (see, Proposition 2.10). Recall that φ t and Φ t are both symmetric with respect to D. t := ν + (Ω t ) = µ 2 (Ω t,+ , nn) , µ 0 := µ 3 (Ω 0,+ , nn) ,

  Using the condition (2.2) to control |Ω 0 |, it follows that there exist constants C 25,3 ,. . . , C 25,5 , such that

	(2.35)	1 -C 25,3 δ(t) ≤	Ω 0	Θ 2 t ≤ 1 + C 25,3 δ(t) ,
	and, using Lemma 2.13,		
	(2.36)			

2 δ(t) .

  For t > 0, the domain Ω t is strictly convex, bounded, and open, with C ∞ boundary. Furthermore, T 0 ⊂ Ω t , and A, B, C ∈ ∂Ω t . (3) The domain Ω t has the symmetry group G 0 . (4) The family Ω t is increasing, for 0 < t 1 < t 2 , Ω t 1 ⊂ Ω t 2 .

  the intersection point of the bisector D C with ∂Ω t , opposite to the vertex C. For t sufficiently small,φ t | [CC(t)] + a > 0.Indeed, we could otherwise find a sequence t k , tending to zero, and a point m k ∈ [CC(t k )], such that φ t k (m k ) + a ≤ 0. The family Φ t k is bounded in H 2 with compact support in B(0, 2M ). Hence, there exists a subsequence t j which tends to 0, and a function Φ

	Claim 1.

  Lemma 4.3. Let {ϕ n , n ≥ 1} be an orthonomal basis of eigenfunctions of the Neumann problem in a bounded domain Ω, associated with the eigenvalues 0 = ν
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(Ω) < ν 2 (Ω) ≤ . . .. Choose ϕ 1 (a constant function) to be positive. Then, for any a > 0, the set Ω\{ϕ n + aϕ 1 = 0} has at most (n -1) connected components in which ϕ n + a is positive.

Remark 4.4. A statement analogous to Lemma 4.3, for the Dirichlet problem in Ω, appears as Theorem 1 in [19]. The proof given by Gladwell-Zhu is similar to the proof of Courant's nodal domain theorem, and turns out to apply to both the Dirichlet and the Neumann boundary conditions, hence to Lemma 4.3. The examples of rectangles with cracks in

[START_REF] Bérard | On Courant's nodal domain property for linear combinations of eigenfunctions[END_REF] Section 3] 

show that one can a priori not control the number of connected components of Ω\{ϕ n + aϕ 1 = 0} in which ϕ n + a is negative.

Generally speaking, numerical softwares do not necessarily produce the symmetric eigenfunctions when an eigenvalue is not simple.

By this, we mean "up to multiplication by a nonzero scalar".