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LEVEL SETS OF CERTAIN NEUMANN
EIGENFUNCTIONS UNDER DEFORMATION OF

LIPSCHITZ DOMAINS
APPLICATION TO THE EXTENDED COURANT

PROPERTY

PIERRE BÉRARD AND BERNARD HELFFER

Abstract. In this paper, we prove that the Extended Courant
Property fails to be true for certain smooth, strictly convex do-
mains with Neumann boundary condition: there exists a linear
combination of a second and a first Neumann eigenfunctions, with
three nodal domains. For the proof, we revisit a deformation argu-
ment of Jerison and Nadirashvili (J. Amer. Math. Soc. 2000, vol.
13). This argument being interesting in itself, we give full details.
In particular, we carefully control the dependence of the constants
on the geometry of our Lipschitz domains along the deformations.

Résumé. Dans cet article, nous montrons que la “propriété éten-
due de Courant” est fausse pour certains domaines convexes lisses
avec condition au bord de Neumann : il existe une combinai-
son linéaire d’une première et d’une seconde fonctions propres de
Neumann ayant trois domaines nodaux. Pour la démonstration,
nous reformulons un argument de Jerison et Nadirashvili (J. Amer.
Math. Soc. 2000, vol. 13). Cet argument étant intéressant en lui-
même, nous détaillons la preuve. En particulier, nous explicitons
la dépendance des constantes par rapport à la géométrie des do-
maines lipschitziens le long des déformations.

1. Introduction

Let Ω ⊂ Rd be a bounded domain (open and connected), with d ≥ 2.
We assume that Ω is smooth enough, and we consider the eigenvalue
problem

(1.1)
{ −∆ϕ = µϕ in Ω ,

B(ϕ) = 0 on ∂Ω ,

where the boundary condition B(ϕ) is either the Dirichlet boundary
condition ϕ|∂Ω = 0, or the Neumann boundary condition ∂ϕ

∂ne
|∂Ω = 0

(here ne denotes the exterior unit normal).
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We write the eigenvalues of (1.1) in nondecreasing order, with multi-
plicities, starting with the index 1,
(1.2) µ1(Ω, a) < µ2(Ω, a) ≤ µ3(Ω, a) ≤ · · · ,
where a ∈ {d, n} denotes the boundary condition.
Given an eigenvalue µ(Ω, a) of (1.1), we denote by E (µ(Ω, a)) the cor-
responding eigenspace. Given an eigenfunction ϕ ∈ E (µ(Ω, a)), we
denote by
(1.3) Z(ϕ) = {x ∈ Ω | ϕ(x) = 0}
the nodal set of ϕ, and by β0(ϕ) the number of nodal domains (the
connected components of Ω\Z(ϕ)) of the function ϕ.
Given an eigenvalue µ = µ(Ω, a) of (1.1), we denote by κ(µ) the least
index of µ,
(1.4) κ(µ) = min{k | µk(Ω, a) = µ} .
The following classical theorem was proved by R. Courant in 1923, see
for example [16, § VI.6].

Theorem 1.1 (Courant’s nodal domain theorem). Let µ be an eigen-
value of (1.1), and ϕ ∈ E(µ) a corresponding eigenfunction. Then,
(1.5) β0(ϕ) ≤ κ(µ) .

When d = 1, given a finite interval ]α, β[, instead of the eigenvalue
problem for the Laplacian, we consider the Sturm-Liouville eigenvalue
problem,

(1.6)
{ −y′′ + q y = µ y in ]α, β[ ,
B(y) = 0 at {α, β} ,

where q is a smooth real function on [α, β]. There are striking differ-
ences between the eigenvalue problems (1.6) (d = 1) and (1.1) (d ≥ 2).
First difference.
When d = 1, a classical theorem of C. Sturm [41] states that the
eigenvalues of (1.6) are all simple, and that an eigenfunction of (1.6),
associated with the nth eigenvalue, has exactly n nodal domains.
When d ≥ 2, the eigenvalues of (1.1) may have multiplicities (this is
for example the case for a square with either Dirichlet or Neumann
condition on the boundary). By Courant’s nodal domain theorem, an
eigenfunction of (1.1), associated with the nth-eigenvalue has at most
n nodal domains. However,

(1) For the round sphere S2, and for the square with Dirichlet
boundary condition, examples of A. Stern [7, 8] show that there
is no general lower bound on β0(ϕ) for higher energy eigenfunc-
tions, except the trivial bound β0(ϕ) ≥ 2 . Note that the exam-
ple of the square suggests that such a statement might not be
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true for the Neumann boundary condition, see the paragraph
before Proposition 10.2 in [23].

(2) A theorem of Å. Pleijel [37] shows that the upper bound β0(ϕ) ≤
κ(µ) is sharp for finitely many eigenvalues µ only.

Second difference.
Another, not so well-known, theorem of C. Sturm [42] states that,
for n ≥ m ≥ 1, a linear combination ∑n

k=m akVk of eigenfunctions of
(1.6), in the range k ∈ {m, . . . , n}, has at least (m − 1), and at most
(n− 1) zeros in the interval ]α, β[. We refer to [10] for a more precise
statement of Sturm’s theorem, and to [18], in particular Theorem 1 in
Section IV.3, for a different point of view.
In dimension d ≥ 2, a similar statement (for the upper bound) appears
in Footnote 1, page 454 of [16, Chap. VI.6], namely:
Any linear combination of the first n eigenfunctions divides the do-
main, by means of its nodes, into no more than n subdomains. See
the Göttingen dissertation of H. Herrmann, Beiträge zur Theorie der
Eigenwerte und Eigenfunktionen, 1932.
This statement is sometimes referred to as the “Courant-Herrmann
theorem” [21, § 9.2], or the “Courant-Herrmann conjecture” [19]. We
shall call this statement the Extended Courant Property, and refer to it
as the ECP(Ω, a), when applied to the boundary value problem (1.1),
with the boundary condition a.

In [5], see also [4, 31], V. Arnold points out that the ECP(RP2, g0) is
true for the round metric g0, and that the ECP(RP3, g0) is false, with
counterexamples constructed by O. Viro [44]. Arnold also claims that
ECP(S2, g) is false for a generic metric g. As far as we understand, the
only published proof that the assertion “the ECP(RP2, g0) is true”, is
the real algebraic geometry proof given in [34] (Theorem 1, and second
remark on page 305). To our knowledge, no proof of the second claim
has been published, see [6, Section 5] for a related result.

Little seems to be known on the ECP. In [11, 12], we give some exam-
ples of domains such that ECP(Ω, a) is false, with either the Dirichlet
or the Neumann boundary condition. However, all these examples
are singular (domains or surfaces with cracks), or have a nonsmooth
boundary (polygonal domains). A natural question is whether one can
construct counterexamples to the ECP with a C∞ boundary. Numer-
ical simulations for the equilateral triangle with rounded corners (the
corners of the triangle are replaced by circular caps tangent to the
sides) suggest that this should be true. Note however that a triangle
with rounded corners is C1, not C2.

The pictures in the first row of Figure 1.1 display the level sets and
nodal domains of a second Neumann eigenfunction φ of the equilateral
triangle with rounded corners, as calculated by matlab. The function
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is almost symmetric1 with respect to one of the axes of symmetry of the
triangle. The pictures in the second row display the nodal sets of the
function a+ φ for two values of a. They provide a numerical evidence
that ECP is not true for the equilateral triangle with rounded corners,
and Neumann boundary condition.

Figure 1.1. Level sets of one of the second Neumann
eigenfunctions of the equilateral triangle with rounded
corners

In this paper, we prove,

Theorem 1.2. There exists a one-parameter family of C∞, strictly
convex domains {Ωt, 0 < t < t0} in R2, with the symmetry of the
equilateral triangle Te, such that:

(1) The family is strictly increasing, and Ωt tends to Te, in the sense
of the Hausdorff distance, as t tends to 0.

(2) For any t ∈]0, t0[, the ECP(Ωt, n) is false. More precisely, for
each t, there exists a linear combination of a symmetric 2nd
Neumann eigenfunction and a 1st Neumann eigenfunction of
Ωt, with precisely three nodal domains.

1Generally speaking, numerical softwares do not necessarily produce the sym-
metric eigenfunctions when an eigenvalue is not simple.
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The starting point of the proof of Theorem 1.2 is the fact, established
in [11], that the ECP(Te, a) is false for both the Dirichlet, and the
Neumann boundary conditions on the equilateral triangle. The idea is
then to show that one can find a deformation of Te by smooth strictly
convex domains, in such a way that the symmetric second Neumann
eigenfunction deforms nicely.

Organization of the paper. In Section 2, we revisit a deformation
argument given by Jerison and Nadirashsvili [27] in the framework of
the “hot spots” conjecture. The main result is Lemma 2.14. This ar-
gument being interesting in itself, we give full details. In Section 3,
we construct smooth strictly convex approximations of the equilateral
triangle by using the convexity properties of its first Dirichlet eigenfunc-
tion (Proposition 3.1) or its torsion function (Proposition 3.3). These
approximating domains have the symmetries of the equilateral triangle.
A key point is that their second Neumann eigenspace has dimension
2, with a nice symmetry property (Proposition 3.5). In Section 4, we
first construct yet another deformation {Ωt} of the equilateral triangle
(Proposition 4.2), and then complete the proof of Theorem 1.2 using
this deformation.

Remark 1.3. As pointed out by the anonymous referee, a natural ques-
tion arises from the counterexamples to the Extended Courant Property.
Does there exist a constant C such that every linear combination of the
first n eigenfunctions has at most C n nodal domains, for some constant
C. The answer is no in general. The first examples are constructed
in [11], Remark 4.3 and 6.2, by introducing cracks. Further examples
are constructed in [13] for the 2-torus, and in [6] for regular polygons
with Neumann boundary condition, for the 2-torus and for the 2-sphere.
More precisely, in the latter case, there exists a metric g on T2 (resp.
S2), and an associated eigenfunction Φ of the Laplace-Beltrami operator
∆g, such that the set {Φ > 1} has infinitely many connected compo-
nents. Furthermore, the metric g can be chosen as close as desired
from the flat (resp. the round) metric.

Acknowledgements. The authors would like to thank P. Bousquet,
T. Hoffmann-Ostenhof, and H. Tamura, for providing useful references.

2. A deformation argument

In this section, we revisit a deformation argument of Jerison and Nadi-
rashvili [27, Section 2]. Note that our framework is different: they
are interested in antisymmetric eigenfunctions in domains with two
orthogonal lines of mirror symmetry; we are interested in symmetric
eigenfunctions in domains with the symmetries of an equilateral trian-
gle. Because we work with symmetric eigenfunctions, we need an extra
assumption (Assumption 2.4) which is satisfied by the domains used
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in the proof of Theorem 1.2, Section 4. We also aim at controlling the
constants which appear in the analytic inequalities, and at making sure
that they are uniform in a large class of domains. This aspect is not
always taken care of clearly in the literature.

2.1. Geometric framework: the class LM . Let M be a positive
constant.

Definition 2.1. The class LM comprises the sets Ω ⊂ R2 which satisfy
the following conditions.
(2.1) Ω is convex and open, with 0 ∈ Ω .

(2.2) B(M−1) ⊂ Ω ⊂ Ω ⊂ B(M) ,
where B(R) denotes the open ball centered at 0, with radius R, and
B(R) denotes the corresponding closed ball.
(2.3) Ω is symmetric with respect to D := {(u, v) ∈ R2 | u = 0} .

(2.4) ∂Ω is regular at D ∩ ∂Ω ,

i.e. in a neighborhood of m ∈ D ∩ ∂Ω, the boundary ∂Ω is piecewise
C1, and ∂Ω\{m} is C1.
The domain Ω can be described by a polar equation,
(2.5) Ω = {(r, θ) | 0 ≤ r < ρ(θ)} ,
where the function ρ is a 2π-periodic, Lipschitz function, with Lipschitz
constant bounded from above by M .

We define the domain,
(2.6) Ω+ := Ω ∩ {(u, v) ∈ R2 | u > 0} .
We decompose its boundary ∂Ω+ as
(2.7) ∂Ω+ = Γ t ΓD ,
with Γ = ∂Ω+ ∩ {u > 0}, and ΓD = D ∩ Ω+.
Notation. In the sequel, we denote by D both the line, and the mirror
symmetry with respect to the line D. We denote by D∗ the action of
the symmetry D on functions, D∗φ = φ ◦D.

Remarks 2.2. We note the following properties for later reference.
(1) According to Proposition 2.4.4 in [25], domains satisfying con-

ditions (2.1) and (2.2) satisfy a uniform (i.e. depending only
on M) cone property. It follows from Theorem 2.4.7, and Re-
mark 2.4.8 in [25] that such domains are uniformly Lipschitz
domains (i.e., the boundary is locally the graph of a Lipschitz
function, ibidem Definition 2.4.5).
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(2) With the definitions of [20], for such domains, the inclusion
H1(Ω) ↪→ L2(Ω) is compact, and we can define eigenvalues
using the variational approach.

(3) The fact that a domain Ω, defined in polar coordinates as in
(2.5), is a Lipschitz domain also follows from [45, Theorem 7.1].

(4) Let Ω be a domain defined by a polar equation, as in (2.5).
Define the function r(θ) by r(θ) = 1/ρ(θ). If Ω is convex, then
the second derivative of r, in the sense of distributions, is a
measure such that r′′(θ) + r(θ) ≥ 0 , see [17, Chap. 3.4].

We consider the Neumann eigenvalue problem for −∆ in Ω. We denote
the Neumann eigenvalues by νi(Ω), and arrange them in nondecreasing
order, starting with the index 1. We also consider the eigenvalue prob-
lems for −∆ in Ω+, with either the Neumann boundary condition on
∂Ω+, or the mixed boundary conditions, Neumann on Γ and Dirichlet
on ΓD. We denote these eigenvalues respectively by µi(Ω+, nn), and
µi(Ω+, nd), and arrange them in nondecreasing order, starting with the
index 1.

We are interested in the least positive eigenvalues of Ω associated with
the symmetry D. More precisely, we introduce

(2.8) ν−(Ω) := inf{νi(Ω) | i ≥ 2 , ∃ϕ ,−∆ϕ = νi(Ω)ϕ , D∗ϕ = −ϕ} ,

and

(2.9) ν+(Ω) := inf{νi(Ω) | i ≥ 2 , ∃ϕ ,−∆ϕ = νi(Ω)ϕ , D∗ϕ = ϕ} ,

where the equations −∆ϕ = νi(Ω)ϕ are to be understood in Ω.

It is easy to see that

(2.10)


ν−(Ω) = µ1(Ω+, nd) ,
ν+(Ω) = µ2(Ω+, nn) ,
ν2(Ω) = min{ν−(Ω) , ν+(Ω)} .

Remarks 2.3. About the eigenvalues ν−(Ω) and ν+(Ω).
(1) Because µ1(Ω+, nd) is simple, there is, up to scaling2, a unique

anti-symmetric eigenfunction ψΩ of −∆ in Ω, associated with
the eigenvalue ν−(Ω),

(2.11)
∫

Ω
ψ2

Ω = 1 and ψΩ|Ω+ > 0 .

(2) If ν2(Ω) is a simple eigenvalue, then either ν2(Ω) = ν+(Ω) <
ν−(Ω) or ν2(Ω) = ν−(Ω) < ν+(Ω), and the corresponding
eigenfunction is either invariant, or anti-invariant under D.

2By this, we mean “up to multiplication by a nonzero scalar”.
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(3) If dim E
(
ν2(Ω)

)
≥ 2, then

E(ν2) = (E(ν2) ∩ S+)
⊕

(E(ν2) ∩ S−) ,

with dim E(ν2) ∩ S− ≤ 1. Here, we have used the notation

(2.12) Sσ := {φ | D∗φ = σ φ} , σ ∈ {+,−} .
(4) If Ω is sufficiently regular, then dim E(ν2) ≤ 3, see [15, 26].
(5) Let Ti(α) be an isosceles triangle with aperture α ∈]0, π[. Ac-

cording to [32, § 10],

ν2(Ti(α)) = ν+(Ti(α)) < ν−(Ti(α)) when 0 < α <
π

3 ,

ν2(Ti(α)) = ν−(Ti(α)) < ν+(Ti(α)) when π

3 < α < π .

There is a bifurcation at π
3 , in which case

ν2(Ti(
π

3 )) = ν−(Ti(
π

3 )) = ν+(Ti(
π

3 )) .

(6) In Section 3, we consider domains Ω which admit the symmetry
group G0 of the equilateral triangle, see (3.7). For such domains,
Proposition 3.5 tells us that

ν−(Ω) = ν+(Ω) = ν2(Ω) = ν3(Ω) < ν4(Ω).
Notation. In (2.11), and henceforth, we skip the (Lebesgue) measure
dx in the integrals.
We now introduce a technical assumption.

Assumption 2.4. The eigenvalue µ2(Ω+, nn) is simple.

Remark 2.3-(6) tells us that Assumption 2.4 is satisfied by convex do-
mains with the G0 symmetry, see Proposition 3.5, and in particular by
the domains Ωt constructed for the proof of Theorem 1.2.

Remark 2.5. Provided that Assumption 2.4 is satisfied, there is a D-
symmetric eigenfunction φΩ of −∆ in Ω, associated with ν+(Ω). This
eigenfunction is uniquely determined, up-to-sign, by the normalization∫

Ω φ
2
Ω = 1. In Lemma 2.14, we will prove that one can actually make

a unique choice of φΩt along a path of domains.

2.2. Preliminary estimates. We shall now examine how the eigen-
values ν±(Ω), and the corresponding eigenfunctions, vary with the do-
main Ω ∈ LM . For this purpose, and following [27], we introduce the
following distance in the class LM ,
(2.13) dr(Ω1,Ω2) = ‖ρ1 − ρ2‖∞ ,

if the domains are defined by the functions ρ1 and ρ2 respectively, as
in (2.5).
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Note that this distance is bigger than the Hausdorff distance between
open sets contained in a given compact ball D,
(2.14) dH(Ω1,Ω2) := dH(D\Ω1, D\Ω2) .
Here,

(2.15) dH(K1, K2) := max
{

sup
x∈K1

inf
y∈K2

d(x, y) , sup
x∈K2

inf
y∈K1

d(x, y)
}
,

is the Hausdorff distance between the compact sets K1 and K2, and
d(x, y) is the Euclidean distance between the points x, y ∈ R2.
Note that the distance defined in (2.14) does not depend on the choice
of the compact D, once it contains both Ω1 and Ω2.
Notation. In the sequel, |Ω| denotes the area of a domain Ω. We
will also use the following convention. We use constants Ci, i ∈ N
in the statements, and local constants Ci,j, i, j ∈ N inside the proofs.
Note that the constants are not numbered linearly. When a constant
appears, we mention which parameters it depends upon.

Lemma 2.6. There exists a constant C1(M) such that, for any do-
mains Ω1,Ω2 ∈ LM ,

(2.16) |Ω1 \ Ω2| ≤ C1(M) dr(Ω1,Ω2) .

Proof. It suffices to notice that
Ω1 \ Ω2 = {(r, θ) | ρ2(θ) ≤ r < ρ1(θ)} ,

and to compute the area in polar coordinates. �

Lemma 2.7. There exists a constant C2(M) such that, for any Ω ∈
LM ,

(2.17) max{ν2(Ω) , ν+(Ω) , ν−(Ω)} ≤ C2(M) .

Proof. Since Ω ∈ LM , condition (2.2) is satisfied. We then have,
ν2(Ω) ≤ δ2(Ω) < δ2(B(M−1)) ,

ν+(Ω) = µ2(Ω+, nn) ≤ δ2(Ω+) ≤ δ2
(
B(M−1) ∩ {u > 0}

)
,

ν−(Ω) = µ1(Ω+, nd) ≤ δ1(Ω+) ≤ δ1
(
B(M−1) ∩ {u > 0}

)
,

where we have used δ’s to denote Dirichlet eigenvalues. �

Proposition 2.8. Under the Assumption 2.4, there exists a constant
C3(M) such that, for any Ω ∈ LM , the normalized eigenfunction ψΩ
(defined in Remark 2.3-(1)), and the normalized eigenfunction φΩ (de-
fined in Remark 2.5), belong to the Sobolev space H2(Ω), with corre-
sponding Sobolev norm less than or equal to C3(M),
(2.18) ‖ψΩ‖H2(Ω) + ‖φΩ‖H2(Ω) ≤ C3(M) .
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Proof. We refer to [20], proofs of Theorem 3.2.1.2 and 3.2.1.3. The
point we want to stress here, is that the bound is uniform with respect
to the domains in LM . �

Remark 2.9. The H2 estimates in the proposition hold for convex
domains. For more general Lipschitz domains, there are only Hs esti-
mates, with s = 3

2 in [27], or s < 3
2 in [39]. A counterexample is given

in [20].

Proposition 2.10 (Extension theorem). For any domain Ω ∈ LM ,
there exists a linear extension operator EΩ, such that for any s > 0,

EΩ : Hs(Ω)→ Hs(Rn) ,

and there exists a positive constant C4(M, s), such that, for all ϕ ∈
Hs(Ω),

(2.19)


‖EΩ(ϕ)‖Hs(Rn) ≤ C4(M, s)‖ϕ‖Hs(Ω) ,

EΩ(ϕ)|Ω = ϕ almost everywhere ,
EΩ(ϕ) is D-(anti)symmetric, if ϕ is.

Furthermore, one can choose EΩ(ϕ) with compact support in B(2M).

Proof. This proposition follows from Theorem 5 in [40, Chap. VI.3]
and interpolation. We again point out that the constant C4(M, s) is
uniform in LM . �

Finally, we mention the classical Sobolev embedding theorem, in the
form we will use later on. Recall that B(R) is the open ball with center
the origin, and radius R in R2.

Proposition 2.11. For all α ∈ [0, 1[, the space H2(B(R)) embeds
continuously in C0,α(B(R)). The space H1(B(R)) embeds continuously
in Lp(B(R)) for all p ≥ 2. In particular, for any s, 1 ≤ s < 2, and for
any ϕ ∈ H2(B(R)), we have ϕ ∈ C0,s−1(B(R)), dϕ ∈ L 2

2−s
(B(R),R2),

and there exists a constant C5(R, s), such that

(2.20) ‖ϕ‖L∞(B(R)) + ‖dϕ‖L 2
2−s

(B(R)) ≤ C5(R, s)‖ϕ‖H2(B(R)) .

Proof. See [20], Theorem 1.4.4.1, and equations (1,4,4,3)–(1,4,4,6), for
the statements, and Adams [1], Chap. IV and V, for the proofs. �

Notation 2.12. From now on, we choose some s0 ∈]1, 2[, and use the
notation,

p0 := p(s0) = 2
2− s0

, and q0 := q(s0) = s0 − 1 > 0 .
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2.3. Properties of ν+(Ω) and φΩ. In this section, we are interested
in how the D-symmetric eigenfunction φΩ changes along a deformation
Ωt of the domain. Note that in [27], Jerison and Nadirashvili consider
the D-anti-invariant eigenfunctions, in the context of the “hot spots”
conjecture.

Lemma 2.13. There exists a constant C20(M, s0) such that, for any
domains Ω1,Ω2 ∈ LM ,

(2.21)
∣∣∣ν+(Ω1)− ν+(Ω2)

∣∣∣ ≤ C20 dr(Ω1,Ω2)q0 .

Proof. For the proof, we use the following notation: λi = ν+(Ωi); φi =
φΩi

is a normalized D-invariant eigenfunction of −∆ in Ωi, belonging to
ν+(Ωi), in particular we have

∫
Ωi
φi = 0; Φi = EΩi

(φΩi
) is a D-invariant

extension of φΩi
, given by Proposition 2.10. We also introduce the

function Θ2 such that

(2.22) Θ2 = Φ2 − |Ω1|−1
∫

Ω1
Φ2 ,

so that
∫
Ω1

Θ2 = 0, and dΘ2 = dΦ2.
Then,

(2.23)
∫

Ω1
Θ2

2 =
∫

Ω1
Φ2

2 − |Ω1|−1
(∫

Ω1
Φ2

)2
.

Writing ∫
Ω1

Φ2 =
∫

Ω2
Φ2 +

∫
Ω1\Ω2

Φ2 −
∫

Ω2\Ω1
Φ2 ,

using the fact that
∫

Ω2
Φ2 =

∫
Ω2
φ2 = 0, Lemma 2.6, Propositions 2.8,

2.10, and 2.11, we obtain,∣∣∣∣∫
Ω1

Φ2

∣∣∣∣ ≤ ‖Φ2‖∞ (|Ω1 \ Ω2|+ |Ω2 \ Ω1|) ,

so that there exists a constant C20,1(M, s0) such that

(2.24)
∣∣∣∣∫

Ω1
Φ2

∣∣∣∣ ≤ C20,1 dr(Ω1,Ω2) .

We also have∫
Ω1

Θ2
2 =

∫
Ω2

Φ2
2 +

∫
Ω1\Ω2

Φ2
2 −

∫
Ω2\Ω1

Φ2
2 − |Ω1|−1

(∫
Ω1

Φ2

)2
.

Using the same arguments as above, as well as (2.2), we obtain that
there exists a constant C20,2(M, s0) such that

(2.25) 1− C20,2 dr(Ω1,Ω2) ≤
∫

Ω1
Θ2

2 ≤ 1 + C20,2 dr(Ω1,Ω2) .

Similarly, we write

(2.26)
∫

Ω1
|dΦ2|2 =

∫
Ω2
|dΦ2|2 +

∫
Ω1\Ω2

|dΦ2|2 −
∫

Ω2\Ω1
|dΦ2|2 .



12 P. BÉRARD AND B. HELFFER

Because (dΦ2)|Ω2 = dφ2, the first integral in the right-hand side is equal
to λ2. Letting Ω be either Ω1 \ Ω2, or Ω2 \ Ω1, we can write

(2.27)
∫

Ω
|dΦ2|2 ≤

(∫
Ω
|dΦ2|2/(2−s0)

)2−s0

|Ω|q0 ,

with the Notation 2.12.
As above, recalling that dΘ2 = dΦ2, we conclude that there exists a
constant C20,3(M, s0) such that

(2.28)
∫

Ω1
|dΘ2|2 ≤ λ2 + C20,3 dr(Ω1,Ω2)q0 .

By symmetry between λ1 and λ2, this completes the proof of the lemma.
�

We now consider a family {Ωt}0≤t≤a of domains in the class LM . We
use the notation,
(2.29) Ωt,+ := Ωt ∩ {u > 0} ,
and we decompose the boundary ∂Ωt,+ into two parts, ∂Ωt ∩ {u > 0}
and D ∩Ωt,+. We assume furthermore that the domains Ωt satisfy the
Assumption 2.4, i.e., that the eigenvalues ν+(Ωt), or equivalently the
eigenvalues µ2(Ωt,+, nn), are simple.
Call φt an eigenfunction associated with ν+(Ωt), with L2-norm 1. It
is uniquely defined up to sign. Denote its extension EΩt(φt) by Φt

(see, Proposition 2.10). Recall that φt and Φt are both symmetric with
respect to D.
We also use the notation,

(2.30)
{
λt := ν+(Ωt) = µ2(Ωt,+, nn) ,
µ0 := µ3(Ω0,+, nn) ,

Observe that Assumption 2.4 on Ω0 implies that
(2.31) λ0 < µ0 .

Lemma 2.14. Let {Ωt}0≤t≤a be a family of domains in the class LM ,
satisfying Assumption 2.4. Assume that dr(Ωt,Ω0) tends to zero when
t tends to zero.

(1) For dr(Ωt,Ω0) small enough, the function φt can be uniquely
defined by the normalization∫

Ωt

φ2
t = 1 and

∫
Ωt∩Ω0

φtφ0 > 0 .

(2) When t tends to zero, Φt|Ω0 tends to φ0 in L2(Ω0). Furthermore,
the family Φt is relatively compact in C0,s0−1(R2), and weakly
compact in H2(R2).

(3) For any k ∈ N, and for any compact K ⊂ Ω0, the functions Φt

tend to φ0 in Ck(K).



DEFORMATION OF LEVEL SETS. APPLICATION. 13

Proof of Assertion (1). We begin as in the proof of Lemma 2.13. For
the time being, φt is well-defined up to sign. Let

(2.32) Θt = Φt − |Ω0|−1
∫

Ω0
Φt ,

so that
∫

Ω0
Θt = 0, and dΘt = dΦt. Furthermore, the function Θt is

D-symmetric.
Then,

(2.33)
∫

Ω0
Θ2
t =

∫
Ω0

Φ2
t − |Ω0|−1

(∫
Ω0

Φt

)2
.

We introduce the notation,
δ(t) = dr(Ωt,Ω0) .

The constants C25,i which appear below only depend on M and s0.
Since

∫
Ωt
φt = 0, we conclude as in the proof of Lemma 2.13 that there

exist constants C25,1 and C25,2 such that,

(2.34)


∣∣∣ ∫Ω0

Φt

∣∣∣ ≤ C25,1 δ(t) ,∣∣∣ ∫Ω0
Φ2
t − 1

∣∣∣ ≤ C25,2 δ(t) .

Using the condition (2.2) to control |Ω0|, it follows that there exist
constants C25,3,. . . , C25,5, such that

(2.35) 1− C25,3 δ(t) ≤
∫

Ω0
Θ2
t ≤ 1 + C25,3 δ(t) ,

and, using Lemma 2.13,

(2.36)
∫

Ω0
|dΘt|2 ≤ λt + C25,4 δ(t)q0 ≤ λ0 + C25,5 δ(t)q0 .

Define the function

(2.37) Σt := Θt −
( ∫

Ω0
Θtφ0

)
Φ0 .

Then Σt is D-symmetric and satisfies

(2.38)
∫

Ω0
Σt = 0 and

∫
Ω0

Σtφ0 = 0 .

It follows from our assumptions and notation that,

(2.39)
∫

Ω0
|dΣt|2 ≥ µ0

∫
Ω0

Σ2
t ,

(2.40)
∫

Ω0
Σ2
t =

∫
Ω0

Θ2
t −

( ∫
Ω0

Θtφ0
)2
.

Using the fact that (dΦ0)|Ω0 = dφ0, and the variational definition of
(λ0, φ0), we also have

(2.41)
∫

Ω0
|dΣt|2 =

∫
Ω0
|dΘt|2 − λ0

( ∫
Ω0

Θtφ0
)2
.
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From (2.41) and the estimates on Θt, there exists a constant C25,6 such
that
(2.42)

∫
Ω0
|dΣt|2 ≤ λ0 − λ0

( ∫
Ω0

Θtφ0
)2

+ C25,6 δ(t) .

From (2.39), (2.40) and (2.42), it follows that there exist constants such
that
(2.43)

∫
Ω0
|dΣt|2 ≥ µ0

{
1− C25,7 δ(t)−

( ∫
Ω0

Θtφ0
)2
}
.

and hence

(2.44)
∣∣∣ ∫

Ω0
Θtφ0

∣∣∣ ≥ 1− (1 + µ0)C25,8

µ0 − λ0
δ(t)q0 .

From (2.44), we deduce that for δ(t) small enough, the integral
∫

Ω0
Θtφ0

is not zero. Note that
∫

Ω0
Θtφ0 =

∫
Ω0

Φtφ0. Write∫
Ω0

Φtφ0 =
∫

Ω0∩Ωt

φtφ0 +
∫

Ω0\Ωt

Φtφ0 ,

and note that the second term tends to zero with δ(t). It follows that∫
Ω0∩Ωt

φtφ0 6= 0 , provided that δ(t) is small enough. This means that
we can choose the sign of φt such that

∫
Ω0∩Ωt

φtφ0 > 0 , provided that
δ(t) is small enough. This proves the first assertion.
Proof of Assertion (2). We now assume δ(t) to be small enough, so
that we can uniquely determine the eigenfunction φt by ‖φt‖L2(Ωt) = 1,
with

∫
Ω0∩Ωt

φtφ0 > 0. More precisely, by (2.44), there exists a constant
C25,9(M, s0, λ0, µ0) such that

(2.45)
∫

Ω0
Φtφ0 ≥ 1− C25,9 δ(t)q0 .

Using (2.34), (2.45), and the fact that φ0 is normalized, there exists a
constant C25,10(M, s0, λ0, µ0) such that

(2.46)
∫

Ω0
(Φt − φ0)2 ≤ C25,10 δ(t)q0 .

It follows that the functions Φt tend to φ0 in L2(Ω0).
The family {φt, t ≥ 0} is uniformly bounded in the H2(Ωt) (Proposi-
tion 2.8), and hence the family {Φt, t ≥ 0} is uniformly bounded in
H2(R2), with compact support in B(2M) (Proposition 2.10). It fol-
lows that it is relatively compact in C0,s0−1(R2), and weakly compact
in H2(R2). The second assertion follows.
Proof of Assertion (3). Let k be an integer, and let K ⊂ Ω0 be any
compact subset. For t small enough, we have K ⊂ Ωt. By interior
regularity, Φt|K = φt|K is uniformly bounded in Ck+1(K) norm, and
hence admits a convergent subsequence Φtj in Ck(K). Inequality (2.46)
shows that the limit of this subsequence must be φ0. It follows that
Φtj converges to φ0 in Ck(K). Because the limit is independent of the
subsequence, it follows that φt tends to φ0 in Ck(K). �
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Remark. Here is an alternative argument for the last assertion, which
gives a stronger control of the convergence.

Let χ1, χ2 ∈ C∞0 (Ω0) such that χ2 = 1 on supp(χ1). We have

(2.47)
∆χ1(φt − φ0) = [∆, χ1](χ2(φt − φ0))− χ1(λtφt − λ0φ0)

= [∆, χ1](χ2(φt − φ0))− χ1λt(φt − φ0)
−χ1(λt − λ0)φ0 .

Applying (I−∆)− 1
2 to this equality, and using Lemma 2.13 and (2.46),

we get
||χ1(φt − φ0)||H1 ≤ Cδ(t)

q0
2 .

Hence, for any compact K ⊂ Ω0, we have

||φt − φ0||H1(K) ≤ Cδ(t)
q0
2 .

Similarly, starting from (2.47), given any k ∈ N, and any compact K,
we obtain,

||φt − φ0||Hk(K) ≤ C(k,K)δ(t)
q0
2 .

3. Domains with the symmetry of an equilateral triangle

3.1. Preparation. Let Te be the equilateral triangle, with vertices at
(0, 0), (1, 0) and (1

2 ,
√

3
2 ). The symmetry group of Te is generated by

the mirror symmetries with respect to the side bisectors.

Up to scaling, the positive first Dirichlet eigenfunction of Te is given
by the formula (see [11]),

(3.1) ξd1(x, y) := sin(4πy√
3

) + sin
(

2π(x− y√
3

)
)
− sin

(
2π(x+ y√

3
)
)
,

which can also be written

(3.2) ξd1(x, y) = 4 sin
(

2πy√
3

)
sin

(
π(x− y√

3
)
)

sin
(
π(x+ y√

3
)
)
.

Proposition 3.1. The function ξd1 is positive in the interior of Te. It
has a unique critical point at (1

2 ,
√

3
6 ), the centroid of the triangle. For

0 < c < maxTe ξ
d
1, the level curves {ξd1 = c} are smooth strictly convex

curves which have the same symmetries as Te.

This proposition is a consequence of [14, Corollary 4.6]. We give an
elementary proof using the following lemma [28].

Lemma 3.2. Let Ω be a convex bounded open set in R2. Let ϕ be a
positive, superharmonic function (∆ϕ < 0) in Ω. If det Hess (log(ϕ)),
the determinant of the Hessian of the function log(ϕ), is positive, then
the super-level sets {ϕ > c} are (strictly) convex.
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Proof of the lemma. Let η := log(ϕ). Then,
ϕ2 ∆η = ϕ∆ϕ− |dϕ|2 .

Since ϕ is positive and superharmonic, it follows that ∆η < 0, so
that Hess(η) has at least one negative eigenvalue. On the other hand,
since we work in dimension 2, the positivity of det Hess(η) implies that
both eigenvalues of Hess(η) have the same sign. It follows that both
eigenvalues are negative, and hence that Hess(η) is negative definite.
The function ϕ is (strictly) log-concave, and the lemma follows. �

Proof of the proposition. It is easy to see that the only critical points of
the function ξd1 in the closed triangle are the vertices and the centroid.
This function is invariant under the mirror symmetries with respect to
the side bisectors of the triangle, and under the rotations with center
the centroid, and angles ±2π

3 . It follows that its level sets have the same
symmetries. Clearly, ξd1 is positive and superharmonic. It remains to
show that det Hess(log ξd1) is positive. This can be done by brute force.
Let ξ := log(ξd1). A Maple-aided computation gives,

(3.3)


det Hess(ξ) = 4π4

3
N(ξ)
D(ξ) , with

N(ξ) = 2− 2 cos(2πy√
3 ) cos

(
π(x− y√

3)
)

cos
(
π(x+ y√

3)
)
,

D(ξ) = (ξd1)2 .

The proof of Proposition 3.1 is complete. �

Notation. We shall now work with the equilateral triangle T0, with
vertices A = (−1

2 ,−
√

3
6 ), B = (1

2 ,−
√

3
6 ) and C = (0,

√
3

3 ), and centroid
O = (0, 0). Making the change of coordinates x = 1

2 +u and y =
√

3
6 +v,

in ξd1, we obtain a first Dirichlet eigenfunction for T0,

(3.4) ϕd
1(u, v) = 4 sin π3 (1+2

√
3v) sin π3 (1−3u+

√
3v) sin π3 (1−3u−

√
3v) .

Define the function,
(3.5) f0(u, v) := (1 + 2

√
3v) (1 + 3u−

√
3v) (1− 3u−

√
3v) .

Proposition 3.3. The function f0 is positive in the interior of T0.
It has a unique critical point at O, the centroid of the triangle. For
0 < c < 1, the level curves {f0 = c} are smooth strictly convex curves
which have the same symmetries as T0.

Proof. We again make use of Lemma 3.2. The first two assertions are
clear. The function f0 is clearly invariant under the symmetries of T0,
so are its level sets. An easy computation gives ∆f0 = −36, so that f0
is superharmonic. Let g := log(f0). Define the functions Auu, Auv and
Avv by the formulas

Auu = f 2
0
∂2g

∂u2 , etc. .
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Figure 3.1. Level sets of ϕd
1 (left) and f0 (right)

Then,
f 4

0 det Hess(g) = AuuAvv − (Auv)2 .

A Maple-aided computation gives,
AuuAvv − (Auv)2 = 324 f 2

0 (1 + 6u2 + 6v2) ,
so that

(3.6) det Hess(g)(u, v) = 324 1 + 6u2 + 6v2

f 2
0 (u, v) .

This completes the proof of Proposition 3.3. �

Remark 3.4. Note that the function f0 is (up to scaling) the torsion
(or warping) function of the equilateral triangle, see [24, Section 7]. The
square root of the warping function fΩ is known to be strictly concave,
see [30, Theorem 4.1]

3.2. Domains with G0-symmetry. Recall that T0 is the equilateral
triangle with vertices A, B, and C, and centroid O. Call DA, DB

and DC the bisectors of its sides. The coordinates are chosen so that
DC = {u = 0}, see Figure 3.2.
The isometry group of T0 is the group
(3.7) G0 =

{
I,DA, DB, DC , R,R

2
}
.

where DA, is the mirror symmetry with respect to the bisector DA, R
the rotation with center 0 and angle 2π

3 .
To construct smooth counterexamples to ECP, the idea is to start from
the equilateral triangle, and to consider the class LM,0 of domains Ω
with the following properties,

(3.8)
{ Ω ∈ LM ,

Ω admits G0 as symmetry group,
see Figure 3.3.
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Figure 3.2. The equilateral triangle T0

Figure 3.3. A domain Ω in the class (3.8)

The super-level sets {x ∈ T0 | ϕd
1 > c} of the first Dirichlet eigenfunc-

tion, and the super-level sets {x ∈ T0 | f0 > c} of the torsion function
f0 provide examples of C∞ strictly convex domains Ω with the sym-
metry group G0, see Figure 3.1. Another example is the equilateral
triangle with rounded corners, T0,a: replace each corner by an arc of
circle, with radius a, centered on the corresponding bisector, and tan-
gent to the sides. This yields a convex domain, with C1, piecewise C2,
boundary, with symmetry group G0.

One can show that these families of domains belong to the class LM,0
for someM > 0, see (3.8). In Section 4, in order to prove Theorem 1.2,
we shall consider yet another family, and prove that it is indeed in the
class LM for some M .
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We conclude this section with a spectral property of the domains in
the class LM,0.

Proposition 3.5. Let Ω be a smooth domain in the class (3.8). Then,
the first Neumann eigenvalues of Ω satisfy
(3.9) 0 = ν1 < ν2 = ν3 < ν4 ≤ · · ·

More precisely, the eigenspace E(ν2) admits a basis {φ, ψ} such that
D∗Cφ = φ, and D∗Cψ = −ψ. Furthermore, Z(φ) ∩ DC = {O}, and
Z(ψ) = DC ∩ Ω.

Proof. The proof is based on the following properties: a Neumann
eigenfunction ξ of Ω has finitely many interior critical zeros, finitely
many boundary zeros, and its nodal set consists of finitely many sim-
ple regular arcs whose end points are either interior critical zeros, or
boundary zeros. We do not need to know the local structure at bound-
ary zeros.
Let ξ 6= 0 be a 2nd Neumann eigenfunction. Assertions (a)–(c) hold
for a simply-connected regular domain.
(a) The nodal set Z(ξ) cannot contain any interior closed curve. In-
deed, there would otherwise exist an interior nodal domain ω of ξ, for
which we could write ν2(Ω) = δ1(ω) > δ1(Ω), contradicting the inequal-
ity ν2(Ω) < δ1(Ω) due to to Pólya [38] and Szegö [43] (here the δ’s refer
to Dirichlet eigenvalues).
(b) The nodal set Z(ξ) does not contain any interior critical zero.
Assume this is not the case. Then, there would exist an interior critical
x0, and at least four semi-arcs issuing from x0 and contained in Z(ξ).
Continuing these arcs, we either obtain a closed nodal curve, or reach
the boundary at distinct points. The first case is impossible by (a).
In the second case, because Ω is simply-connected, we would obtain at
least four nodal domains, contradicting Courant’s theorem.
(c) The nodal set of any 2nd Neumann eigenfunction ξ in Ω consists
of a single simple curve without critical zeros, meeting the boundary
at two distinct points. The fact that such a curve must be simple
and without critical zeros follows from (a) and (b). The fact that its
boundary points must be distinct follows from (a). Assume that there
exist two such curves. By (b), they cannot meet in the interior of Ω.
If they had identical boundary points, we would get a contradiction by
(a). In the other case, we would get a contradiction with Courant’s
theorem.
We now assume that Ω has the symmetries of the equilateral triangle.
Let D := DC , and define the set of functions
(3.10) Sσ := {ϕ | D∗ϕ = σϕ} , σ ∈ {+,−} .
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Because D is an isometry, D∗ leaves E(ν2) globally invariant, and the
eigenspace decomposes as
(3.11) E(ν2) = (E(ν2) ∩ S+)⊕ (E(ν2) ∩ S−) .
Because the rotation R is an isometry, R∗ leaves E(ν2) globally invari-
ant, and so does the map
(3.12) T := R∗ −R∗2

which commutes with the Laplacian ∆.
It is easy to see that D∗ ◦ T = −T ◦D∗, so that
(3.13) T (E(ν2) ∩ S±) ⊂ E(ν2) ∩ S∓ ,

(3.14) ker(T ) = ker(R∗ − I) ,
and that
(3.15) Sσ ∩ ker(T ) =

{
ϕ | D∗Mϕ = σ ϕ , ∀M ∈ {A,B,C}

}
.

The following assertions hold.
(d) If 0 6= ξ ∈ E(ν2), then R∗ξ 6= ξ. Indeed, using (c) and the R-
invariance of ξ, Z(ξ) would contain at least three boundary points,
contradicting (c).
(e) The dimension of E(ν2) is at least 2. Indeed, we would otherwise
have dim E(ν2) = 1, and hence, for some 0 6= ξ ∈ E(ν2), R∗ξ = ±ξ.
Since R∗ = I, this would imply that R∗ξ = ξ, contradicting (d).
(f) The dimension of E(ν2) ∩ S− is at most 1. Indeed, if 0 6= ξ ∈
E(ν2)∩S−, then ξ vanishes on D∩Ω, and it cannot vanish elsewhere by
Courant’s theorem. This implies that ξ|Ω+ is the first eigenfunction of
Ω+ (with mixed boundary conditions), and hence unique up to scaling.
This implies that ξ itself is unique up to scaling.
(g) The dimension of E(ν2) ∩ S+ is at least 1. Indeed, by (e) and (f),
there exists 0 6= ξ 6∈ E(ν2) ∩ S−. This implies that φ := 1

2(ξ + D∗ξ) is
a nonzero function in E(ν2) ∩ S+.
(h) Both spaces E(ν2) ∩ S± have dimension 1, and there exists a basis
{φ, ψ} of E(ν2), such that φ is D-symmetric, and ψ D-anti-symmetric.
Using (3.12), we see that T (ξ) = 0 if and only if R∗ = ξ, so that T
is injective from E(ν2) into itself. Using (3.13) in both directions, we
infer that dim E(ν2) ∩ S± = 1, and the assertion follows.
(i) We have Z(ψ) = D ∩ Ω and Z(φ) ∩ D = {O}. We have already
proved the first part of the assertion in (f). Up to scaling, we have
φ = T (ψ). Since R(O) = O, the definition of T implies that φ(O) = 0.
The fact that Z(ψ) meets D at exactly one point follows from (a), (c)
and the symmetry of φ. �
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Remark 3.6. Note that the inequality ν2(ω) < δ1(ω) is valid for any
sufficiently regular, bounded domain, without any convexity assump-
tion. The fact that a second Neumann eigenfunction cannot have a
closed nodal line motivated the “closed nodal line conjecture for a sec-
ond Dirichlet eigenfunction”, see [36], last paragraph on page 466, and
Conjecture 5, and [29].

Remarks 3.7. Concerning the multiplicity of ν2, we can mention the
following.

(1) According to [33, Remarks (2), p. 206], if Ω is close enough to
T0 in the sense of the Hausdorff distance, then

dim E (ν2(Ω)) = dim E (ν2(T0)) = 2 .
(2) For any smooth simply-connected domain Ω, dim E (ν2(Ω)) ≤ 3.

This bound was first given by Cheng [15] for smooth simply-
connected compact surfaces without boundary, see also the as-
sertion in [26, line (-8), p. 1170]. In this latter paper, the au-
thors indicate that the assumption that Ω is smooth is probably
too strong. The smoothness assumption is used to describe the
local behaviour of the nodal set at a boundary point. In the
non-smooth case, it might be possible to obtain a result on the
local structure of the nodal set similar to the one described by
Alessandrini [2] for the Dirichlet boundary condition. See also
[22]

(3) In [35, Theorem 2.3], Lin proved that the second Dirichlet eigen-
space of a smooth convex domain has dimension at most 2.

4. Proof of Theorem 1.2

To prove Theorem 1.2, we apply the deformation technique of Section 2
to a special family of domains in the class LM,0.

4.1. Construction of the family Ωt. Let t be a nonnegative param-
eter. Introduce the function
(4.1) f0,t(u, v) = (1 + t+ 2

√
3v) (1 + t+ 3u−

√
3v) (1 + t−3u−

√
3v) .

When t = 0, we recover the function f0 defined by (3.5). When t > 0,
the function f0,t is a torsion function for the triangle T0,t obtained from
T0 by dilation of ratio (1 + t). This equilateral triangle has vertices
At = (−1+t

2 ,−
√

3(1+t)
6 ), B = (1+t

2 ,−
√

3(1+t)
6 ) and C = (0,

√
3(1+t)

3 ).
An immediate computation gives that
(4.2) f0,t(A) = f0,t(B) = f0,t(C) = t2(3 + t) .

Definition 4.1. Define the domain Ωt to be the super-level set

(4.3) Ωt :=
{
f0,t > t2(3 + t)

}
.
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Figure 4.1. Domains Ωt

The triangle T0, the triangle T0,t (dashed line), and a domain Ωt (red
line) are displayed in Figure 4.1, left. The triangle T0, and domains Ωt,
with t = 0.3 (red), t = 0.2 (blue), and t = 0.1 (green), are displayed in
Figure 4.1, right.
Let us summarize the properties of the domains Ωt.

Proposition 4.2. The family of domains {Ωt}0≤t≤ 1
2
has the following

properties.
(1) Ω0 = T0.
(2) For t > 0, the domain Ωt is strictly convex, bounded, and open,

with C∞ boundary. Furthermore, T0 ⊂ Ωt, and A,B,C ∈ ∂Ωt.
(3) The domain Ωt has the symmetry group G0.
(4) The family Ωt is increasing, for 0 < t1 < t2,

Ωt1 ⊂ Ωt2 .

(5) For 0 ≤ t ≤ 1
2 , the domains Ωt belong to the class LM for some

positive constant M .

Proof. Assertion (1) is obvious.
Assertion (2). The first part follows from Proposition 3.3 by dilation
of ratio (1 + t). For the second part, note that, by definition of Ωt,
the vertices A,B and C belong to ∂Ωt. The inclusion (of open sets)
T0 ⊂ Ωt follows from the convexity of Ωt.
Assertion (3). This follows from Proposition 3.3.
Assertion (4). The domain Ωt can also be defined by {gt > 0}, where

gt(u, v) = f0,t(u, v)− t2(3 + t) = f0(u, v) + 3t− 9t(u2 + v2) .
Let t1 < t2. To prove that Ωt1 ⊂ Ωt2 , it suffices to consider the points
(u, v) ∈ Ωt1\T0. For such (u, v), we have gt1(u, v) > 0 and f0(u, v) ≤ 0.
This implies that

3t1(1− 3u2 − 3v2) > −f0(u, v) ≥ 0 ,



DEFORMATION OF LEVEL SETS. APPLICATION. 23

and hence that 1− 3u2 − 3v2 > 0. On the other hand, we have
gt1(u, v)− gt2(u, v) = 3(t1 − t2)(1− 3u2 − 3v2) < 0 ,

i.e., gt2(u, v) > 0, or (u, v) ∈ Ωt2 .
Assertion (5). Since T0 ⊂ Ωt ⊂ T0,t, the domains satisfy condition (2.2).
It remains to show that they satisfy condition (2.5), i.e., that they can
be defined in polar coordinates, as

Ωt = {(r, θ) | 0 ≤ r < ρ(t, θ)}
where the functions ρ(t, ·) are uniformly Lipschitz. Due to rotational
invariance, it suffices to look at the part of ∂Ωt contained in the sector
BOC, see Figure 4.2. This part of the boundary is symmetric with
respect to the bisector DA, so that it suffices to look at the sector
BOa. With respect to the u-axis Ou, the angle θ then varies from −π

6
(OB) to π

6 (Oa).

Figure 4.2.

Instead of polar coordinates (ρ, θ), we use “inverse” polar coordinates
(r, θ), where r ρ ≡ 1. The inverse polar equation of the side BC of T0,
is
(4.4) rA(θ) = 2

√
3 cos(θ − π

6 ) , for θ ∈ [−π6 ,
π

6 ] .

Let r = r(t, θ) be the inverse polar equation of the arc BC ⊂ ∂Ωt.
Because T0 ⊂ T0,t, we have

(4.5) 1
1 + t

rA(θ) ≤ r(t, θ) ≤ rA(θ) for θ ∈ [−π6 ,
π

6 ] .

Using the definition of Ωt, we also have that r(t, θ) is a root of the
equation
(4.6) (1 + 3t) r3 − 9(1 + t) r + 6

√
3 sin3(θ)− 18

√
3 sin(θ) cos2(θ) = 0 .
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or, equivalently,
(4.7) (1 + 3t) r3 − 9(1 + t) r − 6

√
3 sin(3θ) = 0 .

Looking at the global picture of f−1
0,t (0), it is easy to see that this

equation has one simple root satisfying (4.5). Taking the derivative rθ
with respect to θ, we obtain,
(4.8)

(
(1 + 3t) r2 − 3(1 + t)

)
rθ − 6

√
3 cos(3θ) = 0 .

Note that
(4.9) (1 + 3t) r3 − 3(1 + t) r =

(
(1 + 3t) r3 − 9(1 + t) r

)
+ 6(1 + t) r ,

so that
(4.10) (1 + 3t) r3 − 3(1 + t) r = 6

(
(1 + t) r +

√
3 sin(3θ)

)
.

Using (4.5), we have

(4.11) (1 + t) r +
√

3 sin(3θ) ≥ 2
√

3 cos(θ − π

6 ) +
√

3 cos(3(θ − π

6 )) ,

and hence
(4.12) (1 + 3t) r3 − 3(1 + t) r ≥ 6

√
3 cos(θ − π

6 )
(
4 cos2(θ − π

6 )− 1
)
.

It follows that rθ is positive in the interval ]− π
6 ,

π
6 [, and that

(4.13) 0 ≤ rθ(t, θ)
r(t, θ) ≤ tan(π6 − θ) ≤

√
3 .

Note that r(t, θ) ≥ 2
√

3. This proves that condition (2.5) is satisfied.
�

4.2. Proof of Theorem 1.2. The fact that the equilateral triangle
T0 provides a counterexample to ECP(T0, n) follows from the analysis
of the level lines of the D-symmetric second Neumann eigenfunction
φT0 , see [11, Section 3]. Some of the levels lines of φT0 are displayed in
Figure 4.3.

Figure 4.3. Level lines of the second symmetric Neu-
mann eigenfunction of the equilateral triangle
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Figure 4.4. Proof of Theorem 1.2.

Deform the domain T0 =: Ω0 using Proposition 4.2. Denote the nor-
malized D-symmetric eigenfunctions by φt, and their extensions by Φt.

The function φ0 is such that φ0(C) > 0, and φ0(A) = φ0(B) < 0, see
Figure 4.4. According to [11, Section 3], we now choose (and fix) some
a > 0, such that {φ0 + a = 0} consists of two disjoint arcs, symmetric
with respect to the side bisector DC (blue arcs in the figure). We
have φ0 + a > 0 in the connected component of T0 \{φ0 + a = 0}
which contains O, and φ0 + a < 0 in the two connected components
close to the vertices A and B. Choose A′ and B′ in these connected
components. Note that φ0|DC

+a > 0, and φ0(A′)+a = φ0(B′)+a < 0.

We now consider the family Ωt. Apply Lemma 2.14 to the family φt,
and get that for t sufficiently small

φt(A′) + a = φt(B′) + a < 0 .

Call C(t) the intersection point of the bisector DC with ∂Ωt, opposite
to the vertex C.

Claim 1. For t sufficiently small, φt|[CC(t)] + a > 0.
Indeed, we could otherwise find a sequence tk, tending to zero, and a
point mk ∈ [CC(tk)], such that φtk(mk) + a ≤ 0. The family Φtk is
bounded in H2 with compact support in B(0, 2M). Hence, there exists
a subsequence t′j which tends to 0, and a function Φ ∈ C0(R2)∩H2(R2)
such that mk converges to some m ∈ [CC(0)] and Φt′j

converges to Φ
uniformly in B(2M), and in particular in T0. Since, by Lemma 2.14,
Φt′j
|T0 converges to φ0 in D′(T0), it follows that φ0 = Φ|T0 and this

extends by continuity to T0. In particular, we would get Φ(m) + a =
φ0(m) + a ≤ 0. A contradiction.
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The claim proves that for t small enough, the points A′ and B′ belong
to distinct connected components of Ωt\{φt + a = 0}, so that φt + a
has at least three connected component (a “positive” one, and two
“negative ones”).

In particular this proves that, for t small enough, the domains Ωt pro-
vide a counterexample to the Extended Courant property.

We shall now prove that, for t small enough, φt + a has exactly three
nodal domains.

Lemma 4.3. Let {ϕn, n ≥ 1} be an orthonomal basis of eigenfunctions
of the Neumann problem in a bounded domain Ω, associated with the
eigenvalues 0 = ν1(Ω) < ν2(Ω) ≤ . . .. Choose ϕ1 (a constant function)
to be positive. Then, for any a > 0, the set Ω\{ϕn + aϕ1 = 0} has at
most (n− 1) connected components in which ϕn + a is positive.

Remark 4.4. A statement analogous to Lemma 4.3, for the Dirich-
let problem in Ω, appears as Theorem 1 in [19]. The proof given by
Gladwell-Zhu is similar to the proof of Courant’s nodal domain the-
orem, and turns out to apply to both the Dirichlet and the Neumann
boundary conditions, hence to Lemma 4.3. The examples of rectangles
with cracks in [11, Section 3] show that one can a priori not control the
number of connected components of Ω\{ϕn + aϕ1 = 0} in which ϕn + a
is negative.

We proceed with the proof that, for t small enough, φt + a has exactly
three nodal domains. According Lemma 4.3, we have to prove that
{φt + a < 0} has at most two connected components. The proof goes
as follows.
First, we observe that φ0 is naturally defined as a trigonometric polyno-
mial on all R2. Observe that for t small enough, {φ0 +a = 0}∩Ωt con-
sists of two symmetric curves crossing ∂Ωt transversally at the points
ac(t), ab(t), ba(t), bc(t). As t tends to 0, these points tend to the inter-
section points of {φ0 + a = 0} with ∂T0, see Figure 4.5.

For ε > 0 small enough, we introduce,

(4.14) Ω−(a+ ε, φ0, t) := {φ0 + a+ ε ≤ 0} ∩ Ωt ,

(4.15) Ω+(a− ε, φ0, t) := {φ0 + a− ε ≥ 0} ∩ Ωt ,

and

(4.16) Ω(a, ε, φ0) := {−ε ≤ φ0 + a ≤ ε} ∩ Ωt .

These domains are displayed respectively in green, blue, and white in
Figure 4.6.
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Figure 4.5.

Claim 2. For t small enough,

(4.17)
{ Ω−(a+ ε, φ0, t) ⊂ {φt + a < 0} ,

Ω+(a− ε, φ0, t) ⊂ {φt + a > 0} .
Indeed, if the first inclusion were not true, there would exist a sequence
tn > 0, tending to 0, and xn ∈ Ωtn , such that φtn(xn) + a ≥ 0 and
Φtn bounded in H2. As above, after extraction of a subsequence we
can assume that xn → x∞, and that Φtn tends to Φ in C0. This
implies the existence of x∞ such that Φ(x∞) = φ0(x∞) ≥ −a. But
x∞ ∈ Ω−(a+ ε, φ0, 0) leading to a contradiction. The second inclusion
can be proved in a similar way.
As a consequence, for t small enough, there are two symmetric compo-
nents of {φt+a < 0}, each one containing a component of {φ0 +a+ε ≤
0} ∩ Ωt. Furthermore, the “positive” component of φt + a contains
Ω+(a− ε, φ0, t).
We deduce from this localization, that a third “negative” connected
component of φt + a, if any, is necessarily contained in Ω(a, ε, φ0),
hence stays away from the vertices A, B and C.
Claim 3. The only critical points of the function φ0 in the square
[−5

8 ,
5
8 ]× [−

√
3

3 ,
√

3
2 ] are the vertices A,B,C, and the mid-point MC of

the side AB.
We refer to [9] for the explicit expression of the Neumann eigenvalues
and eigenfunctions of the equilateral triangle Te. After translation and
rotation, we find that the second Neumann eigenfunction of T0, which
is symmetric with respect to DC is given by the formula,

(4.18) φ0(u, v) = a0

(
cos 4πu

3 + cos 2π(1− u−
√

3v)
3 + cos 2π(1 + u−

√
3v)

3

)
,

where a0 6= 0 is a normalizing constant.
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Figure 4.6. Localization

Figure 4.7. Localization of the critical points

It follows that the critical points of φ0 satisfy the equations,

(4.19)

 sin 2πu
3

{
cos 2πu(1−

√
3v)

3 + 2 cos 2πu
3

}
= 0 ,

sin 2πu(1−
√

3v)
3 cos 2πu

3 = 0 .
The claim follows easily. It is also illustrated by Figure 4.7 which
displays the triangle T0, the square [−5

8 ,
5
8 ]× [−

√
3

3 ,
√

3
2 ], the zero set of

∂uφ0 (green) and the zero set of ∂vφ0 (magenta).
Claim 4. For t small enough, φt + a < 0 has exactly two connected
components.
For the proof, we proceed by contradiction. If not, there exists a se-
quence tn → 0, and a connected component ω(tn) of φt + a < 0, which
according to Claim 2 must be contained in Ω(a, ε, φ0).
Let xn ∈ ω(tn) be the point at which φtn achieves its minimum in ω(tn).
We have necessarily ∇φtn(xn) = 0. After extraction of a subsequence if
necessary, we can assume that xn converged to some x∞ which belongs
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to T0, and satisfies −ε ≤ φ0(x∞) + a ≤ ε. There are two possibilities.
If x∞ ∈ T0, using Lemma 2.14, we get that φtn converges to φ0 in a
small ball around x∞ in C1 sense, and this implies that ∇φ0(x∞) = 0.
A contradiction with Claim 3.
The second possibility is that x∞ ∈ ∂T0. Here, we have to use a uniform
boundary regularity for the Neumann Laplacian in Ωt when we are far
from A,B,C. We consider a small ball centered at ∂T0 ∩ {φ0 + a = 0}
of radius r(ε) and containing ∂T0 ∩ {−2ε ≤ φ0 + a ≤ 2ε} (hence x∞).
For each t > 0, we consider a function χ(t, x) with support in the ball,
equal to 1 in a fixed neighborhood of x∞ and such that ∂νχ(t, x) = 0 on
∂Ωt. It is easy to get such a function C∞ in both variables t and x due
to the uniform regularity of ∂Ω(t) there (for t ∈ [0, t0] with t0 > 0 small
enough). We now consider φ̂t := χ(t, x)φt in Ωt. This is a bounded
family in H2, and φ̂t satisfies the Neumann condition.
We have

−∆φ̂t = [−∆, χ(t, ·)]φt + λtφ̂t .

The left hand side is uniformly bounded in H1, and supported in the
ball B(x∞, r(ε)). We have a uniform (with respect to t) regularity of
this Neumann problem (with locally C∞ boundary), and we get that
the family φ̂t is bounded in H3(Ω(t)).
We now extend it in a bounded family Φ̂t ∈ H3

0 (B(0, 2M)). Coming
back to our sequence φtn , we observe that in particular Φ̂tn is a bounded
family in H3

0 (B(0, 2M)). Extracting a subsequence if necessary, we
can assume that Φ̂tn converges in C1(B(0, 2M)) to Φ̂∞. Now we have
∇φ̂tn(xn) tends to ∇Φ̂∞(x∞). For n large enough ∇φ̂tn(xn) = 0 which
implies ∇Φ̂∞(x∞) = 0. Looking at the restriction to T0, we also have
Φ̂∞ = χ(0, ·)φ0 in T0 in D′(T0), which extends to T0 by continuity.
This implies 0 = ∇Φ̂∞(x∞) = ∇φ0(x∞), in contradiction with Claim 3.

�

Note. The preceding argument also shows that there cannot exist a
second positive connected component for t > 0 small enough (without
making use of the theorem of Gladwell and Zhu).
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