
HAL Id: hal-01783851
https://hal.science/hal-01783851v1

Preprint submitted on 2 May 2018 (v1), last revised 28 Jan 2020 (v2)

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution 4.0 International License

A Toolchain to Produce Correct-by-Construction OCaml
Programs

Jean-Christophe Filliâtre, Léon Gondelman, Andrei Paskevich, Mário Pereira,
Simão Melo de Sousa

To cite this version:
Jean-Christophe Filliâtre, Léon Gondelman, Andrei Paskevich, Mário Pereira, Simão Melo de Sousa.
A Toolchain to Produce Correct-by-Construction OCaml Programs. 2018. �hal-01783851v1�

https://hal.science/hal-01783851v1
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://hal.archives-ouvertes.fr

A Toolchain to Produce
Correct-by-Construction OCaml Programs

Jean-Christophe Filliâtre1,2, Léon Gondelman3,
Andrei Paskevich1,2, Mário Pereira1,2, and Simão Melo de Sousa4

1 Lab. de Recherche en Informatique, Univ. Paris-Sud, CNRS, Orsay, F-91405
2 Inria Saclay – Île-de-France, Orsay, F-91893

3 Radboud University Nijmegen, The Netherlands
4 Lab. Informática, Sistemas e Paralelismo, Univ. Beira Interior, Portugal

Abstract. This paper presents a methodology to get correct-by-constru-
ction OCaml programs using the Why3 tool. First, a formal behavioral
specification is given in the form of an OCaml module signature ex-
tended with type invariants and function contracts, in the spirit of JML.
Second, an implementation is written in the programming language of
Why3 and then verified with respect to the specification. Finally, an
OCaml program is obtained by an automated translation. Our method-
ology is illustrated with the proof of a union-find library. Several other
proofs of data structures and algorithms are included in the companion
artifact to this paper.

1 Introduction

Development of formally verified programs can be done in various ways. Per-
haps, the most widespread approach consists in augmenting an existing main-
stream programming language with specification annotations (contracts, invari-
ants, etc.) and proving the conformance of the code to the specification, possibly
passing through an intermediate language. Examples include VeriFast and KeY
for Java, Frama-C and VCC (via Boogie) for C, GNATprove (via Why3) for
Ada/SPARK. One challenge presented by this approach is that we have to en-
code a significant fragment of a real-life programming language, which was not
designed with verification in mind, into a suitable program logic. Designing such
an encoding is a non-trivial task, and, what is worse, it may result in rather com-
plex verification conditions, difficult for both automated and interactive proof.

Alternatively, one can proceed in the opposite direction: develop formally
verified code in a dedicated verification language/environment and then translate
it to an existing programming language, producing a correct-by-construction
program. One can cite PVS, Coq, B, F?, Dafny, and Why3 as examples of this
approach. It works well for self-contained programs, such as CompCert, but is

This research was partly supported by the Portuguese Foundation for Sciences and
Technology (grant FCT-SFRH/BD/99432/2014) and by the French National Re-
search Organization (project VOCAL ANR-15-CE25-008).

OCaml Why3

Interface

Implementation

.mli file +
specification

WhyML
specification

correct-by-
construction
.ml file

WhyML
code

type t =

· · · model

subst.

translation

proof

extraction

correct w.r.t.

Fig. 1. Methodology diagram.

less suitable when the verified code is supposed to be integrated into a larger
development. We cannot expect the original source code, developed in a specific
verification framework, to be accessible to a common programmer — and the
automatically generated code is typically a clobbered mess.

In this paper, we propose a way to reconcile the two approaches, avoiding the
aforementioned disadvantages. Our work takes place in the setting of a larger
project, named VOCaL [5], whose ambition is to provide a mechanically verified
library of efficient general-purpose data structures and algorithms, written in
the OCaml language. One of the main lines of work in the VOCaL project is the
design of a specification language for OCaml, similar to what JML is for Java [2],
or ACSL for C [1]. The VOCaL project combines the use of three verification
tools, namely Coq, CFML, and Why3. This paper focuses on the latter.

Our approach to producing verified OCaml code consists in splitting verifi-
cation and implementation process into several steps. We start with an OCaml
.mli interface file, where declarations are augmented with specifications such as
function contracts (pre- and postconditions), type invariants, etc. Given an an-
notated .mli file, we then generate automatically a corresponding Why3 input
file, in which all annotations are translated into WhyML, the specification and
programming language of Why3. The next step is to provide a verified Why3
implementation of the declared operations. This means that, in addition to im-
plementing and verifying a WhyML program, we also establish its correctness
with respect to the specifications given in the .mli file. Finally, Why3 automat-
ically translates the verified implementation into an OCaml .ml file, producing
a correct-by-construction program.

An overview of our methodology is given in Fig. 1. The solid rectangles
represent the user-written files, and the dashed rectangles represent the auto-
matically generated files. Whenever an OCaml type cannot be mapped directly
to a WhyML type, due to use of mutable data beyond the reach of WhyML’s
type system [7], a custom memory model is built for this type. When it comes to

2

translation of WhyML to OCaml, we return to the original OCaml type using a
consistent substitution file. This is illustrated in the central part of the diagram.

In the next section, we explain this workflow in detail using the example of a
union-find library. Source files for this example, as well as several other examples
shortly described in Sec. 3, are contained in the companion artifact.

2 Example: Union-Find

To illustrate our methodology, let us consider the verification of a union-find
library. We reuse the OCaml API from Charguéraud and Pottier’s proof [6]:

type ’a elem (* type of the elements *)
val make: ’a -> ’a elem (* a singleton class *)
val find: ’a elem -> ’a elem (* the representative *)
val eq: ’a elem -> ’a elem -> bool (* in the same class? *)
val union: ’a elem -> ’a elem -> unit (* merge two classes *)

In this API, a value of type ’a is attached to any equivalence class. Our im-
plementation includes the access and update functions to manipulate this value.
For the sake of brevity, we do not discuss this functionality in the paper.

Specification. We start with a formal specification. It is added to the OCaml
interface above using special comments starting with ‘(*@’. Before we can give a
specification to any of these functions, we need to be able to refer to the universe
of all the elements we are considering, which is not materialized in this API. To
this end, we first introduce a ghost type uf:

(*@ type ’a uf
mutable model dom: ’a elem set
mutable model rep: ’a elem -> ’a elem
invariant forall x. mem x dom -> rep (rep x) = rep x
invariant forall x. mem x dom -> mem (rep x) dom *)

Being declared inside a specification comment, this type is not visible to the
OCaml compiler. This is a mutable, abstract data type, whose contents is mod-
eled through a set dom and a function rep. The two invariants ensure that the
set dom is indeed partitioned by the relation “to have the same value by rep”.

We are now in position to provide a specification to each OCaml function.
Let us use find as an example.

val find: ’a elem -> ’a elem
(*@ r = find [uf: ’a uf] e

requires mem e (dom uf)
modifies uf
ensures dom uf = old (dom uf)
ensures rep uf = old (rep uf)
ensures r = rep uf e *)

3

The first line names the parameter e and the returned value r, so that we can
refer to them in the function contract. For the purpose of the specification, find
receives an extra parameter uf of type ’a uf. Square brackets identify it as a
ghost parameter. The function contract is then given using standard requires,
modifies, and ensures clauses. Here, modifies accounts for the internal mod-
ification of the union-find data structure caused by path compression.

Verified Implementation. The next step is to implement and verify the union-find
data structure. The OCaml implementation we target is based on the following
data types:

type ’a content = Link of ’a elem | Root of int * ’a
and ’a elem = ’a content ref

Each element is either a representative element (Root), containing the rank of
type int and a value of type ’a, or a pointer (Link) to another element in the
same equivalence class.

Unfortunately, this type definition cannot be used as is in WhyML. The
reason is that Why3 uses a type-and-effect discipline to track aliases statically [7],
and recursive mutable types are beyond the scope of Why3’s static analysis. The
solution is to resort to an explicit memory model, that is a set of types for pointers
and memory together with the operations to allocate, read, and write memory.
In this case, we translate the OCaml types above into the following Why3 types

type loc_ref ’a
type content ’a = Link (elem ’a) | Root int63 ’a
with elem ’a = loc_ref (content ’a)

where loc_ref ’a is an abstract type to represent locations of OCaml’s heap-
allocated references of type ref. This type comes with another type to model
the heap contents, that is

type mem_ref ’b = private {mutable refs: loc_ref ’b -> option ’b}

where non-allocated locations are mapped to None, and each allocated location
is mapped to Some c for some value c of type ’b. We also declare primitive
operations to manipulate the heap. For instance, a reference is updated using
the following:

val set_ref (ghost mem: mem_ref ’b) (l: loc_ref ’b) (c: ’b): unit
requires { mem.refs l <> None }
writes { mem }
ensures { mem.refs = (old mem.refs)[l <- Some c] }

Note that we pass the heap as a ghost argument, instead of declaring a single
global variable to model the heap. The reason is two-fold. First, global variables
must have monomorphic types. Second, by using “small heaps” passed through
the chain of function calls as hidden arguments, we statically enforce separation
between the heaps and avoid complicated frame conditions. This is yet another
instance of Burstall’s “component-as-array” [3]. Soundness of heap manipulation

4

is guaranteed by the fact that mem_ref is a private data type that is updated
through abstract functions.

Once this memory model is built, we can implement and verify the union-
find data structure. In particular, we have to implement the data type uf. It
is a record data type that contains, in addition to the fields dom and rep, the
contents of the memory:

type uf ’a = { memo: mem_ref (content ’a); ... }

As declared in the interface, all union-find functions receive a ghost parameter
of type uf and then exploit it to perform read/write operations on memory:

let rec find (ghost uf: uf ’a) (x: elem ’a) : elem ’a
= match get_ref uf.memo x with

| Root _ _ -> x
| Link y -> let rx = find uf y in

set_ref uf.memo x (Link rx); rx
end

Here, the call to set_ref accounts for path compression. Once we have imple-
mented all operations, we prove that they conform to the specification written
in the .mli file and translated to WhyML by our tool.

Extraction to OCaml. The last step consists in translating WhyML to OCaml,
using Why3’s extraction mechanism. This translation is governed by a substitu-
tion file, which maps WhyML types (e.g., int63) to OCaml types (e.g., int).
Together with our memory model, we build a consistent substitution file for it,
as follows:

module UnionFind.Mem
syntax type loc_ref "%1 ref"
syntax function Link "Link %1"
syntax function Root "Root (%1, %2)"
syntax val set_ref "%1 := %2"
...

The OCaml code is given as a string, where %n introduces a placeholder for the
n-th argument of a WhyML symbol. Note that the memory model is no more an
argument of set_ref, having been erased by the extraction because of its ghost
status.

3 Experimental Evaluation

We have used our approach to verify several other OCaml modules. These exam-
ples illustrate many features not described in this paper, such as preconditions
verified at runtime, OCaml functors, higher-order effectful functions, absence of
arithmetic overflows, etc. They are all contained in the companion artifact. Fig-
ure 2 summarizes the size of these examples, column “spec” showing the number

5

module spec code #VCs
UnionFind 74 176 135 union-find
PairingHeap 41 245 52 persistent priority queues
ZipperList 66 180 87 zipper data structure for lists
Arrays 37 121 77 binary search and binary sort
Queue 54 185 119 mutable queues
Vector 149 309 142 resizable arrays
HashSet 21 34 12 sets using hash tables
MergeSort 12 401 630 in-place mergesort of lists

Fig. 2. Verified OCaml Modules.

of lines in the .mli files and the “code” column showing the number of lines in
the WhyML implementation and proof. All verification conditions are discharged
automatically using SMT solvers.

4 Related Work and Contributions

Related Work. The verified C compiler CompCert [11] and the static analyzer
Verasco [8] are two notable large-scale examples of verified OCaml programs.
Both are implemented in the Coq proof assistant and translated to OCaml af-
terwards using Coq extraction mechanism [12]. It is worth pointing out that Coq
has a mechanism to replace certain symbols by OCaml code at extraction time,
in a way very similar to our substitution mechanism.

The CFML tool [4] implements another approach to the verification of OCaml
programs using Coq. It goes the other way around, turning an OCaml program
into a “characteristic formula”, that is an expression of its semantics into a higher-
order separation logic embedded in Coq. CFML provides Coq tactics to help the
user carry out proofs efficiently. Examples of recent applications of CFML include
a verified implementation of hash tables [13] and verification of the correctness
and amortized complexity of a union-find [6]. Contrary to that proof, ours is
fully automatic. However, we do not treat the proof of complexity bounds.

Closer to our work is the integration of module refinement in the Dafny pro-
gram verifier [10] by Leino and Koenig [9]. Dafny module system does not make
distinction between interface and implementation: the same notion of module
is used both to give abstraction and to refine it. When refining a module in
Dafny, one may give definitions to the data structures and methods left un-
interpreted in the interface module, bring additional declarations, and refine
previously given specifications. The main difference between module refinement
in Dafny and Why3 concerns mutable data structures. In Dafny, mutable state
is encapsulated within a class, and dynamic frames are typically used to control
side effects. In Why3, mutable data is encapsulated within record types, and it
is the type system that controls side effects.

Contributions. We propose a new workflow to produce correct-by-construction
OCaml programs. It builds on the existing tool Why3, with the addition of the

6

following contributions: a specification language for OCaml, à la JML; a tool to
translate it to WhyML; a systematic way to build memory models for mutable
recursive OCaml types; an enhanced extraction mechanism for Why3, featuring
a modular translation, up to OCaml functors; a practical validation with the
proof of eight non-trivial OCaml modules.

References

1. Patrick Baudin, Jean-Christophe Filliâtre, Claude Marché, Benjamin Monate, Yan-
nick Moy, and Virgile Prevosto. ACSL: ANSI/ISO C Specification Language, ver-
sion 1.4, 2009. http://frama-c.cea.fr/acsl.html.

2. Lilian Burdy, Yoonsik Cheon, David R. Cok, Michael D. Ernst, Joeseph R. Kiniry,
Gary T. Leavens, K. Rustan M. Leino, and Erik Poll. An overview of JML tools
and applications. International Journal on Software Tools for Technology Transfer
(STTT), 7(3):212–232, June 2005.

3. Rod Burstall. Some techniques for proving correctness of programs which alter
data structures. Machine Intelligence, 7:23–50, 1972.

4. Arthur Charguéraud. Characteristic formulae for the verification of imperative
programs. In Manuel M. T. Chakravarty, Zhenjiang Hu, and Olivier Danvy, editors,
Proceeding of the 16th ACM SIGPLAN international conference on Functional
Programming (ICFP), pages 418–430, Tokyo, Japan, September 2011. ACM.

5. Arthur Charguéraud, Jean-Christophe Filliâtre, Mário Pereira, and François Pot-
tier. VOCAL – A Verified OCaml Library. ML Family Workshop, September
2017.

6. Arthur Charguéraud and François Pottier. Verifying the correctness and amortized
complexity of a union-find implementation in separation logic with time credits.
Journal of Automated Reasoning, September 2017.

7. Jean-Christophe Filliâtre, Léon Gondelman, and Andrei Paskevich. A pragmatic
type system for deductive verification. Research report, Université Paris Sud, 2016.
https://hal.archives-ouvertes.fr/hal-01256434v3.

8. Jacques-Henri Jourdan, Vincent Laporte, Sandrine Blazy, Xavier Leroy, and David
Pichardie. A formally-verified C static analyzer. In 42nd ACM SIGPLAN-SIGACT
Symposium on Principles of Programming Languages, pages 247–259, Mumbai,
India, January 2015. ACM.

9. Jason Koenig and K. Rustan M. Leino. Programming language features for re-
finement. In John Derrick, Eerke A. Boiten, and Steve Reeves, editors, Proceed-
ings 17th International Workshop on Refinement, Refine@FM 2015, Oslo, Norway,
22nd June 2015., volume 209 of EPTCS, pages 87–106, 2015.

10. K. Rustan M. Leino. Dafny: An automatic program verifier for functional cor-
rectness. In LPAR-16, volume 6355 of Lecture Notes in Computer Science, pages
348–370. Springer, 2010.

11. Xavier Leroy. A formally verified compiler back-end. Journal of Automated Rea-
soning, 43(4):363–446, 2009.

12. Pierre Letouzey. A new extraction for Coq. In Herman Geuvers and Freek Wiedijk,
editors, TYPES 2002, volume 2646 of Lecture Notes in Computer Science. Springer,
2003.

13. François Pottier. Verifying a hash table and its iterators in higher-order separation
logic. In Proceedings of the 6th ACM SIGPLAN Conference on Certified Programs
and Proofs (CPP 2017), January 2017.

7

http://frama-c.cea.fr/acsl.html
https://hal.archives-ouvertes.fr/hal-01256434v3

	A Toolchain to Produce Correct-by-Construction OCaml Programs

