
HAL Id: hal-01783851
https://hal.science/hal-01783851v2

Preprint submitted on 28 Jan 2020

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution 4.0 International License

A Toolchain to Produce Verified OCaml Libraries
Jean-Christophe Filliâtre, Léon Gondelman, Cláudio Lourenço, Andrei

Paskevich, Mário Pereira, Simão Melo de Sousa, Aymeric Walch

To cite this version:
Jean-Christophe Filliâtre, Léon Gondelman, Cláudio Lourenço, Andrei Paskevich, Mário Pereira, et
al.. A Toolchain to Produce Verified OCaml Libraries. 2020. �hal-01783851v2�

https://hal.science/hal-01783851v2
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://hal.archives-ouvertes.fr

A Toolchain to Produce Veri�ed OCaml Libraries

Jean-Christophe Filliâtre1, Léon Gondelman2, Cláudio Lourenço1, Andrei
Paskevich1, Mário Pereira3, Simão Melo de Sousa4, and Aymeric Walch5

1 Université Paris-Saclay, CNRS, Inria, LRI, 91405, Orsay, France
2 Department of Computer Science, Aarhus University, Denmark

3 NOVA-LINCS, FCT-Univ. Nova de Lisboa, Portugal
4 NOVA-LINCS, Univ. Beira Interior, Portugal
5 École Normale Supérieure de Lyon, France

Abstract. In this paper, we present a methodology to produce veri-
�ed OCaml libraries, using the GOSPEL speci�cation language and the
Why3 program veri�cation tool. First, a formal behavioral speci�cation
of the library is written in OCaml/GOSPEL, in the form of an OCaml
module signature extended with type invariants and function contracts.
Second, an implementation is written in WhyML, the programming lan-
guage of Why3, and then veri�ed with respect to the GOSPEL speci-
�cation. Finally, WhyML code is automatically translated into OCaml
source code by Why3. Our methodology is illustrated with two examples:
�rst, a small binary search function; then, a union-�nd data structure
that is part of a larger OCaml veri�ed library.

1 Introduction

Development of formally veri�ed programs can be done in various ways. Per-
haps, the most widespread approach consists in augmenting an existing main-
stream programming language with speci�cation annotations (contracts, invari-
ants, etc.) and proving the conformance of the code to the speci�cation, possibly
passing through an intermediate language. Examples include VeriFast [17] and
KeY [2] for Java, Frama-C [19] and VCC (via Boogie) [12,3] for C, GNATprove
(via Why3) for Ada/SPARK [6,16]. This approach can end up being quite chal-
lenging, since real-life programming languages, not designed with veri�cation in
mind, have to be encoded into a suitable program logic. Such an encoding is a
non-trivial task, and it may result in rather complex veri�cation conditions, that
are di�cult to discharge by both automated and interactive provers.

Alternatively, one can proceed in the opposite direction: develop formally ver-
i�ed code in a dedicated veri�cation language/environment and then translate it
to an existing programming language, producing a correct-by-construction pro-
gram. One can cite PVS [22], Coq [28], B [1], F? [27], Dafny [20], and Why3 [13]
as examples of this approach. It works well for self-contained programs, such as

This research was partly supported by the French National Research Organization
(project VOCAL ANR-15-CE25-008).

OCaml Why3

Interface

Implementation

.mli �le +
GOSPEL

speci�cation

WhyML
speci�cation

veri�ed
.ml �le

WhyML code

translation

proof

translation

correct w.r.t.

Fig. 1. The work�ow.

CompCert [21], but is less suitable when the veri�ed code is supposed to be in-
tegrated into a larger development. We cannot expect the original source code,
developed in a speci�c veri�cation framework, to be accessible to a common
programmer � and the automatically generated code is typically a clobbered
mess.

In this paper, we propose a way to reconcile the two approaches, avoiding
both of the aforementioned disadvantages. Our work takes place in the setting of
a larger project, named VOCaL (for Veri�ed OCaml Library) [9], whose ambition
is to provide a mechanically veri�ed library of e�cient general-purpose data
structures and algorithms, written in the OCaml language. One of the main
lines of work in the VOCaL project is the design of GOSPEL [8], a behavioral
speci�cation language for OCaml, similar to what JML is for Java [5], or ACSL
for C [4]. The VOCaL project also combines the use of three veri�cation tools,
namely Coq, CFML [7], and Why3. This paper focuses on the last.

Our approach to producing veri�ed OCaml code consists in splitting the ver-
i�cation and implementation process into several steps. The work�ow is given in
Fig. 1: solid rectangles represent user-written �les, and dashed rectangles repre-
sent automatically generated �les. First, we start with a GOSPEL speci�cation
�le: an OCaml .mli interface �le where OCaml declarations are augmented with
speci�cation annotations, such as function contracts (pre- and postconditions)
and type invariants. GOSPEL annotations are written as OCaml comments, and
thus ignored by the OCaml compiler. Our framework parses and type checks this
�le and automatically generates a corresponding Why3 input �le, in which all
annotations are translated into WhyML, the speci�cation and programming lan-
guage of Why3. Second, we provide a veri�ed WhyML implementation of the
declared operations. This means that, in addition to implementing and verifying
a WhyML program, we also establish its correctness with respect to the speci�-

2

cations given in the .mli �le. Finally, the Why3 tool automatically translates the
veri�ed WhyML implementation into a correct-by-construction OCaml program.

In the following sections, we explain this work�ow in detail using the ex-
amples of a binary search function (Sec. 2 and 3) and of a union-�nd library
(Sec. 4). Section 5 gives an overview of the other OCaml modules veri�ed with
Why3 in the VOCaL project. Source �les for all the OCaml modules mentioned
in this paper are available from https://vocal.lri.fr/.

2 Why3 and WhyML

Why3 is a tool for deductive program veri�cation [16]. It uses its own program-
ming and speci�cation language, called WhyML, which is largely inspired by
OCaml syntax. The theoretical foundation of Why3 is the weakest-precondition
calculus and a custom type system with regions to handle mutable heap-allocated
data [14]. As a programming language, WhyML can be seen as a subset of OCaml
with support for exceptions, algebraic types, type polymorphism, and restricted
higher-order (side-e�ect-free functional arguments). The program annotations
(function contracts, loop invariants, assertions, etc.) are written in a rich logical
language that reuses the data types of programs and features pattern matching,
recursive and inductive de�nitions, as well as higher-order functions. An impor-
tant feature of WhyML is so-called ghost code which is a part of program code
that serves exclusively to facilitate speci�cation and proof, and cannot in�uence
the actual computations [15]. For example, complex data structures in WhyML
would often feature ghost �elds that contain the logical model of the structure.
This allows us to specify the program functions that manipulate such a data
type in terms of a simple mathematical model, without referring to the details
of the implementation.

Let us illustrate the use of Why3 on the simple example of a binary search
function. It can be speci�ed and implemented in WhyML as follows:

let rec binary_search (cmp: 'a -> 'a -> int63)

(a: array 'a) (lo hi: int63) (v: 'a) : int63

requires { is_pre_order cmp }

requires { 0 <= lo <= hi <= length a }

requires { forall i j. lo <= i <= j < hi -> cmp a[i] a[j] <= 0 }

ensures { lo <= result < hi /\ cmp a[result] v = 0 }

raises { Not_found ->

forall i. lo <= i < hi -> cmp a[i] v <> 0 }

variant { hi - lo }

=

if lo >= hi then raise Not_found;

let mid = lo + (hi - lo) / 2 in

let c = cmp a[mid] v in

if c < 0 then binary_search cmp a (mid + 1) hi v

else if c > 0 then binary_search cmp a lo mid v

else mid

3

https://vocal.lri.fr/

The �rst two lines show the type signature of the function binary_search. The
functional parameter cmp must be a total stateless and e�ect-free function, so
that we can use it in speci�cation annotations. Type int63 denotes the 63-bit
signed integers and is distinguished from type int that represents unbounded
mathematical integers. The values of range types like int63 are implicitly co-
erced to int inside speci�cation annotations.

After the type signature comes the function contract. The clauses requires
correspond to the preconditions: the functional parameter cmp is required to im-
plement a total pre-order (the sign of the return value indicates the result of
the comparison); the range lo..hi must lie inside the array bounds; the array
must be ordered within that range. The clause ensures describes the postcondi-
tion associated to a normal (i.e., non-exceptional) termination: the return value
of type int63, named result, must be a valid array index where the sought
value v is stored. The clause raises describes the exceptional postcondition: if
binary_search raises exception Not_found, then v does not occur in the array
between lo and hi. Finally, the last clause, variant, is not part of the contract,
but helps Why3 to prove the termination: with each recursive call, the value of
the variant must strictly decrease with respect to some well-founded order.

The code of binary_search is a rather idiomatic OCaml code. When we
run Why3 on this program, veri�cation conditions are generated to prove the
following properties:

� all function calls respect the preconditions of the callee (this includes showing
that all operations over bounded integers do not produce over�ows and that
all array accesses are made within bounds);

� all recursive function calls make the value of the variant decrease;
� the postconditions are met both for normal and exceptional termination.

Why3 uses multiple automated and interactive provers (including Alt-Ergo,
CVC4, Z3, E, Coq, and Isabelle) to discharge the proof obligations. Moreover,
the user can apply various transformations, such as goal splitting, case analysis,
and de�nition unfolding, during a Why3 interactive veri�cation session in order
to simplify proof tasks before sending them to the background provers. For ex-
ample, the above implementation of binary search is proved automatically by
CVC4 in a matter of seconds after one application of goal splitting.

Why3 supports automated translation of WhyML code to OCaml. An impor-
tant part of this translation is removal of ghost code and ghost data. Once ghost
code and speci�cation annotations are eliminated, Why3 produces an OCaml
source �le. The program symbols and types which are not implemented inside
WhyML code (and are axiomatized instead) are translated to their OCaml coun-
terparts via a so-called driver : a text �le that maps WhyML symbols to frag-
ments of OCaml code. Drivers are part of the trusted base of Why3: an incorrect
translation would result in a program whose behaviour is di�erent from that of
the veri�ed WhyML code and will not necessarily respect the contract. In the
example above, the types int63 and array, as well as standard operations over
them, are mapped to the corresponding OCaml types and operations. The re-
sulting OCaml code is practically identical to the WhyML source.

4

3 GOSPEL and its Translation to WhyML

The speci�cation language GOSPEL [8] was developed in the context of the VO-
CaL project. It extends the syntax of OCaml .mli interface �les with behavioral
speci�cations, written as specially formatted OCaml comments. GOSPEL is not
tied to any particular veri�cation tool. Instead, the methodology of VOCaL
considers GOSPEL as a common frontend speci�cation language for di�erent
veri�cation tools, that either verify OCaml code directly (e.g., CFML) or can
produce correct-by-construction OCaml code (e.g., Why3 or Coq).

Here is the GOSPEL speci�cation for our binary_search function:

val binary_search:

('a -> 'a -> int) -> 'a array -> int -> int -> 'a -> int

(** Search for value [v] in array [a], between indices [lo]

inclusive and [hi] exclusive, using comparison function [cmp].

Returns an index where [v] occurs, or raises [Not_found]

if no such index exists. *)

(*@ result = binary_search cmp a lo hi v

requires is_pre_order cmp

checks 0 <= lo <= hi <= Array.length a

requires forall i j. lo <= i <= j < hi -> cmp a.(i) a.(j) <= 0

ensures lo <= result < hi && cmp a.(result) v = 0

raises Not_found ->

forall i. lo <= i < hi -> cmp a.(i) v <> 0 *)

The �le begins with a standard OCaml function declaration, together with an
informal ocamldoc comment. Then follows the formal speci�cation, enclosed in
a special comment starting with `(*@'. The �rst line of the speci�cation gives
names to the function parameters and to its return value. Wherever possible,
GOSPEL uses OCaml syntax for primitive operations (e.g., Boolean connectives
and array access).

A notable di�erence with the WhyML speci�cation from the previous section
is clause checks, which describes a precondition that is expected to be checked
during execution. When such a precondition is violated, the OCaml implemen-
tation must raise the OCaml built-in exception Invalid_argument. Contrary to
JML or SPARK, GOSPEL annotations are not meant to be executable: they
may contain unbounded quanti�ers, abstract logical functions, etc. It is up to
the veri�ed OCaml implementation to ful�ll the provided contract, including the
runtime checks.

Although the semantics of GOSPEL is given in terms of Separation Logic [8],
the speci�cation language itself is kept simple, without explicit Separation Logic
operators. Instead, GOSPEL adopts a number of reasonable conventions, such
as separation of function parameters and return values, and full ownership trans-
mission from the caller to the callee and back. This is done intentionally, in order
to make the language accessible to a larger audience of OCaml programmers.
Incidentally, this also simpli�es translation from GOSPEL to WhyML, which
adheres to the same conventions [14].

5

We have extended Why3 with a new input format for GOSPEL. The type
and function declarations are translated to corresponding WhyML declarations.
A special treatment is provided for checks clauses: for each function foo whose
contract contains a clause checks φ, Why3 produces the declarations of two
WhyML functions, foo and unsafe_foo, where the former contains an excep-
tional postcondition raises { Invalid_argument -> ¬φ } and the latter con-
tains a precondition requires { φ }. The latter function is deemed unsafe be-
cause it trusts the caller to respect the precondition φ, whereas the former im-
plements a defensive runtime check. A similar practice already exists in OCaml,
e.g., Array.unsafe_get. Unsafe functions are perfectly safe when called from
veri�ed code, since precondition must be satis�ed, and provide a better perfor-
mance.

Why3 can generate proof obligations to establish that a given WhyML imple-
mentation conforms to a given WhyML speci�cation translated from GOSPEL.
In our case, we can show that our implementation of binary search from Sec. 2
corresponds to the declaration of function unsafe_binary_search (where the
checks clause is translated as a WhyML precondition).

4 Example: Union-Find

We now describe a more complex example, taken from the VOCaL library. This is
an OCaml module implementing a union-�nd data structure, with the following
API (borrowed from [10]):

type 'a elem (* type of the elements *)

val make: 'a -> 'a elem (* a singleton class *)

val find: 'a elem -> 'a elem (* the representative *)

val eq: 'a elem -> 'a elem -> bool (* in the same class? *)

val union: 'a elem -> 'a elem -> unit (* merge two classes *)

In this API, a value of type 'a is attached to each equivalence class. Our actual
implementation includes the access and update functions to manipulate this
value. For the sake of brevity, we do not discuss this functionality in the paper.

Speci�cation. We start with a GOSPEL speci�cation. In order to give a spec-
i�cation to the functions above, we need a logical representation of the global
state of the union-�nd data structure. This logical representation takes the form
of a set of all elements, together with a function selecting a canonical element in
each equivalence class:

(*@ type 'a uf

mutable model dom: 'a elem set

mutable model rep: 'a elem -> 'a elem

invariant forall x. mem x dom -> rep (rep x) = rep x

invariant forall x. mem x dom -> mem (rep x) dom *)

Notice that type uf is declared inside a GOSPEL annotation and not as an
OCaml type. Consequently, it will only be available for speci�cation or as a type

6

of ghost parameters. The �elds dom and rep are declared mutable to re�ect
the possible changes in the state of the union-�nd structure. The two invariants
ensure that the set dom is indeed partitioned by the relation �to have the same
canonical representative given by rep�.

We are now in position to provide a speci�cation to each OCaml function
above. Let us use make and find as examples.

val make: 'a -> 'a elem

(*@ e = make [uf: 'a uf] v

modifies uf

ensures not (mem e (dom (old uf)))

ensures dom uf = add e (dom (old uf))

ensures rep uf = (rep (old uf))[e <- e] *)

val find: 'a elem -> 'a elem

(*@ r = find [uf: 'a uf] e

requires mem e (dom uf)

modifies uf

ensures dom uf = dom (old uf)

ensures rep uf = rep (old uf)

ensures r = rep uf e *)

For the purpose of the speci�cation, make and find receive an extra parameter
uf of type 'a uf. Square brackets identify it as a ghost parameter. The modifies
clause in the function contract accounts for the modi�cation of the union-�nd
data structure (caused by path compression in the case of find). The term
old uf refers to the state of the structure at the beginning of the function call.

Veri�ed Implementation. The next step is to implement and verify the union-�nd
data structure. The OCaml implementation we target is based on the following
data types:

type 'a content = Link of 'a elem | Root of int * 'a

and 'a elem = 'a content ref

Each element is a mutable reference which can be in one of two states: either it
is a canonical element (Root), with a rank of type int and a value of type 'a;
or it points (Link) to another element in the same equivalence class.

This type de�nition cannot be used as is in WhyML, which does not support
recursive mutable types. The solution in Why3 is to resort to an explicit mem-
ory model, that is a set of types and operations to model the heap, pointers,
allocation, and memory access. We translate the OCaml types above into the
following WhyML types

type loc_ref 'a

type content 'a = Link (elem 'a) | Root int63 'a

with elem 'a = loc_ref (content 'a)

7

where loc_ref 'a is an abstract immutable type to represent locations of OCaml's
heap-allocated references of type ref. The contents of the heap is modeled with
another WhyML type

type mem_ref 'b = private {mutable refs: loc_ref 'b -> option 'b}

where non-allocated locations are mapped to None, and each allocated location
is mapped to Some c for some value c of type 'b.

Instead of modeling a single global heap, we adopt an approach of �small
heaps�, i.e., local chunks of memory, which are passed as ghost arguments to
heap-manipulating functions [23, Chapter 5]. For instance, a reference is updated
using the following function:

val set_ref (ghost mem: mem_ref 'b) (l: loc_ref 'b) (c: 'b): unit

requires { mem.refs l <> None }

writes { mem }

ensures { mem.refs = (old mem.refs)[l <- Some c] }

Once this memory model is built, we can implement and verify the union-
�nd data structure. In particular, we have to implement the data type uf. It
is a record data type that contains, in addition to the �elds dom and rep, the
contents of the memory:

type uf 'a = { memo: mem_ref (content 'a); ... }

As declared in the interface, all union-�nd functions receive a ghost parameter
of type uf and then exploit it to perform read/write operations on memory:

let rec find (ghost uf: uf 'a) (x: elem 'a) : elem 'a

= match get_ref uf.memo x with

| Root _ _ -> x

| Link y -> let rx = find uf y in

set_ref uf.memo x (Link rx); rx end

Here, the call to set_ref accounts for path compression. Once we have imple-
mented all operations, we prove that they conform to the GOSPEL speci�cation
written in the .mli �le and translated to WhyML by our tool.

Translation to OCaml. The last step consists in translating WhyML to OCaml.
We extend the standard driver of Why3 with a custom driver �le for our memory
model, as follows:

module UnionFind.Mem

syntax type loc_ref "%1 ref"

syntax val set_ref "%1 := %2"

...

We do not provide a translation for type mem_ref, since it is only used for ghost
parameters. For the same reason, function set_ref only receives two parameters
in the translated code. Such a �le must be written with care, as it is clearly part
of the trusted base. In particular, we trust OCaml references to have the same
semantics as the one described in our memory model.

8

module spec code #VCs

UnionFind 71 176 92 union-�nd
Vector 142 285 63 resizable arrays
PriorityQueue 56 290 219 mutable priority queues
PairingHeap 43 244 66 persistent priority queues
ZipperList 65 150 54 zipper data structure for lists
Arrays 43 126 104 e.g., binary search, binary sort
Mjrty 11 35 37 Boyer&Moore's majority
RingBuffer 44 94 61 circular arrays
CountingSort 19 80 128 array counting sort

Fig. 2. Veri�ed OCaml Modules.

5 The VOCaL Project: The State of the Library

We have used our approach to verify several other OCaml modules, listed in
Fig. 2. For each OCaml module, column �spec� shows the number of lines in
the .mli �le and column �code� shows the number of lines in the WhyML im-
plementation and proof. Column �#VCs� shows the total number of veri�cation
conditions. All of them were discharged automatically using the combined e�ort
of Alt-Ergo, CVC4, and Z3.

These examples involve many aspects not described in this paper, due to lack
of space. We describe some of them, brie�y:

� One module, PriorityQueue, implements mutable priority queues on top
of another module, Vector, which implements resizable arrays. The proof is
performed in a modular way: the Why3 proof of PriorityQueue only makes
use of the GOSPEL speci�cation for Vector, but not of its implementation.

� Modules PriorityQueue and PairingHeap are OCaml functors, i.e., mod-
ules parameterized by a module. This is the idiomatic way in OCaml to pro-
vide types and functions as parameters (here, a type of elements equipped
with a comparison function). From GOSPEL's point of view, there is no
di�erence between the speci�cation of a parameter module and that of a
toplevel module. From Why3's point of view, there is no di�erence between
verifying a module B that uses another module A or that is parameterized
with a module A. The main di�erence lies in the translation from Why3 to
OCaml, which must produce an actual OCaml functor.

� The veri�ed module PriorityQueue has been integrated into Why3 source
code. It is not used in the trusted part of Why3, but only in some heuristic
algorithm that matches former proof attempts with new veri�cation condi-
tions. In this way, there is no circularity in the proof of PriorityQueue.

� Two of the modules involve arithmetic computations for which it is not obvi-
ous to prove the absence of arithmetic over�ow (the rank in UnionFind and
a list length in ZipperList). We use a Why3 library providing a protected
integer type with a restricted set of operations to solve that issue [11].

9

The GOSPEL speci�cation, OCaml code, and Why3 proof for all these modules
is available from https://vocal.lri.fr/.

6 Related Work and Conclusion

Related Work. The veri�ed C compiler CompCert [21] and the static analyzer
Verasco [18] are two notable large-scale examples of veri�ed OCaml programs.
Both are implemented in the Coq proof assistant and translated to OCaml after-
wards using Coq extraction mechanism [26]. It is worth pointing out that Coq
has a mechanism to replace certain symbols by OCaml code at extraction time,
in a way very similar to our driver substitution mechanism.

The CFML tool [7] implements another approach to the veri�cation of OCaml
programs using Coq. It goes the other way around, turning an OCaml program
into a �characteristic formula�, that is an expression of its semantics into a higher-
order separation logic embedded in Coq. CFML provides Coq tactics to help the
user carry out proofs e�ciently. Examples of recent applications of CFML include
a veri�ed implementation of hash tables [25] and veri�cation of the correctness
and amortized complexity of a union-�nd library [10]. Contrary to the CFML
proof, ours is fully automatic but we only treat functional correctness and not
the complexity bounds.

Surprisingly, program veri�cation has seldom been applied to libraries of sig-
ni�cant size. A remarkable exception is the veri�cation of the Ei�elBase2 con-
tainers library [24], performed with the AutoProof system [29]. It is our purpose
to continue using and improving our methodology to grow our veri�ed library to
a size comparable to that of Ei�elBase2. However, we do not focus speci�cally
on the veri�cation of containers, but also on general-purpose algorithms, e.g.,
our union-�nd implementation.

Conclusion. We proposed a new work�ow to produce correct-by-construction
OCaml programs. It builds upon the existing tool Why3, with the addition of
the following contributions: a speci�cation language for OCaml, called GOSPEL;
a tool to translate it to WhyML; a technique to build memory models for mutable
recursive OCaml types; an enhanced extraction mechanism for Why3, with sup-
port for OCaml functors; a practical validation with the proof of nine non-trivial
OCaml modules.

Acknowledgments. We are grateful to the anonymous reviewers of a previous
submission for their helpful comments and suggestions. We also thank all the
members of the VOCaL project for fruitful discussions.

10

https://vocal.lri.fr/

References

1. Jean-Raymond Abrial. The B-Book, assigning programs to meaning. Cambridge
University Press, 1996.

2. Wolfgang Ahrendt, Bernhard Beckert, Richard Bubel, Reiner Hähnle, Peter H.
Schmitt, and Mattias Ulbrich, editors. Deductive Software Veri�cation - The KeY
Book - From Theory to Practice, volume 10001 of Lecture Notes in Computer
Science. Springer, 2016.

3. Mike Barnett, Robert DeLine, Bart Jacobs, Bor-Yuh Evan Chang, and K. Rus-
tan M. Leino. Boogie: A Modular Reusable Veri�er for Object-Oriented Programs.
In Frank S. de Boer, Marcello M. Bonsangue, Susanne Graf, and Willem-Paul
de Roever, editors, Formal Methods for Components and Objects: 4th International
Symposium, volume 4111 of Lecture Notes in Computer Science, pages 364�387,
2005.

4. Patrick Baudin, Jean-Christophe Filliâtre, Claude Marché, Benjamin Monate, Yan-
nick Moy, and Virgile Prevosto. ACSL: ANSI/ISO C Speci�cation Language, ver-
sion 1.4, 2009. http://frama-c.cea.fr/acsl.html.

5. Lilian Burdy, Yoonsik Cheon, David R. Cok, Michael D. Ernst, Joeseph R. Kiniry,
Gary T. Leavens, K. Rustan M. Leino, and Erik Poll. An overview of JML tools
and applications. International Journal on Software Tools for Technology Transfer
(STTT), 7(3):212�232, June 2005.

6. Bernard Carré and Jonathan Garnsworthy. SPARK�an annotated Ada subset
for safety-critical programming. In Proceedings of the conference on TRI-ADA'90,
TRI-Ada'90, pages 392�402, New York, NY, USA, 1990. ACM Press.

7. Arthur Charguéraud. Characteristic formulae for the veri�cation of imperative
programs. In Manuel M. T. Chakravarty, Zhenjiang Hu, and Olivier Danvy, editors,
Proceeding of the 16th ACM SIGPLAN international conference on Functional
Programming (ICFP), pages 418�430, Tokyo, Japan, September 2011. ACM.

8. Arthur Charguéraud, Jean-Christophe Filliâtre, Cláudio Lourenço, and Mário
Pereira. GOSPEL � providing OCaml with a formal speci�cation language. In
Annabelle McIver and Maurice ter Beek, editors, FM 2019 23rd International Sym-
posium on Formal Methods, Porto, Portugal, October 2019.

9. Arthur Charguéraud, Jean-Christophe Filliâtre, Mário Pereira, and François Pot-
tier. VOCAL � A Veri�ed OCaml Library. ML Family Workshop, September
2017.

10. Arthur Charguéraud and François Pottier. Verifying the correctness and amortized
complexity of a union-�nd implementation in separation logic with time credits.
Journal of Automated Reasoning, 62(3):331�365, March 2019.

11. Martin Clochard, Jean-Christophe Filliâtre, and Andrei Paskevich. How to avoid
proving the absence of integer over�ows. In Arie Gur�nkel and Sanjit A. Seshia,
editors, 7th Working Conference on Veri�ed Software: Theories, Tools and Experi-
ments (VSTTE), volume 9593 of Lecture Notes in Computer Science, pages 94�109,
San Francisco, California, USA, July 2015. Springer.

12. Markus Dahlweid, Michal Moskal, Thomas Santen, Stephan Tobies, and Wolfram
Schulte. VCC: Contract-based modular veri�cation of concurrent C. In 31st In-
ternational Conference on Software Engineering, ICSE 2009, May 16-24, 2009,
Vancouver, Canada, Companion Volume, pages 429�430. IEEE Comp. Soc. Press,
2009.

13. Jean-Christophe Filliâtre. Why3 � where programs meet provers. In KeY Sym-
posium 2017, Rastatt, Germany, October 2017. Invited talk.

11

http://frama-c.cea.fr/acsl.html

14. Jean-Christophe Filliâtre, Léon Gondelman, and Andrei Paskevich. A pragmatic
type system for deductive veri�cation. Research report, Université Paris Sud, 2016.
https://hal.archives-ouvertes.fr/hal-01256434v3.

15. Jean-Christophe Filliâtre, Léon Gondelman, and Andrei Paskevich. The spirit of
ghost code. Formal Methods in System Design, 48(3):152�174, 2016.

16. Jean-Christophe Filliâtre and Andrei Paskevich. Why3 � where programs meet
provers. In Matthias Felleisen and Philippa Gardner, editors, Proceedings of the
22nd European Symposium on Programming, volume 7792 of Lecture Notes in Com-
puter Science, pages 125�128. Springer, March 2013.

17. Bart Jacobs, Jan Smans, Pieter Philippaerts, Frédéric Vogels, Willem Penninckx,
and Frank Piessens. VeriFast: A powerful, sound, predictable, fast veri�er for C
and Java. In Mihaela Gheorghiu Bobaru, Klaus Havelund, Gerard J. Holzmann,
and Rajeev Joshi, editors, NASA Formal Methods, volume 6617 of Lecture Notes
in Computer Science, pages 41�55. Springer, 2011.

18. Jacques-Henri Jourdan, Vincent Laporte, Sandrine Blazy, Xavier Leroy, and David
Pichardie. A formally-veri�ed C static analyzer. In 42nd ACM SIGPLAN-SIGACT
Symposium on Principles of Programming Languages, pages 247�259, Mumbai,
India, January 2015. ACM.

19. Florent Kirchner, Nikolai Kosmatov, Virgile Prevosto, Julien Signoles, and Boris
Yakobowski. Frama-c: A software analysis perspective. Formal Aspects of Com-
puting, 27(3):573�609, May 2015.

20. K. Rustan M. Leino. Dafny: An automatic program veri�er for functional cor-
rectness. In LPAR-16, volume 6355 of Lecture Notes in Computer Science, pages
348�370. Springer, 2010.

21. Xavier Leroy. A formally veri�ed compiler back-end. Journal of Automated Rea-
soning, 43(4):363�446, 2009.

22. S. Owre, J. M. Rushby, and N. Shankar. PVS: A prototype veri�cation system. In
Deepak Kapur, editor, 11th International Conference on Automated Deduction, vol-
ume 607 of Lecture Notes in Computer Science, pages 748�752, Saratoga Springs,
NY, June 1992. Springer.

23. Mário Pereira. Tools and Techniques for the Veri�cation of Modular Stateful Code.
Thèse de doctorat, Université Paris-Saclay, December 2018.

24. Nadia Polikarpova, Julian Tschannen, and Carlo A. Furia. A fully veri�ed container
library. Formal Asp. Comput., 30(5):495�523, 2018.

25. François Pottier. Verifying a hash table and its iterators in higher-order separation
logic. In Proceedings of the 6th ACM SIGPLAN Conference on Certi�ed Programs
and Proofs (CPP 2017), January 2017.

26. Matthieu Sozeau, Simon Boulier, Yannick Forster, Nicolas Tabareau, and Théo
Winterhalter. Coq coq correct! veri�cation of type checking and erasure for coq,
in coq. Proc. ACM Program. Lang., 4(POPL), December 2019.

27. Nikhil Swamy, C t lin Hriµcu, Chantal Keller, Aseem Rastogi, Antoine Delignat-
Lavaud, Simon Forest, Karthikeyan Bhargavan, Cédric Fournet, Pierre-Yves Strub,
Markulf Kohlweiss, Jean-Karim Zinzindohoué, and Santiago Zanella-Béguelin. De-
pendent types and multi-monadic e�ects in F*. In 43rd ACM Symposium on Prin-
ciples of Programming Languages (POPL), pages 256�270. ACM, January 2016.

28. The Coq Development Team. The Coq Proof Assistant Reference Manual � Version
V8.9, 2019. http://coq.inria.fr.

29. Julian Tschannen, Carlo A. Furia, Martin Nordio, and Nadia Polikarpova. Au-
toproof: Auto-active functional veri�cation of object-oriented programs. In 21st
International Conference on Tools and Algorithms for the Construction and Anal-
ysis of Systems, Lecture Notes in Computer Science. Springer, 2015.

12

https://hal.archives-ouvertes.fr/hal-01256434v3
http://coq.inria.fr

	A Toolchain to Produce Verified OCaml Libraries

