Jean-Christophe Filliâtre

Léon Gondelman

Cláudio Lourenço

Andrei Paskevich

Mário Pereira

Simão Melo De Sousa

Aymeric Walch

A Toolchain to Produce Veried OCaml Libraries

In this paper, we present a methodology to produce veried OCaml libraries, using the GOSPEL specication language and the Why3 program verication tool. First, a formal behavioral specication of the library is written in OCaml/GOSPEL, in the form of an OCaml module signature extended with type invariants and function contracts. Second, an implementation is written in WhyML, the programming language of Why3, and then veried with respect to the GOSPEL specication. Finally, WhyML code is automatically translated into OCaml source code by Why3. Our methodology is illustrated with two examples: rst, a small binary search function; then, a union-nd data structure that is part of a larger OCaml veried library.

Introduction

Development of formally veried programs can be done in various ways. Perhaps, the most widespread approach consists in augmenting an existing mainstream programming language with specication annotations (contracts, invariants, etc.) and proving the conformance of the code to the specication, possibly passing through an intermediate language. Examples include VeriFast [START_REF] Jacobs | VeriFast: A powerful, sound, predictable, fast verier for C and Java[END_REF] and KeY [START_REF]Deductive Software Verication -The KeY Book -From Theory to Practice[END_REF] for Java, Frama-C [START_REF] Kirchner | Frama-c: A software analysis perspective[END_REF] and VCC (via Boogie) [START_REF] Dahlweid | VCC: Contract-based modular verication of concurrent C[END_REF][START_REF] Barnett | Boogie: A Modular Reusable Verier for Object-Oriented Programs[END_REF] for C, GNATprove (via Why3) for Ada/SPARK [START_REF] Carré | SPARKan annotated Ada subset for safety-critical programming[END_REF][START_REF] Filliâtre | Why3 where programs meet provers[END_REF]. This approach can end up being quite challenging, since real-life programming languages, not designed with verication in mind, have to be encoded into a suitable program logic. Such an encoding is a non-trivial task, and it may result in rather complex verication conditions, that are dicult to discharge by both automated and interactive provers.

Alternatively, one can proceed in the opposite direction: develop formally veried code in a dedicated verication language/environment and then translate it to an existing programming language, producing a correct-by-construction program. One can cite PVS [START_REF] Owre | PVS: A prototype verication system[END_REF], Coq [START_REF] Coq | The Coq Proof Assistant Reference Manual Version V8.9[END_REF], B [START_REF] Abrial | The B-Book, assigning programs to meaning[END_REF], F [START_REF] Swamy | Dependent types and multi-monadic eects in F*[END_REF], Dafny [START_REF] Rustan | Dafny: An automatic program verier for functional correctness[END_REF], and Why3 [START_REF] Filliâtre | Why3 where programs meet provers[END_REF] as examples of this approach. It works well for self-contained programs, such as

This research was partly supported by the French National Research Organization (project VOCAL ANR-15-CE25-008). CompCert [START_REF] Leroy | A formally veried compiler back-end[END_REF], but is less suitable when the veried code is supposed to be integrated into a larger development. We cannot expect the original source code, developed in a specic verication framework, to be accessible to a common programmer and the automatically generated code is typically a clobbered mess.

In this paper, we propose a way to reconcile the two approaches, avoiding both of the aforementioned disadvantages. Our work takes place in the setting of a larger project, named VOCaL (for Veried OCaml Library) [START_REF] Charguéraud | VOCAL A Veried OCaml Library[END_REF], whose ambition is to provide a mechanically veried library of ecient general-purpose data structures and algorithms, written in the OCaml language. One of the main lines of work in the VOCaL project is the design of GOSPEL [START_REF] Charguéraud | GOSPEL providing OCaml with a formal specication language[END_REF], a behavioral specication language for OCaml, similar to what JML is for Java [START_REF] Burdy | An overview of JML tools and applications[END_REF], or ACSL for C [START_REF] Baudin | ACSL: ANSI/ISO C Specication Language, version 1.4[END_REF]. The VOCaL project also combines the use of three verication tools, namely Coq, CFML [START_REF] Charguéraud | Characteristic formulae for the verication of imperative programs[END_REF], and Why3. This paper focuses on the last.

Our approach to producing veried OCaml code consists in splitting the verication and implementation process into several steps. The workow is given in In the following sections, we explain this workow in detail using the examples of a binary search function (Sec. 2 and 3) and of a union-nd library (Sec. 4). Section 5 gives an overview of the other OCaml modules veried with Why3 in the VOCaL project. Source les for all the OCaml modules mentioned in this paper are available from https://vocal.lri.fr/.

Why3 and WhyML

Why3 is a tool for deductive program verication [START_REF] Filliâtre | Why3 where programs meet provers[END_REF]. It uses its own programming and specication language, called WhyML, which is largely inspired by OCaml syntax. The theoretical foundation of Why3 is the weakest-precondition calculus and a custom type system with regions to handle mutable heap-allocated data [START_REF] Filliâtre | A pragmatic type system for deductive verication[END_REF]. As a programming language, WhyML can be seen as a subset of OCaml with support for exceptions, algebraic types, type polymorphism, and restricted higher-order (side-eect-free functional arguments). The program annotations (function contracts, loop invariants, assertions, etc.) are written in a rich logical language that reuses the data types of programs and features pattern matching, recursive and inductive denitions, as well as higher-order functions. An important feature of WhyML is so-called ghost code which is a part of program code that serves exclusively to facilitate specication and proof, and cannot inuence the actual computations [START_REF] Filliâtre | The spirit of ghost code[END_REF]. For example, complex data structures in WhyML would often feature ghost elds that contain the logical model of the structure.

This allows us to specify the program functions that manipulate such a data type in terms of a simple mathematical model, without referring to the details of the implementation.

Let us illustrate the use of Why3 on the simple example of a binary search function. It can be specied and implemented in WhyML as follows:

let rec binary_search (cmp: 'a -> 'a -> int63) (a: array 'a) (lo hi: int63) (v: 'a) : int63 requires { is_pre_order cmp } requires { 0 <= lo <= hi <= length a } requires { forall i j. lo <= i <= j < hi -> cmp a

[i] a[j] <= 0 } ensures { lo <= result < hi /\ cmp a[result] v = 0 } raises { Not_found -> forall i. lo <= i < hi -> cmp a[i] v <> 0 } variant { hi -lo } = if lo >= hi then raise Not_found; let mid = lo + (hi -lo) / 2 in let c = cmp a[mid] v in if c < 0 then binary_search cmp a (mid + 1) hi v else if c > 0 then binary_search cmp a lo mid v else mid
The rst two lines show the type signature of the function binary_search. The functional parameter cmp must be a total stateless and eect-free function, so that we can use it in specication annotations. Type int63 denotes the 63-bit signed integers and is distinguished from type int that represents unbounded mathematical integers. The values of range types like int63 are implicitly coerced to int inside specication annotations.

After the type signature comes the function contract. The clauses requires correspond to the preconditions: the functional parameter cmp is required to implement a total pre-order (the sign of the return value indicates the result of the comparison); the range lo..hi must lie inside the array bounds; the array must be ordered within that range. The clause ensures describes the postcondition associated to a normal (i.e., non-exceptional) termination: the return value of type int63, named result, must be a valid array index where the sought value v is stored. The clause raises describes the exceptional postcondition: if binary_search raises exception Not_found, then v does not occur in the array between lo and hi. Finally, the last clause, variant, is not part of the contract, but helps Why3 to prove the termination: with each recursive call, the value of the variant must strictly decrease with respect to some well-founded order.

The code of binary_search is a rather idiomatic OCaml code. When we run Why3 on this program, verication conditions are generated to prove the following properties: all function calls respect the preconditions of the callee (this includes showing that all operations over bounded integers do not produce overows and that all array accesses are made within bounds); all recursive function calls make the value of the variant decrease; the postconditions are met both for normal and exceptional termination.

Why3 uses multiple automated and interactive provers (including Alt-Ergo, CVC4, Z3, E, Coq, and Isabelle) to discharge the proof obligations. Moreover, the user can apply various transformations, such as goal splitting, case analysis, and denition unfolding, during a Why3 interactive verication session in order to simplify proof tasks before sending them to the background provers. For example, the above implementation of binary search is proved automatically by CVC4 in a matter of seconds after one application of goal splitting.

Why3 supports automated translation of WhyML code to OCaml. An important part of this translation is removal of ghost code and ghost data. Once ghost code and specication annotations are eliminated, Why3 produces an OCaml source le. The program symbols and types which are not implemented inside WhyML code (and are axiomatized instead) are translated to their OCaml counterparts via a so-called driver: a text le that maps WhyML symbols to fragments of OCaml code. Drivers are part of the trusted base of Why3: an incorrect translation would result in a program whose behaviour is dierent from that of the veried WhyML code and will not necessarily respect the contract. In the example above, the types int63 and array, as well as standard operations over them, are mapped to the corresponding OCaml types and operations. The resulting OCaml code is practically identical to the WhyML source.

GOSPEL and its Translation to WhyML

The specication language GOSPEL [START_REF] Charguéraud | GOSPEL providing OCaml with a formal specication language[END_REF] was developed in the context of the VO-CaL project. It extends the syntax of OCaml .mli interface les with behavioral specications, written as specially formatted OCaml comments. GOSPEL is not tied to any particular verication tool. Instead, the methodology of VOCaL considers GOSPEL as a common frontend specication language for dierent verication tools, that either verify OCaml code directly (e.g., CFML) or can produce correct-by-construction OCaml code (e.g., Why3 or Coq).

Here is the GOSPEL specication for our binary_search function: A notable dierence with the WhyML specication from the previous section is clause checks, which describes a precondition that is expected to be checked during execution. When such a precondition is violated, the OCaml implementation must raise the OCaml built-in exception Invalid_argument. Contrary to JML or SPARK, GOSPEL annotations are not meant to be executable: they may contain unbounded quantiers, abstract logical functions, etc. It is up to the veried OCaml implementation to fulll the provided contract, including the runtime checks.

Although the semantics of GOSPEL is given in terms of Separation Logic [START_REF] Charguéraud | GOSPEL providing OCaml with a formal specication language[END_REF],

the specication language itself is kept simple, without explicit Separation Logic operators. Instead, GOSPEL adopts a number of reasonable conventions, such as separation of function parameters and return values, and full ownership transmission from the caller to the callee and back. This is done intentionally, in order to make the language accessible to a larger audience of OCaml programmers.

Incidentally, this also simplies translation from GOSPEL to WhyML, which adheres to the same conventions [START_REF] Filliâtre | A pragmatic type system for deductive verication[END_REF].

We have extended Why3 with a new input format for GOSPEL. The type and function declarations are translated to corresponding WhyML declarations.

A special treatment is provided for checks clauses: for each function foo whose contract contains a clause checks φ, Why3 produces the declarations of two WhyML functions, foo and unsafe_foo, where the former contains an exceptional postcondition raises { Invalid_argument -> ¬φ } and the latter contains a precondition requires { φ }. The latter function is deemed unsafe because it trusts the caller to respect the precondition φ, whereas the former implements a defensive runtime check. A similar practice already exists in OCaml, e.g., Array.unsafe_get. Unsafe functions are perfectly safe when called from veried code, since precondition must be satised, and provide a better performance.

Why3 can generate proof obligations to establish that a given WhyML implementation conforms to a given WhyML specication translated from GOSPEL.

In our case, we can show that our implementation of binary search from Sec. 2 corresponds to the declaration of function unsafe_binary_search (where the checks clause is translated as a WhyML precondition).

Example: Union-Find

We now describe a more complex example, taken from the VOCaL library. This is an OCaml module implementing a union-nd data structure, with the following API (borrowed from [START_REF] Charguéraud | Verifying the correctness and amortized complexity of a union-nd implementation in separation logic with time credits[END_REF]):

type 'a elem (* type of the elements *) val make: 'a -> 'a elem (* a singleton class *) val find: 'a elem -> 'a elem (* the representative *) val eq: 'a elem -> 'a elem -> bool (* in the same class? *) val union: 'a elem -> 'a elem -> unit (* merge two classes *)

In this API, a value of type 'a is attached to each equivalence class. Our actual implementation includes the access and update functions to manipulate this value. For the sake of brevity, we do not discuss this functionality in the paper.

Specication. We start with a GOSPEL specication. In order to give a specication to the functions above, we need a logical representation of the global state of the union-nd data structure. This logical representation takes the form of a set of all elements, together with a function selecting a canonical element in each equivalence class:

(*@ type 'a uf mutable model dom: 'a elem set mutable model rep: 'a elem -> 'a elem invariant forall x. mem x dom -> rep (rep x) = rep x invariant forall x. mem x dom -> mem (rep x) dom *)

Notice that type uf is declared inside a GOSPEL annotation and not as an OCaml type. Consequently, it will only be available for specication or as a type of ghost parameters. The elds dom and rep are declared mutable to reect the possible changes in the state of the union-nd structure. The two invariants ensure that the set dom is indeed partitioned by the relation to have the same canonical representative given by rep.

We are now in position to provide a specication to each OCaml function above. Let us use make and find as examples.

val make: 'a -> 'a elem (*@ e = make These examples involve many aspects not described in this paper, due to lack of space. We describe some of them, briey:

One module, PriorityQueue, implements mutable priority queues on top of another module, Vector, which implements resizable arrays. The proof is performed in a modular way: the Why3 proof of PriorityQueue only makes use of the GOSPEL specication for Vector, but not of its implementation.

Modules PriorityQueue and PairingHeap are OCaml functors, i.e., modules parameterized by a module. This is the idiomatic way in OCaml to provide types and functions as parameters (here, a type of elements equipped with a comparison function). From GOSPEL's point of view, there is no dierence between the specication of a parameter module and that of a toplevel module. From Why3's point of view, there is no dierence between verifying a module B that uses another module A or that is parameterized with a module A. The main dierence lies in the translation from Why3 to OCaml, which must produce an actual OCaml functor.

The veried module PriorityQueue has been integrated into Why3 source code. It is not used in the trusted part of Why3, but only in some heuristic algorithm that matches former proof attempts with new verication conditions. In this way, there is no circularity in the proof of PriorityQueue.

Two of the modules involve arithmetic computations for which it is not obvious to prove the absence of arithmetic overow (the rank in UnionFind and a list length in ZipperList). We use a Why3 library providing a protected integer type with a restricted set of operations to solve that issue [START_REF] Clochard | How to avoid proving the absence of integer overows[END_REF].

The GOSPEL specication, OCaml code, and Why3 proof for all these modules is available from https://vocal.lri.fr/. The CFML tool [START_REF] Charguéraud | Characteristic formulae for the verication of imperative programs[END_REF] implements another approach to the verication of OCaml programs using Coq. It goes the other way around, turning an OCaml program into a characteristic formula, that is an expression of its semantics into a higherorder separation logic embedded in Coq. CFML provides Coq tactics to help the user carry out proofs eciently. Examples of recent applications of CFML include a veried implementation of hash tables [START_REF] Pottier | Verifying a hash table and its iterators in higher-order separation logic[END_REF] and verication of the correctness and amortized complexity of a union-nd library [START_REF] Charguéraud | Verifying the correctness and amortized complexity of a union-nd implementation in separation logic with time credits[END_REF]. Contrary to the CFML proof, ours is fully automatic but we only treat functional correctness and not the complexity bounds.

Surprisingly, program verication has seldom been applied to libraries of signicant size. A remarkable exception is the verication of the EielBase2 containers library [START_REF] Polikarpova | A fully veried container library[END_REF], performed with the AutoProof system [START_REF] Tschannen | Autoproof: Auto-active functional verication of object-oriented programs[END_REF]. It is our purpose to continue using and improving our methodology to grow our veried library to a size comparable to that of EielBase2. However, we do not focus specically on the verication of containers, but also on general-purpose algorithms, e.g., our union-nd implementation.

Conclusion. We proposed a new workow to produce correct-by-construction

OCaml programs. It builds upon the existing tool Why3, with the addition of the following contributions: a specication language for OCaml, called GOSPEL;

a tool to translate it to WhyML; a technique to build memory models for mutable recursive OCaml types; an enhanced extraction mechanism for Why3, with support for OCaml functors; a practical validation with the proof of nine non-trivial OCaml modules.

Fig. 1 .

 1 Fig. 1. The workow.

Fig. 1 :

 1 Fig. 1: solid rectangles represent user-written les, and dashed rectangles represent automatically generated les. First, we start with a GOSPEL specication le: an OCaml .mli interface le where OCaml declarations are augmented with specication annotations, such as function contracts (pre-and postconditions) and type invariants. GOSPEL annotations are written as OCaml comments, and thus ignored by the OCaml compiler. Our framework parses and type checks this le and automatically generates a corresponding Why3 input le, in which allannotations are translated into WhyML, the specication and programming language of Why3. Second, we provide a veried WhyML implementation of the declared operations. This means that, in addition to implementing and verifying a WhyML program, we also establish its correctness with respect to the speci-

 val binary_search: ('a -> 'a -> int) -> 'a array -> int -> int -> 'a -> int (** Search for value [v] in array [a], between indices [lo] inclusive and [hi] exclusive, using comparison function [cmp]. Returns an index where [v] occurs, or raises [Not_found] if no such index exists. *) (*@ result = binary_search cmp a lo hi v requires is_pre_order cmp checks 0 <= lo <= hi <= Array.length a requires forall i j. lo <= i <= j < hi -> cmp a.(i) a.(j) <= 0 ensures lo <= result < hi && cmp a.(result) v = 0 raises Not_found -> forall i. lo <= i < hi -> cmp a.(i) v <> 0 *) The le begins with a standard OCaml function declaration, together with an informal ocamldoc comment. Then follows the formal specication, enclosed in a special comment starting with `(*@'. The rst line of the specication gives names to the function parameters and to its return value. Wherever possible, GOSPEL uses OCaml syntax for primitive operations (e.g., Boolean connectives and array access).

 [uf: 'a uf] v modifies uf ensures not (mem e (dom (old uf))) ensures dom uf = add e (dom (old uf)) ensures rep uf = (rep (old uf))[e <-e] *) val find: 'a elem -> 'a elem (*@ r = find [uf: 'a uf] e requires mem e (dom uf) modifies uf ensures dom uf = dom (old uf) ensures rep uf = rep (old uf) ensures r = rep uf e *) For the purpose of the specication, make and find receive an extra parameter uf of type 'a uf. Square brackets identify it as a ghost parameter. The modifies clause in the function contract accounts for the modication of the union-nd data structure (caused by path compression in the case of find). The term old uf refers to the state of the structure at the beginning of the function call. Veried Implementation. The next step is to implement and verify the union-nd data structure. The OCaml implementation we target is based on the following data types: type 'a content = Link of 'a elem | Root of int * 'a and 'a elem = 'a content ref Each element is a mutable reference which can be in one of two states: either it is a canonical element (Root), with a rank of type int and a value of type 'a; or it points (Link) to another element in the same equivalence class. This type denition cannot be used as is in WhyML, which does not support recursive mutable types. The solution in Why3 is to resort to an explicit memory model, that is a set of types and operations to model the heap, pointers, allocation, and memory access. We translate the OCaml types above into the following WhyML types type loc_ref 'a type content 'a = Link (elem 'a) | Root int63 'a with elem 'a = loc_ref (content 'a) where loc_ref 'a is an abstract immutable type to represent locations of OCaml's heap-allocated references of type ref. The contents of the heap is modeled with another WhyML type type mem_ref 'b = private {mutable refs: loc_ref 'b -> option 'b} where non-allocated locations are mapped to None, and each allocated location is mapped to Some c for some value c of type 'b. Instead of modeling a single global heap, we adopt an approach of small heaps, i.e., local chunks of memory, which are passed as ghost arguments to heap-manipulating functions [23, Chapter 5]. For instance, a reference is updated using the following function: val set_ref (ghost mem: mem_ref 'b) (l: loc_ref 'b) (c: 'b): unit requires { mem.refs l <> None } writes { mem } ensures { mem.refs = (old mem.refs)[l <-Some c] } Once this memory model is built, we can implement and verify the unionnd data structure. In particular, we have to implement the data type uf. It is a record data type that contains, in addition to the elds dom and rep, the contents of the memory: type uf 'a = { memo: mem_ref (content 'a); ... } As declared in the interface, all union-nd functions receive a ghost parameter of type uf and then exploit it to perform read/write operations on memory: let rec find (ghost uf: uf 'a) (x: elem 'a) : elem 'a = match get_ref uf.memo x with | Root _ _ -> x | Link y -> let rx = find uf y in set_ref uf.memo x (Link rx); rx endHere, the call to set_ref accounts for path compression. Once we have implemented all operations, we prove that they conform to the GOSPEL specication written in the .mli le and translated to WhyML by our tool.

Fig. 2 .

 2 Fig. 2. For each OCaml module, column spec shows the number of lines in the .mli le and column code shows the number of lines in the WhyML implementation and proof. Column #VCs shows the total number of verication conditions. All of them were discharged automatically using the combined eort of Alt-Ergo, CVC4, and Z3.

 Translation to OCaml. The last step consists in translating WhyML to OCaml.

		module	spec code #VCs
		UnionFind	71 176	92 union-nd
		Vector	142 285	63 resizable arrays
		PriorityQueue 56 290 219 mutable priority queues
		PairingHeap	43 244	66 persistent priority queues
		ZipperList	65 150	54 zipper data structure for lists
		Arrays	43 126 104 e.g., binary search, binary sort
		Mjrty	11 35	37 Boyer&Moore's majority
		RingBuffer	44 94	61 circular arrays
		CountingSort	19 80 128 array counting sort
			Fig. 2. Veried OCaml Modules.
	5	The VOCaL Project: The State of the Library
	We have used our approach to verify several other OCaml modules, listed in
	We extend the standard driver of Why3 with a custom driver le for our memory
	model, as follows:	
	module UnionFind.Mem	
		syntax type loc_ref "%1 ref"
		syntax val set_ref "%1 := %2"
		...	
	We do not provide a translation for type mem_ref, since it is only used for ghost
	parameters. For the same reason, function set_ref only receives two parameters
	in the translated code. Such a le must be written with care, as it is clearly part
	of the trusted base. In particular, we trust OCaml references to have the same
	semantics as the one described in our memory model.

 The veried C compiler CompCert[START_REF] Leroy | A formally veried compiler back-end[END_REF] and the static analyzer Verasco[START_REF] Jourdan | A formally-veried C static analyzer[END_REF] are two notable large-scale examples of veried OCaml programs.Both are implemented in the Coq proof assistant and translated to OCaml afterwards using Coq extraction mechanism[START_REF] Sozeau | Coq coq correct! verication of type checking and erasure for coq, in coq[END_REF]. It is worth pointing out that Coq has a mechanism to replace certain symbols by OCaml code at extraction time, in a way very similar to our driver substitution mechanism.

	6	Related Work and Conclusion
	Related Work.

Acknowledgments. We are grateful to the anonymous reviewers of a previous submission for their helpful comments and suggestions. We also thank all the members of the VOCaL project for fruitful discussions.