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The Effective Medium Theory (EMT) combined with the Structure Factor Model was recently
developed to model the ultrasound backscatter from aggregating Red Blood Cells (RBCs) [Frances-
chini, Metzger, Cloutier, IEEE UFFC, 2011]. The EMT assumes that aggregates can be treated
as homogeneous effective spheres and the structure factor considers the interactions between the
effective spheres. In this study, the EMT is further developed to decompose the differential
backscattering cross section of a single cell aggregate into coherent and incoherent components.
The coherent component corresponds to the average backscatter from the effective scatterer, and
the incoherent component considers the fluctuation of the scattering wave around its average
within the effective scatterer. A new theoretical expression for the incoherent component based
on the structure factor is proposed and compared with another formulation based on the Gaussian
direct correlation function. This theoretical improvement is assessed using computer simulations
of ultrasound backscatter from aggregating cells. The consideration of the incoherent component
based on the structure factor allows to approximate the simulations satisfactorily for a krag limit
around 2, against a krag limit comprised between 1.07 and 1.47 with the former model considering
only the coherent component.

PACS numbers: 43.80.Cs, 43.80.Qf, 43.35.Bf
Keywords: quantitative ultrasound, structure factor, aggregate, effective medium theory, ultrasound tissue
characterization

I. INTRODUCTION

Ultrasound scattering from biological tissues exhibits
a frequency dependence which is related to the structure
of the insonified medium. For determining the tissue mi-
crostructure, one approach consists in fitting the mea-
sured frequency-dependent backscatter coefficient (BSC)
to a theoretical BSC derived using an appropriate theo-
retical scattering model. Two theoretical scattering mod-
els are often used in the field of quantitative ultrasound
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(QUS) imaging. The first model, named the spherical
Gaussian model, describes a tissue as a random inhomo-
geneous continuum with impedance fluctuations.1 The
second model considers tissues as randomly distributed
discrete scatterers with an impedance differing from a
homogeneous background medium.2 In both models, the
scatterers are assumed to be independently and uni-
formly randomly distributed, which may correspond to
the case of a low scatterer concentration. However, bi-
ological tissues often have high cellular concentrations
and complex structures that invalidate the assumption of
those models.3,4 For example, some tumors have densely
packed cells and eventually aggregating cells (such as
breast sarcoma5); and blood contains a high volume frac-
tion of red blood cells (between 30 and 50%) that form
aggregates having rouleaux structures in normal blood
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or clumps in some pathologies, as in diabetes mellitus.6,7

Therefore, theoretical scattering models have been pro-
posed to include high cellular concentration together with
aggregating cells, and to estimate scatterer structures.8,9

A scattering model called the Effective Medium Theory
combined with the Structure Factor Model (EMTSFM)
was recently proposed.10 In this model, the aggregates
of cells are viewed as individual scatterers which have
effective properties determined by the acoustical char-
acteristics and concentration of cells within aggregates.
The approximation of cell aggregates as homogeneous ef-
fective scatterers is combined with the structure factor
model to consider the concentrated medium; i.e., to con-
sider the interference effects caused by the correlations
between the spatial positions of effective scatterers. The
EMTSFM allows characterization of the radius and of
the compactness of cell aggregates, as shown in a previ-
ous simulation study.11

The goal of the current study was to further develop
the EMTSFM and to extend its validity into a larger
frequency range. In that aim, the Effective Medium
Theory (EMT) was modified to decompose the differ-
ential backscattering cross section of a single cell aggre-
gate into coherent and incoherent components as pro-
posed by Morse and Ingard.12 The coherent component
corresponds to the average wave emerging from the ef-
fective scatterer, and the incoherent component repre-
sents the fluctuation of the scattering wave around its
average within the effective scatterer. Note that only
the coherent component was taken into account in our
previous works.10,11 A new theoretical expression for the
incoherent component based on the structure factor is
proposed. This theoretical improvement was assessed us-
ing three dimensional (3D) computer simulations of ul-
trasound backscatter from aggregating cells. The new
incoherent component based on the structure factor was
compared to the incoherent component based on a Gaus-
sian direct correlation function proposed by Morse and
Ingard.12

II. THEORY

In this section, the theoretical expression for the ultra-
sound backscattering response from one aggregate of cells
is proposed. Then, the theoretical BSC expression for an
ensemble of identical aggregates that was developed in
Ref. 10 is briefly recalled.

A. Differential backscattering cross-section σag of one
aggregate of cells

In the sequel, we consider identical cells distributed
randomly inside an aggregate. It is assumed that the in-
cident wavelength is large compared to the cell size. Con-
sequently, the cell shape can be approximated by a sphere
of radius a having an equivalent volume Vc = 4

3πa
3. Cells

are described in terms of their mass density ρc and com-
pressibility κc, and their surrounding medium is charac-
terized by its mass density ρ0 and compressibility κ0. An
aggregate of cells, denoted Vag, is assumed to be spheri-
cal as it occurs in some tissues (e.g., red blood cell aggre-
gates in pathological cases6,7 or breast sarcoma tumors5).

The EMT model assumes that an aggregate of cells can
be treated as an effective homogeneous spherical scat-
terer of radius rag. As previously studied by Morse and
Ingard,12 the differential backscattering cross-section σag

of an aggregate can be decomposed into two components:

σag = σag,coh + σag,inc, (1)

where the coherent component σag,coh corresponds to the
average wave emerging from the effective scatterer, and
the incoherent component σag,inc describes the fluctua-
tion of the scattering wave around its average within the
effective scatterer, as detailed below.

1. The scattering amplitude

Using Born and far-field approximations, the backscat-
tered wave pressure is expressed in terms of the backscat-
tered amplitude Φag; i.e., ps(r) =

(
eikr/r

)
Φag(k), with13

Φag(k) =
k2

4π

∫
Vag

[
γκ(r0)− γρ(r0)

]
e2ik n0·r0 d3r0,

where k is the wavenumber, r0 is the position in the three
dimensional space, n0 is the incident wave direction,
γκ(r0) = (κ(r0)−κ0)/κ0 and γρ(r0) = (ρ(r0)−ρ0)/ρ(r0)
are the fractional variations in compressibility and mass
density, respectively. One has

γκ(r0)− γρ(r0) =

{
γκ − γρ (if r0 is inside the cells)

0 (if r0 is outside the cells),
(2)

where γκ = (κc−κ0)/κ0 and γρ = (ρc−ρ0)/ρc. Assuming
N identical cells inside an aggregate with centers located
at positions rj , j = 1, ..., N , and considering the change
of variable r′0 = r0 − rj , the scattering amplitude can be
expressed as

Φag(k) =
k2(γκ − γρ)

4π
Vc

(
V −1
c

∫
Va

e2ik n0·r′0 d3r′0

) N∑
j=1

e2ik n0·rj ,

(3)
where Va is a sphere of radius a centered at the origin
(see Appendix A for details). The integral term in Eq.
(3) is equal to

V −1
c

∫
Va

e2ik n0·r′0 d3r′0 =
(3
(
sin(2ka)− 2ka cos(2ka)

)
(2ka)3

)
= F0(k; a),

(4)
and F0(k; a)2 = F (k; a) is the spherical form factor.13

From there, the scattering amplitude resulting from one
aggregate is expressed as

Φag(k) =
k2(γκ − γρ)

4π
VcF0(k; a)

N∑
j=1

e2ik n0·rj . (5)
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2. The coherent component

The coherent component of the differential backscat-
tering cross-section of the effective scatterer is obtained
from the coherent scattering amplitude as

σag,coh(k) = |〈Φag(k)〉|2,

where 〈·〉 represents the expected value of a random vari-
able. One computes:

〈Φag(k)〉 =
k2(γκ − γρ)

4π
VcF0(k; a)

N∑
j=1

〈e2ik n0·rj 〉

=
k2(γκ − γρ)

4π
φiVagF0(k; a)

1

N

N∑
j=1

〈e2ik n0·rj 〉,(6)

where Vag = 4
3πr

3
ag is the volume of an aggregate of radius

rag, and φi = NVc/Vag is the aggregate compactness.
Next, we define

ρag = φiρc + (1− φi)ρ0

κag = [φi/κc + (1− φi)/κ0]−1 (7)

which are obtained from the average values of 1/ρ and
κ, respectively, within the aggregate, as mentioned in
Eq. (8.2.23) of Morse & Ingard.12 Denoting γκ,ag =
(κag − κ0)/κ0 and γρ,ag = (ρag − ρ0)/ρag, one computes
(γκ − γρ)φi = γκ,ag − γρ,ag. Based on these definitions,
it follows that the coherent scattering amplitude of the
aggregate is expressed as:

〈Φag(k)〉 =
k2(γκ,ag − γρ,ag)

4π
VagF0(k; a)

1

N

N∑
j=1

〈e2ik n0·rj 〉.

(8)
Note that in this derivation, no approximation was used,
but rather algebraic manipulations and definitions.

The expression Fcoh(k) =

F0(k; a)1/N
∑N
j=1〈e2ik n0·rj 〉 corresponds to the Fourier

transform of the function〈1/N
∑
χa(r − rj)〉 that

describes a system of spheres, where χa(r − rj) = 1
inside a sphere Va of radius a centered at rj , and 0
elsewhere. Since it is not straightforward to compute
the expression Fcoh(k), we approximate this quantity
with the expression F0(k, r′) given in Eq. (4) for an
equivalent full sphere of radius r′. The full sphere
choice was motivated here by the postulated spherical
distribution of cells in aggregates. In order to match
the low frequency approximations of the scattering
amplitudes from the system of spheres and from the
equivalent full sphere, their gyration radii Rg should be
equal. The gyration radius of a system of N spheres of
radius a is equal to

Rg =

√√√√3

5
a2 +

1

N

N∑
j=1

|rj |2, (9)

where rj is the position vector of the jth cell with respect
to the aggregate center, as given in Eq. (6) of Saha et
al.14 So, the radius r′ of the equivalent full sphere must be

expressed as: r′ =
√

5
3Rg, as demonstrated in Appendix

B. Henceforth, from Eq. (8), the coherent scattering am-
plitude resulting from one aggregate is approximated as

〈Φag(k)〉 ≈ k2(γκ,ag − γρ,ag)

4π
VagF0(k;

√
5

3
Rg). (10)

All together, the coherent component of the differen-
tial backscattering cross-section of the effective sphere is
modeled as:

σag,coh(k) ≈ k4(γκ,ag − γρ,ag)2

16π2
V 2

agF (k;

√
5

3
Rg). (11)

One should note that in the former work,10 the spherical
form factor F given in Eq. (11), was computed by con-
sidering the external radius of the aggregate rag (instead

of
√

5/3Rg in the present work) . Comparison between
the former and the present coherent form factors will be
presented in the subsection IV.A.

3. The incoherent component

Inside the aggregate, each cell produces a scattered
wave as a sphere of radius a, with density ρc and
compressibility κc, in a surrounding medium of density
ρag and compressibility κag throughout the aggregate.
Therefore, the wavenumber inside the aggregate is mod-
ified as12 kag = k

√
ρagκag/

√
ρ0κ0. Based on Eq. (5), the

incoherent component of the differential backscattering
cross-section of the effective scatterer is equal to

σag,inc(k) = 〈|Φag(kag)− 〈Φag(kag)〉|2〉 (12)

=
k4

ag(γκ − γρ)2

16π2
V 2

c NF (kag; a)S0(kag; a, φi),(13)

where

S0(k; a, φi) =

〈
1

N

∣∣∣∣∣∣
N∑
j=1

e2ik n0·rj −
N∑
j=1

〈e2ik n0·rj 〉

∣∣∣∣∣∣
2〉
(14)

is the structure factor for a collection of N randomly dis-
tributed identical spheres of radius a and of concentration
φi within an aggregate. Assuming that the aggregate is
sufficiently large, Eq. (14) corresponds to Eq. (10) in
Ref. 15. This latter structure factor was analytically cal-
culated as established by Wertheim,16 which is denoted
here S(kag; a, φi). One thus obtains the expression

σag,inc(k) ≈
k4

ag(γκ − γρ)2

16π2
VagVcφiF (kag; a)S(kag; a, φi).

(15)
In the sequel, we compute the differential backscattering
cross-section σag = σag,coh +σag,inc of an aggregate using
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Eqs. (1), (11) and (15).

Let us mention that one can derive an alternative ex-
pression of the incoherent component of the differen-
tial backscattering cross-section based on a Gaussian di-
rect correlation function σag,inc,G as proposed by Morse
and Ingard.12 The proposed computation of σag,inc,G is a
modified version of the incoherent component of Ref. 12
and is expressed as follows:

σag,inc,G(k) ≈
k4

ag(γκ − γρ)2

16π2
Vagφi(1−φi)

8
√

2π3/2

3
d5k2

age
−d2kag ,

(16)
where d is the correlation distance related to the cell ra-
dius a as d = 21/6

31/3π1/6 a ≈ 0.643092×a, as proposed by In-
sana and Brown (see Eq. (81) p.107 in Ref. 13). Details
can be found in Appendix C. The differential backscat-
tering cross-section of an aggregate based on Eqs. (1),
(11) and (16) is denoted σag,G in the sequel.

B. Backscatter coefficient BSCEMTSFM from an ensemble
of identical aggregates

The BSC from an ensemble of identical aggregates is
obtained by summing the contributions from individual
effective scatterers and modeling the effective sphere in-
teraction by a statistical mechanics structure factor Sag

as follows:10,11

BSCEMTSFM(k) = magσag(k)Sag(k; rag, φag), (17)

where mag is the number density of effective spheres,
which is related to the volume fraction of effective spheres
φag as mag = φag/Vag and σag is computed using Eqs.
(1), (11) and (15). In Eq. (17), Sag is the structure factor
for a collection of randomly distributed identical effective
spheres of radius rag and of concentration φag, analyti-
cally computed as established by Wertheim.16 The vol-
ume fraction of effective scatterers is equal to the volume
fraction of cells in the tissue φ divided by the aggregate
compactness φi: φag = φ/φi.

III. 3D SIMULATION METHOD

The 3D simulation study was conducted based on the
Structure Factor Model (SFM). The SFM is an ultra-
sound scattering model largely used to predict the fre-
quency dependence of the BSC from aggregated cells in
the field of ultrasound tissue characterization.4,8,10,14,17

The SFM consists of summing contributions from indi-
vidual cells and modeling cell interaction by a statistical
mechanics structure factor, whatever the complexity of
the cells spatial distribution such as cell aggregates. The
structure factor computation for a complex particle spa-
tial distribution was described in details in Section 6.3.1
of Ref. 17. The current section focuses on the procedure
for obtaining cell aggregates in the computer simulations,

and then on the simulation of the differential backscat-
tering cross section of one cell aggregate, denoted σag,sim,
and of the BSCsim from aggregated cells based on the
SFM.

A. Simulation of spatial distribution of cells within one
aggregate

We describe here how the cell distribution inside one
aggregate was computed. The cell particle radius a was
set to 2.75 µm for all simulations, which corresponds to
the red blood cell size usually used in blood computer
simulations.11 We specified the aggregate radius rag de-
fined as the radius of the external envelope (Fig. 1) and
the aggregate compactness φi that fixes the number of
cells N within the aggregate. N cells were uniformly ran-
domly distributed such that cells within a radius of rag

could overlap, and the total number of overlapping pairs
was counted. Then, the system was able to evolve by
moving randomly selected cells to another position than
the initial. If the number of overlapping pairs of the new
system equaled or was lower than in the previous sys-
tem, the displacement was accepted and the procedure
was repeated until no overlapping was detected. This
process allowed to reach aggregate compactness φi up to
40% in 3D, whereas a method using a random sequential
absorption18 would give compactness near 30%. Figure
1 illustrates spatial arrangements of cells within a single
aggregate for two aggregate compactnesses of 10% and
40% with an identical aggregate radius rag/a = 7. The
radius of gyration was computed using Eq. (9). For the
aggregate example given in Fig. 1, a change of compact-
ness from 10% to 40% induces a slight increase of the
radius of gyration from Rg = 12.56 µm to Rg = 14.02
µm.

B. Computation of a simulated σag,sim curve

The simulated differential backscattering cross section
of one cell aggregate σag,sim, was computed using the
SFM10,11 as follows

σag,sim(k) = Nσb(k)S′sim(k), (18)

where σb is the differential backscattering cross section of
a single cell given by the fluid-filled sphere expression12,13

σb(k) =
k4V 2

c γ
2
z

4π2
F (k; a), (19)

and S′sim is the simulated structure factor representing
the spatial positioning of the cells inside the aggregate
and defined as

S′sim(k) =

〈
1

N

∣∣∣∣∣∣
N∑
j=1

e−2ikn0·rj

∣∣∣∣∣∣
2〉

(20)

4



where the cell positions rj are given using the procedure
described in section III.A. The simulated structure fac-
tor S′sim was determined from the 3D Fourier transform of
the spatial distribution of cells.17 A mean σag,sim curve
was computed by averaging over 1000 different realiza-
tions for averaging purposes.

C. Computation of a simulated BSC from several
aggregates

Random distributions of non-overlapping aggregates
were computed within the simulated cubical volume 4803

µm3 by specifying the volume fraction φ of cells of radius
a, the aggregate radius rag and the aggregate compact-
ness φi. The spatial distribution of cells inside each ag-
gregate was performed using the procedure described in
section III.A. The simulated cubical volume was peri-
odized; i.e., interactions between aggregates were deter-
mined under periodic boundary conditions, in order to
remove the edge effects. The BSC from aggregated cells
was then computed using the SFM as follows

BSCsim(k) =
φ

Vc
σb(k)Ssim(k), (21)

where Ssim is the simulated structure factor representing
the spatial positioning of the cells inside the simulated
tissue. For each distribution of cells, the 3-D Fourier
Transform of the cell spatial positioning was computed
to obtain the simulated structure factor.17. The mean
BSCsim curve was obtained by averaging over 100 real-
izations for averaging purposes. Only 100 realizations
were used here (against 1000 realizations in the case of
the σag,sim computation) because one simulated volume
involve several thousands of cells (against a few dozen of
cells per aggregate for the σag,sim computation).

IV. RESULTS

A. Comparison of the simulated and theoretical σag

The frequency-dependent differential backscattering
cross section of one cell aggregate σag,sim computed with
the SFM is given in Fig. 2 for a single aggregate of radius
rag/a = 6 and of compactness φi = 30%. Also shown in
Fig. 2(a) (and Fig. 2(b), respectively) are the theoretical
differential backscattering cross section considering only
the coherent component (and considering both coherent
and incoherent components, respectively). In Fig. 2(a),
the dashed line (or the solid line, respectively) represents
the theoretical σag,coh given in Eq. (11) using F (rag) (or

F (
√

5/3Rg), respectively). The first peaks of σag,sim and

σag,coh using F (
√

5/3Rg) occur at the same frequency
(approximately 22.1 MHz). On the other hand, the first
peak of σag,coh using F (rag) does not match perfectly the
simulation and occurs at a lower frequency around 20.5
MHz.

In Fig. 2(b), the solid line represents σag =
σag,coh + σag,inc using Eqs. (1), (11) and (15) and
the dashed line represents σag,G = σag,coh + σag,inc,G

using Eqs. (1), (11) and (16). The consideration of
the incoherent component allows to better match the
σag,sim behavior at higher frequencies, whatever the
considered expression for the incoherent component
σag,inc or σag,inc,G. Indeed, the σag,coh curve shows very
deep dips (Fig. 2(a)), whereas both σag and σag,G curves
match much better the dip behavior of the σag,sim curve.

Figure 3 represents the simulated σag,sim (symbols)
for a radius rag/a = 6 and aggregate compactnesses
φi = 10, 20, 30 and 40%. One can note that the
σag,sim curves have more pronounced frequency dips
when the aggregate compactness increases. For the
lower aggregate compactness, only the first peak is well
pronounced and the first dip is smooth, whereas the first
two peaks and the first dip are clearly enhanced for the
higher aggregate compactnesses. This behavior suggests
that for compact aggregates, the incident wave tends
to be scattered as if the aggregate was a well defined
sphere, whereas for the lower aggregate compactness,
the boundaries of the aggregates are not well defined.
The occurence of the first frequency peak also shifts
toward higher frequencies from 22.6 MHz to 25.8 MHz
when the aggregate compactness decreases from 40% to
10%. Also represented in Fig. 3 are the theoretical σag

(solid line) and σag,G (dashed line). Both models are
very accurate at φi = 30%. The σag,G curve matches
better the simulation results for the highest aggregate
compactness φi = 40%, whereas the σag curve matches
better the two lower compactnesses φi = 10% and 20%.

Figure 3 also allows to compare the general σag be-
havior over all frequencies, however, in order to eval-
uate a workable frequency bandwidth for each model,
the product krag for which the relative error was less
than 20% was determined, as done previously in our two-
dimensional study (see Fig. 7 of Franceschini et al.10).
First, we assess the improvement of the krag limit for

the σag,coh expression using F
(√

5/3Rg

)
(see the solid

curves in Fig. (4)). In comparison with the former mod-

eling using F (rag), the use of F
(√

5/3Rg

)
increases the

krag limit from 1.07 to 1.76 on average for φi = 10%,
and from 1.47 to 1.91 on average for φi = 40% (the limit
being computed as the mean krag for rag/a values vary-
ing from 5 to 9). Secondly, we focus on the improvement
of the krag limit considering the incoherent component
expressions (see the dashed curves in Fig. (4)). For the
lowest aggregate compactness of 10%, consideration of
the incoherent component based on the structure fac-
tor σag,inc allowed to increase the krag limit from 1.76
to 2.12, whereas the incoherent component based on the
Gaussian direct correlation function σag,inc,G did not al-
low to improve the krag limit. For the highest aggregate
compactness of 40%, there was no significant difference

5



in the krag limit whether the incoherent component was
considered or not: it means that the krag limit increase

is only due to the modification of F
(√

5/3Rg

)
in the

coherent component. To conclude, the overall best re-
sults are obtained by taking into account (1) the modifi-

cation of F
(√

5/3Rg

)
in the coherent component, and

(2) the incoherent component based on the structure fac-
tor σag,inc. Thus, in the sequel, for the results presented
later, we will use the differential backscattering cross sec-
tion σag computed with Eqs. (1), (11) and (15).

B. Comparison of the simulated and theoretical BSC

Figure 5 (a) shows simulated and theoretical frequency
dependent BSCs for three aggregate sizes rag/a = 5, 7
and 9, a fixed aggregate compactness φi = 40% and a
fixed cell volume fraction φ = 16%. The symbols repre-
sent the BSCsim computed with the SFM. The solid and
dashed lines depicts the BSCEMTSFM using the proposed
model of Eqs. (1), (11), (15), and (17). The theoretical
BSCEMTSFM matches well the simulated BSCsim, espe-
cially for the amplitude and the frequency occurence of
the first two peaks and dips, whatever the aggregate size
considered in this work. In Fig. 5(b) are shown simu-
lated and theoretical BSCs for three aggregate compact-
nesses φi = 10, 25 and 40%, at a lower φ = 4%, and a
fixed aggregate radius of rag/a = 7. Note that for the
study of the aggregate compactness variation, we limit
the total cell volume fraction to φ = 4% and the lower
aggregate compactness to φi = 10% (corresponding to a
value φag = 40%), because the maximum volume frac-
tion of aggregates achievable in computer simulation is
approximately 40% using the method described section
III.C.

The influence of the structure factor of the effective
medium Sag on the BSC curves was also studied. In
that aim, we observe the spectral slope (i.e. the linear
slope of the BSC as a function of frequency in a log-
log scale) of the BSCsim curves before the first peak oc-
currence. The spectral slope increases above 4 for the
BSCsim curves with an aggregate concentration φag =
φ/φi = 40% presented in Fig. 5(a), and for the BSCsim

curve with the clustering condition (φ = 4%, φi = 10%,
φag = φ/φi = 40%) presented in Fig. 5(b). On the other
hand the BSCsim curve shows a fourth power frequency-
dependence (i.e. a spectral slope of 4) with the cluster-
ing condition (φ = 4%, φi = 40%, φag = φ/φi = 10%)
presented in Fig. 5(b). So, the more the aggregate con-
centration φag increases, the greater the influence of Sag

becomes observable in the BSC frequency dependence.

V. DISCUSSION

A. On the use of simple spatial distribution of cells

The method used in this study to obtain the cell spatial
distribution was not based on a generic physical model
of interactions between cells. Rather, we used a simple
and fast method to generate hundreds of simulated media
with a large scale ratio between the cell size (2.75 µm)
and the whole medium size (4803 µm3). The purpose was
to build a controlled medium containing non-overlapping
spherical aggregates, all aggregates having the same ra-
dius and compactness with a unique cell spatial distribu-
tion defined by a structure factor. The main advantage
of this method was the possibility to have various ag-
gregate compactnesses with the same size of aggregates,
which allowed to demonstrate the role of the incoherent
scattering component on the BSC frequency dependence
at high frequencies. Indeed, the σag,sim curves had well
pronounced peaks and dips for the higher aggregate com-
pactnesses, whereas the first peak was well enhanced and
the first dip was smooth for the lower aggregate compact-
ness (see Fig. 3). Theoretical predictions of the σag based
on the structure factor for the incoherent component pro-
posed in Eq. (15) agreed well with the simulations and
validated the proposed theoretical modeling.

In the 3-D computer simulations of this study, we had
to limit the total volume fraction of cells to a maximum
of 16%. Indeed, the procedure we chose to distribute
the cells within aggregates allowed reaching a maximum
aggregate compactness φi,max of 40%. The upper limit
of 40% is easily understandable because placing non-
deformable identical spheres randomly enough inside a
larger sphere without overlapping is not straightforward.
In comparison, a standard method using a random se-
quential absorption18 would give a compactness close to
30%. The maximum aggregate volume fraction φag,max

was thus also fixed to 40%. As a consequence, the maxi-
mum value of the total volume fraction φmax was limited
to φmax = φi,maxφag,max = (40%)2 = 16%.

B. The benefit of considering the incoherent component

A new theoretical modeling of the differential
backscattering cross section from a single cell aggregate
was developed in this work and consisted in taking
into account a coherent component and an incoherent
component in the expression of σag. This modeling was
compared to numerical simulations based on the SFM.
Concerning the coherent component, a slight modifica-

tion of the σag,coh expression using F
(√

5/3Rg

)
was

proposed and allowed the EMT to better match the
frequency occurrences of peaks and dips observed in
simulations. Concerning the incoherent component, two
expressions of σag,inc based on the structure factor and
on a Gaussian direct correlation function proposed by
Morse and Ingard12 were compared. The numerical
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study demonstrated the superiority of the formulation
using the structure factor over that with the Gaussian
direct correlation function, regarding the krag limit
study of Fig. 4. The consideration of the incoherent
component σag,inc based on the structure factor allowed
to approximate the simulations satisfactorily for an
average krag limit around 2, against an average krag
limit comprised between 1.07 and 1.47 with the former
model considering only the coherent component.

It is interesting to observe that the simulated σag,sim

curves showed a fourth power frequency dependence
(Rayleigh scattering) before the first peak occurrence (see
Figures 2 and 3). When the aggregate compactness var-
ied (Fig. 3), the σag,sim frequency dependence differed
mainly at high frequencies after the first peak. To better
understand this high frequency behavior, we analyzed the
theoretical respective influence of each scattering compo-
nent (coherent and incoherent) on the σag behavior, while
varying the aggregate compactness. According to Eqs.
(11) and (15), the σag frequency dependence is mainly
determined by the spherical form factor from an effec-

tive sphere F
(√

5/3Rg

)
that intervenes in the coher-

ent component, and the structure factor S(a, φi) that
intervenes in the incoherent component. As shown in
Fig. 6(a), an increase of the compactness induces a de-
crease of the structure factor amplitude S(k; a, φi), and
a slight shift toward lower frequencies of the form factor
F (k; r′ag) peaks and dips. In Fig. 6(b) (or (c), respec-
tively) are plotted the theoretical backscattering cross
sections (solid lines), the corresponding coherent com-
ponent σag,coh (dashed lines) and incoherent component
σag,inc (dotted lines) as defined in Eq. (1), for the same
aggregating condition with rag/a = 6 and φi = 10% (or
φi = 40%, respectively). The relative influence of the in-
coherent component is more important for lower aggre-
gate compactnesses, giving rise to smoother peaks and
dips. Also, the frequency shift of the peaks and dips ob-
served in the simulations can be explained theoretically

by a dependance of the form factor F
(√

5/3Rg

)
on the

aggregate compactness. Indeed, the gyration radius value
depends on the aggregate compactness as mentioned in
section III.A. In the framework of an inverse problem ap-
proach, it would be useful to approximate the gyration
radius as a function of the radius rag of the aggregate
envelope and the aggregate compactness φi. Based on
the 3D building of isotropic aggregates using the method
described in section III.A, the relationship between Rg,
rag and φi was empirically determined as follows:

Rg ≈
√

3/5
(
0.96× rag + 7.06× 10−6φi − 2.71× 10−6

)
.

(22)
This approximation, obtained from a linear regression
analysis, shows less than 5% relative error for all tested
radii rag/a (varying from 4 to 9) and compactnesses
(varying from 5% to 40%). The estimated R-squared
value and p-value were 0.996 and 5.39 × 10−101 respec-

tively.

VI. CONCLUSION

The EMT was further developed to decompose the dif-
ferential backscattering cross section of a single cell ag-
gregate into coherent and incoherent components. The
coherent component, corresponding to the average wave
emerging from the effective scatterer, was approximated
by the scattering of an effective fluid sphere, whose ra-
dius depends on the gyration radius of the cell aggregate.
An important contribution of this new EMT is the taking
into account of the incoherent component based on the
structure factor, which allowed to approximate the com-
puter simulations satisfactorily for a product krag up to
2.

The EMTSFM assumes that all cells are aggregated
and that aggregates are identical and isotropic. There-
fore, the BSC behavior obtained in all simulations showed
a pronounced first peak. In experimental conditions
when insonifying aggregated red blood cells9 or clus-
ters of tumor cells5, the BSC behavior was smoother
and the peaks were less pronounced. The reason be-
hind this might be that real tissues contain several sizes
of aggregates, and since the location of BSC peaks are
different for different aggregate populations, a relatively
smoother BSC curve can be obtained. Therefore, future
improvements should consider incorporating polydisper-
sity in aggregate size and compactness to provide an op-
timal EMTSFM for the inversion of experimental data.
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Mécanique et d’Acoustique LMA, CNRS, UPR 7051,
Aix-Marseille University, Centrale Marseille, F-13402
Marseille Cedex 20, France, in July 2013 to work on this
project.

Appendix A

The model underlying Eq. (2) is equivalent to the fol-
lowing expression for the tissue function

γκ(r0)− γρ(r0) = (γκ − γρ)
N∑
j=1

χ(r0 − rj), (23)

where χ(r0) = 1 inside a sphere Va of radius a centered
at the origin, and 0 elsewhere.
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We then compute based on Eq. (23)∫
Vag

[
γκ(r0)−γρ(r0)

]
e2ik n0·r0 d3r0 =

N∑
j=1

(γκ−γρ)
∫

Vag

χ(r0−rj)e
2ik n0·r0 d3r0.

Next, considering the change of variable r′0 = r0−rj , one
obtains∫

Vag

χ(r0 − rj)e
2ik n0·r0 d3r0 =

∫
Va

e2ik n0·(r′0+rj) d3r′0.

Lastly, since e2ik n0·(r′0+rj) = e2ik n0·r′0e2ik n0·rj , one
concludes that∫

Vag

[
γκ(r0)− γρ(r0)

]
e2ik n0·r0 d3r0 = (γκ − γρ)

(∫
Va

e2ik n0·r′0 d3r′0

) N∑
j=1

e2ik n0·rj

= (γκ − γρ)Vc
(
V −1
c

∫
Va

e2ik n0·r′0 d3r′0

) N∑
j=1

e2ik n0·rj .

Appendix B

This appendix gives the computation steps to ob-
tain the low frequency approximation of Fcoh(k) =

F0(k; a)1/N
∑N
j=1〈e2ik n0·rj 〉.

Firstly, by assuming centrosymetric aggregates, one
has

1

N

N∑
j=1

〈e2ik n0·rj 〉 =
1

N

N∑
j=1

〈cos(2k n0 · rj)〉

=
1

N

N∑
j=1

〈
sin(2k |rj |)

2k |rj |

〉

≈ 1− 2

3
k2

〈
1

N

N∑
j=1

|rj |2
〉
,

where the last approximation corresponds to the second
order Taylor expansion of the expression. An equivalent
approach can be found in Guinier & Fournet19 pp. 7 and
8. A second order Taylor expansion of Fcoh(k) thus gives:

Fcoh(k) ≈ 1− 2

3
k2

3

5
a2 +

〈
1

N

N∑
j=1

|rj |2
〉 = 1− 2

3
k2R2

g,

by using the definition of Rg given in Eq. (9), and the
Taylor expansion of F0(k; a)(≈ 1− 2

5k
2a2). Lastly, since

for the equivalent full sphere of radius r′, F0(k; r′) ≈
1− 2

5k
2r′2, we need r′ =

√
(5/3)Rg in order to match the

low frequency approximations of the form factors Fcoh(k)
and F0(k; r′).

Appendix C

This appendix gives the computation steps to obtain
the incoherent component of the differential backscat-
tering cross-section σag,inc,G based on a Gaussian direct
correlation function as proposed by Morse and Ingard.12

Firstly, one has

γκ,ag(r0)− γρ,ag(r0) = χ(r0)(γκ − γρ),

where χ is the characteristic function of the cells: χ(r0) =
1 inside cells and χ(r0) = 0, otherwise. Moreover, we use
the following approximation

〈γκ,ag(r0)− γρ,ag(r0)〉 ≈ φi(γκ − γρ).

From there, one obtains the expression

Φag,inc(k) = Φag(kag)− 〈Φag(kag)〉

≈
k2

ag

4π

∫
Vag

(γκ − γρ)(χ(r0)− φi)e2ikag n0·r0 d3r0.

Note that the function (γκ− γρ)(χ(r0)−φi) corresponds
to the function δ modified from Ref. 12 (Eq. (8.2.24)).
Therefore, the incoherent component of the differential
backscattering cross-section can be computed using the
direct correlation function Υ of the compressibility and
density fluctuations as follows:

σag,inc(k) = 〈|Φag,inc(k)|2〉

≈
k4

ag(γκ − γρ)2

16π2
Vag

∫
Vag

Υ(∆r)e2ikag n0·∆r d3∆r,(24)

where

Υ(∆r) =
1

Vag
〈
∫

Vag

(χ(r0)− φi)(χ(r0 + ∆r)− φi) d3r0〉.

The function Υ depends only on ∆r = |∆r| and must
have the following properties: the mean value of Υ(∆r) is
zero and lim|∆r|→∞Υ(∆r) = 0. Under the postulate of
a Gaussian model, the expression of the direct correlation
function Υ is given by Morse & Ingard12 (Eq. (8.2.26)):

Υ(∆r) ≈ Υ(0)
(

1− ∆r2

3d2

)
e−∆r2/(2d2),

where Υ(0) = φi(1−φi), and the correlation distance d is

related to the cell radius a as d = 21/6

31/3π1/6 a ≈ 0.643092×
a as defined by Insana and Brown13 (Eq. (81) p.107).
Performing the integral in Eq. (24), one then obtains the
Gaussian incoherent component expressed in Eq. (16).
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FIGURE CAPTIONS

Figure 1. (Color online) Examples of two cell
aggregates of radius rag/a = 7, on the left with a
compactness of φi = 10%, and on the right with
a compactness of φi = 40%. The radius of the
external envelope in displayed with transparency.

Figure 2. (Color online) Differential backscatter-
ing cross section of one cell aggregate of radius
rag/a = 6 and of compactness φi = 0.3. The
symbols represent the σag,sim computation. (a)
The dashed line (or the solid line, respectively) rep-
resents the theoretical coherent component σag,coh

given in Eq. (11) using F (rag) (or F
(√

5/3Rg

)
,

respectively). (b) The solid line (or the dashed
line, respectively) represents the theoretical σag

(or σag,G, respectively), both using F
(√

5/3Rg

)
in the coherent component.

Figure 3. (Color online) Differential backscattering
cross sections of one cell aggregate for different
aggregate compactnesses. The symbols represents
the σag,sim computation. The solid line (dashed
line, respectively) represents the theoretical σag

using Eqs. (1), (11) and (15), (or the theoretical
σag,G using Eqs. (1), (11) and (16), respectively).

Figure 4. (Color online) Averaged krag limits,
as a function of the aggregate size ranging for
rag/a =5 to 9, for three compactnesses φi = 10%
(a), φi = 25% (b) and φi = 40% (c). The solid
lines correspond to the limits of σag,coh computed

using F
(√

5/3Rg

)
(crosses), and using F (rag)

(squares). The dotted lines correspond to the
limits of σag (diamonds) and σag,G (circles), both
computed using the modification of the radius in

F
(√

5/3Rg

)
. Note that the curves marked with

crosses and circles are superimposed in Figs. (a)
and (b).

Figure 5. (Color online) Frequency dependent
backscatter coefficients for various aggregate
sizes and compactnesses. Symbols represent
simulation results and lines represent theoretical
BSCs computed using Eq. (17). (a) The volume
fraction occupied by the cells in the medium is
φ = 16% and the aggregate compactness is fixed to
φi = 40%. Radii of aggregates vary from rag/a = 5
to rag/a = 9. (b) The volume fraction occupied
by the cells in the medium is φ = 4% and the
aggregate size is fixed to rag/a = 7. Aggregate

compactnesses vary from φi = 10% to φi = 40%.

Figure 6. (Color online) (a) Theoretical form factor

F
(
k;
√

5/3Rg

)
and structure factor S(k; a, φi)

computed as a function of the frequency for
two compactnesses φ = 10% and φi = 40% and
aggregate size rag/a = 6. (b) and (c) Theoretical
differential backscattering cross sections of one
cell aggregate σag, its coherent component σag,coh

and incoherent component σag,inc, as a function of
frequency.
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FIG. 1. (Color online) Examples of two cell aggregates of
radius rag/a = 7, on the left with a compactness of φi = 10%,
and on the right with a compactness of φi = 40%. The radius
of the external envelope in displayed with transparency.
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