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Multicenter Evaluation of Cystatin C Measurement
after Assay Standardization

Anne-Sophie Bargnoux,"'T Laurence Piéroni,?" Jean-Paul Cristol,”” Nils Kuster," Pierre Delanaye,>
Marie-Christine Carlier,” Soraya Fellahi,® Anne Boutten,® Christine Lombard,” Ana Gonzalez-Antufia,®°
Vincent Delatour,’®" and Etienne Cavalier®' on behalf of the Société Francaise de Biologie Clinique (SFBC)

BACKGROUND: Since 2010, a certified reference material
ERM-DA471/IFCC has been available for cystatin C
(CysC). This study aimed to assess the sources of uncer-
tainty in results for clinical samples measured using stan-
dardized assays.

METHODS: This evaluation was performed in 2015 and
involved 7 clinical laboratories located in France and Bel-
gium. CysC was measured in a panel of 4 serum pools
using 8 automated assays and a candidate isotope dilu-
tion mass spectrometry reference measurement proce-
dure. Sources of uncertainty (imprecision and bias) were
evaluated to calculate the relative expanded combined
uncertainty for each CysC assay. Uncertainty was judged
against the performance specifications derived from the
biological variation model.

RESULTS: Only Siemens reagents on the Siemens systems
and, to a lesser extent, DiaSys reagents on the Cobas
system, provided results that met the minimum perfor-
mance criterion calculated according to the intraindi-
vidual and interindividual biological variations. Al-
though the imprecision was acceptable for almost all
assays, an increase in the bias with concentration was
observed for Gentian reagents, and unacceptably high
biases were observed for Abbott and Roche reagents on
their own systems.

coNCLUSIONS: This comprehensive picture of the market
situation since the release of ERM-DA471/IFCC shows
that bias remains the major component of the combined

uncertainty because of possible problems associated with
the implementation of traceability. Although some man-
ufacturers have clearly improved their calibration proto-
cols relative to ERM-DA471, most of them failed to meet
the criteria for acceptable CysC measurements.

Cystatin C (CysC)"" is an additional biomarker for the
estimation of renal function and also for prediction of
cardiovascular risk (7, 2). Furthermore, recent recom-
mendations from the Kidney Disease Foundation high-
light the need to determine the estimated glomerular fil-
tration rate (eGFR) based on creatinine and CysC
(eGFR( ¢, cysc) used to confirm stage 3A (45-60
mL -+ min~ "+ (1.73 m*) ") kidney disease in patients
without any signs of kidney damage (3, 4). The calibra-
tion and standardization of assays are key factors for de-
veloping ¢eGFR equations based on CysC alone or in
combination with creatinine (5). Currently, a certified
reference material, ERM-DA471/IFCC, is available for
CysC (6). With the availability of a reference material,
improvement in the equivalence of the results from var-
ious assays would be expected.

Although some authors have shown good concor-
dance between some specific assays (7), a recent College
of American Pathologists (CAP) survey showed that sub-
stantial variability between assays persists (8). The 2014
CAP survey (8) was based on improved CAP assay coding,
which allowed for identification of reagent/calibrator
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groups and used survey materials expected to be com-
mutable, although commutability was not validated. A
variety of instrument platforms and reagents were repre-
sented, and geographical variations in the calibration
among specific groups could partially explain the vari-
ability in their results. To overcome these limitations, we
used fully documented assays, and commutable materials
with target values determined using a candidate reference
measurement procedure (RMP) (9, 10) to evaluate the
analytical performance of most of the available assays for
CysC. Standard and expanded uncertainties were calcu-
lated by considering the uncertainties associated with bias
and random effects (imprecision).

Materials and Methods

EXPERIMENTAL DESIGN

This evaluation was performed in 2015 and involved 7
clinical laboratories located in France and Belgium. CysC
was measured in a panel of 4 off-the-clot fresh-frozen
serum pools using 8 automated assays and an isotope
dilution mass spectrometry (IDMS) candidate RMP.
The commutability of the frozen pools was verified by
measuring CysC in 30 fresh serum samples whose con-
centrations bracketed those of the 4 frozen pools. Each
automated assay, which was composed of a combination
of a reagent, calibrator, and analyzer, was assessed inde-
pendently by 2 different laboratories.

The 30 serum samples were transported to each lab-
oratory at4 °C and analyzed in triplicate on 1 day within
4 days after selection. Simultaneously, frozen serum
pools were sent on dry ice to the laboratories where they
were stored at —20 °C until analysis. The frozen pools
were first assayed on the same day as the 30 fresh serum
samples to verify commutability and then on 3 separate
runs per day over 3 consecutive days.

SERUM SAMPLES

The selection of clinical specimens for pool fabrication
and for evaluation of commutability were based on in-
creasing creatinine values measured during a routine ex-
amination. The pools were prepared from residual sera of
at least 15 patients not receiving medication and that
were not lipemic, icteric, or hemolyzed. The recommen-
dations of the CLSI C37-A guideline (11) were observed
for making the pools. Briefly, blood was collected into
plain tubes, and allowed to clot for 1 h at room temper-
ature. Tubes were centrifuged at 2500¢ for 10 min, with
serum recovered and creatinine measured as soon as pos-
sible. Tubes were stored at 4 °C before selection of do-
nors and before pooling. Pools were prepared from donor
units with creatinine values ranging from 30 —40 umol/L
(0.3-0.4 mg/dL) (pool 1), 70—80 wmol/L (0.8—-0.9 mg/
dL) (pool 2),90-100 wmol/L (1.0-1.1 mg/dL) (pool 3),
and 150-160 pmol/L (1.6-1.8 mg/dL) (pool 4). The

pools were mixed gently for 12 h at 4 °C to ensure ho-
mogeneity, and 0.5 mL aliquots were transferred into the
final containers. The aliquots were frozen at —80 °C.
The collection, processing, dispensing, freezing, and stor-
age processes of the pools were completed within 20 h.
The same procedures were used to prepare 0.5 mL ali-
quots of the individual serum samples used for the com-
mutability validation that were stored at 4 °C before
distribution. Donor sera samples for commutability val-
idation were selected to be within the bracketed creati-
nine concentrations of the 4 frozen pools. Because the
study involved anonymized leftover samples, French law
did not require approval by an Ethics Committee.

CysC ASSAYS AND REAGENT-CALIBRATOR-ANALYZER
COMBINATIONS

Eight automated measuring systems (including the plat-
form, calibrator, reagents, and control materials) were
evaluated according to the manufacturer’s instructions,
and the calibration of each system was assessed in each
run based on the acceptable ranges for the control mate-
rials specified by each manufacturer. Measuring systems
from the same manufacturer were all Conformité Euro-
péenne (CE) marked. When a platform (Architect and
Cobas ¢502) was used as an open system to implement
alternative CE reagents/calibrators/controls (Gentian or
DiaSys), the defined application for the CysC immuno-
assay was installed in accordance with the specific instru-
ment’s settings and the performance characteristics pro-
vided by the reagent’s manufacturer. For open systems,
the analyzer manufacturer’s instructions were used for
performing calibration and maintenance of the analyzer.
The main characteristics of the 8 combinations of re-
agents, analyzers, and calibrators are summarized in

Table 1.

CANDIDATE RMP

The target values of the 4 frozen pools were assigned in
the Department of Physical and Analytical Chemistry
(University of Oviedo, Spain) using an IDMS-based can-
didate RMP. The trueness of the candidate RMP was
confirmed by recovering the assigned value for measure-
ment of DA471/IFCC. The mean bias of the IDMS
method was +1.0% relative to the certified value (n =
6). The uncertainty associated with the values assigned to
the pools using the IDMS measurement procedure was
assessed according to previously described methods (9).
Uncertainty sources were investigated by estimating the
contribution of the uncertainty of each relevant parame-
ter to the overall total combined uncertainty, as described
by Kragten et al. (12). The relative expanded uncertain-
ties (k = 2) of the IDMS-based target concentrations
were 3.8% for pool 1, 3.6% for pool 2, 1.9% for pool 3,
and 2.9% for pool 4.
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COMMUTABILITY ASSESSMENT

The commutability of the 4 frozen pools was evaluated
by measuring CysC in the 4 frozen pools and in 30 un-
modified fresh serum samples. The 4 pools and 30 indi-
vidual serum samples were measured in triplicate in the
same analytical sequence using the 8 different CysC as-
says. Statistical analysis of commutability was performed
based on the pair-wise comparison of sets of CysC results
using a Deming regression, followed by the calculation of
the 95% prediction intervals. Conclusions regarding the
commutability of the frozen pools were drawn based on
the positions of their values with respect to the prediction
interval according to the CLSI guideline EP30-A (for-
merly C53-A) (13).

UNCERTAINTY CALCULATION

In line with the Ist Strategic Conference of the European
Federation of Clinical Chemistry and Laboratory Medi-
cine, the analytical performance of the assays at the clin-
ical sample level was evaluated using the biological vari-
ation model (14) with quality performance specifications
based on both the intra- (5%) and interindividual (13%)
biological variation of CysC (15). According to the per-
formance specifications (16), the minimum, desirable,
and optimum biases of CysC assays should be <5.22%,
3.48%, and 1.74%, respectively, whereas the minimum,
desirable, and optimum imprecisions should be <3.75%,
2.5% and 1.25%, respectively. The expanded uncertainty
(U) of the CysC measurements for a clinical laboratory
using an unbiased assay at the patient sample level should
remain approximately within *2.5%, *5.0%, and
*+7.5% for the optimum, desirable, and minimum qual-
ity levels, respectively (e.g., the goals for imprecision mul-
tiplied by a coverage factor of 2) according to the ap-
proach described by Pasqualetti et al. (17).

The combined uncertainty of the CysC measure-
ment was estimated according to the model proposed by
Magnusson et al. (18) by combining the bias and impre-
cision data obtained by measuring the IDMS value as-
signed pools. The resulting combined standard uncer-
tainty (uc) was calculated as follows: uc = (up;, +
uR)®?, where up was the random component of the un-
certainty. The relative uc (%) was reported as the mean
of the daily means. The corresponding expanded uncer-
tainty was obtained by multiplying the combined stan-
dard uncertainty by a coverage factor of 2 (Ui = 2u,).

The standard uncertainty associated with the bias
(upj,s) Was calculated by combining 3 elements: the bias
corresponding to the difference between the obtained
mean of the means (n = 18) and the IDMS value, the
bias variability corresponding to the SD of the individual
bias divided by the square root of the number of mea-
surements, and the relative standard uncertainty associ-
ated with the certified value of the reference pool material

(19).

The standard uncertainty associated with the ran-
dom effect (ug) was obtained using the imprecision data
(Sp) (n = 18). Imprecision was estimated according to
the CLSI EP05-A3 guidelines (20). A 2-way nested anal-
ysis of variance (ANOVA) was performed for each assay
at each pool concentration, and the treating “site” and
“days” were 2 factors. Three precision types were esti-
mated: (@) the repeatability SD (S,), (§) the within-
laboratory precision SD (Sg,), and (¢) the reproducibility
SD (Sp).

STATISTICAL ANALYSIS

Statistical analysis was performed using R 3.1.0 soft-
ware (R Foundation for Statistical Computing, Vi-
enna, Austria).

Results

COMMUTABILITY ASSESSMENT OF THE 4 FROZEN POOLS
Based on the Deming regression, all the pools were
within the 95% prediction intervals and considered com-
mutable in all 28-pairwise comparisons (see Supplemen-
tal Figs. S1-S28 in the Data Supplement that accompa-
nies this article at http://www.clinchem.org/content/
vol63/issue4), suggesting that these materials were ap-
propriate for estimating the trueness of the assays.

IMPRECISION

The total imprecision (Sg) reached the minimum speci-
fication of 3.75% for all of the assays, except for DiaSys
implemented on the Architect platform in pools 1, 2, and
3, Roche reagents on the Cobas system in pools 1 and 3,
and Abbott reagents on the Architect system in pool 1.
However, when considering only the intralaboratory im-
precision, all assays reached the minimum criterion.
Gentian implemented on the Architect platform pro-
duced better results than when it was implemented on
the Cobas analyzer. The Abbott assay exhibited the best
results with an intralaboratory imprecision of <1.25% at
all concentrations. The 2 Architect platforms had an in-
terlaboratory imprecision (Sg) that was 2-times higher
than the intralaboratory imprecision (Sg,) (Table 2).

BIAS AGAINST THE CANDIDATE RMP

The IDMS-assigned CysC concentrations and associated
expanded uncertainties (k = 2) were 0.957 (0.036) mg/L
(3.7%), 1.118 (0.041) mg/L (3.6%), 1.445 (0.027)
mg/L (1.9%), and 1.962 (0.056) mg/L (2.9%) for pools
1, 2, 3, and 4, respectively.

The optimal specification for bias was reached with
Siemens reagents on the BN ProSpec system and with
DiaSys reagents on the Architect system in pools 2, 3, and
4, whereas a desirable goal for bias was reached for the 2
platform and reagent combinations in pool 1. On the Vista
system, an optimal bias was reached in pools 2 and 4, and a



Table 2. Mean values, relative biases (%) vs IDMS, imprecision expressed as the relative SD% and the relative standard uncertainties
for each contributing factor for the determination of CysC for the different pools and reagent-analyzer- calibrator combinations.
Diasys/ Gentian/  Roche/
Abbott/  Diasys/ Cobas Gentian/ Cobas Cobas  Siemens/BN  Siemens/
Architect Architect c502 Architect c502 c502 ProSpec Vista
Pool 1 (0.957 = 0.036 mg/L)
Mean, mg/L 1.15 0.94 0.93 0.98 0.96 1.04 0.98 0.94
Bias, % 20.1 -1.8 =80 2.3 0.1 8.3 2.3 =2.3
UBias: 7% 20.2 2.6 3.5 3.0 1.9 8.5 2.9 3.0
S, % 1.1 2.6 2.0 1.7 2.4 3.6 1.5 1.1
Skur % 1.2 3.6 2.0 1.7 3.5 3.6 1.5 1.6
Sk =Ug, % 4.0 9.5 2.3 2.1 3.5 4.3 2.5 1.9
uc(k=1),% 17.3 9.9 4.3 3.6 4.0 9.0 3.8 3.6
Uc (k=2), % 34.6 19.8 8.6 7.3 8.0 18.0 7.6 7.2
Pool 2(1.118 £ 0.041 mg/L)
Mean, mg/L 1.34 1.12 1.10 1.17 1.13 1.20 1.14 1.1
Bias, % 19.7 0.2 -1.3 4.4 1.4 7.2 1.7 -0.3
Ugias: % 19.8 1.8 2.2 4.8 4.2 7.4 3.5 2.5
S, % 1.0 1.7 1.8 1.3 2.3 2.0 1.7 1.4
Skur % 1.3 2.3 1.8 1.3 3.5 2.3 2.0 1.9
Sk =Ug, % 2.9 6.3 3.0 1.5 3.5 2.7 2.5 2.0
uc(k=1), % 16.8 6.5 8.7 4.8 4.2 7.4 3.5 2.7
Uck=2), % 33.6 131 7.5 9.6 8.4 14.8 7.0 5.5
Pool 3(1.45 = 0.027 mg/L)
Mean, mg/L 1.70 1.45 1.42 1.53 1.49 1.54 1.43 1.40
Bias, % 17.0 -0.2 -2.2 5.2 2.7 5.9 -1.1 =82
Ugias: % 17.0 1 2.4 5.3 2.9 6.0 1.5 3.4
S, % 0.7 1.3 1.5 0.8 2.4 2.6 1.3 0.9
Skur % 0.8 1.3 1.8 1.2 2.4 2.9 1.4 1.6
Sk = Ug, % 2.8 4.1 1.8 1.2 2.6 3.9 1.4 1.6
uck=1),% 14.8 4.2 3.0 5.2 3.9 6.9 2.0 3.8
Uc (k=2), % 29.6 8.5 6.1 10.3 7.7 13.7 4.1 7.7
Pool 4 (1.962 + 0.056 mg/L)
Mean, mg/L 2.28 1.95 1.91 2.14 2.04 2.06 1.98 1.95
Bias (%) 16.3 -0.4 -2.7 8.9 3.9 5.2 0.9 -0.4
Ugias: % 16.4 1.5 3.1 9.0 4.2 5.4 1.7 1.5
S, % 0.5 2.2 1.7 0.7 1.5 2.0 1.5 1.8
Sk % 1.2 2.2 2.4 0.7 2.4 2.2 2.4 2.7
Sk =Ug % 3.1 2.2 2.4 0.7 2.4 3.1 2.6 3.1
uc(k=1), % 14.4 2.7 4.0 8.3 4.7 6.0 3.1 3.5
Uc (k=2), % 28.8 5.4 8.0 16.6 9.4 11.9 6.1 7.0
2 The minimum, desirable, and optimum bias values should be <5.22%, 3.48%, and 1.74%, respectively. The minimum, desirable, and optimum imprecisions should be <3.75%,
2.5%, and 1.25%, respectively. The minimum, desirable, and optimum expanded combined uncertainties (U) should be <7.5%, 5.0%, and 2.5%, respectively.

level in pool 3, and the minimum level in pool 4. The
same reagents on the Architect system reached the desir-
able level in pool 1 and the minimum level in pool 2, but
did not achieve the minimum level in pools 3 and 4.

desirable bias was reached in pools 1 and 3. DiaSys re-
agents on the Cobas platform achieved the desirable goals
in all the pools. Gentian reagents on the Cobas system
reached the optimal level in pools 1 and 2, the desirable
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Fig. 1. Biases between the commercial assays and the IDMS target value for CysC.
The figure shows the reference material values and the areas of their uncertainty (grey zone), the mean (SD) of the results from the evaluated systems,
and lines depicting the bias specifications (red, green, and blue lines correspond to the optimal, desirable, and minimum quality levels, respectively).

Abbott reagents on the Architect system (pools 1, 2, 3,
and 4), and, to a lesser extent, Roche reagents on the
Cobas system (pools 1, 2, and 3) did not reach the min-
imum criterion being biased from 16.3%-20.1% for Ab-
bott reagents on the Architect system and from 5.2%-—
8.3% for Roche reagents on the Cobas system (Table 2,
Fig. 1).

ESTIMATION OF THE COMBINED UNCERTAINTY

As shown in Table 2, the minimum acceptable relative
expanded uncertainty was only obtained for a few assays:
DiaSys reagents on the Cobas system (pools 2 and 3),
DiaSys reagents on the Architect system (pool 4), Gen-
tian reagents on the Architect system (pool 1), and Sie-
mens reagents on the BN ProSpec (pools 2, 3, and 4) and
Vista systems (pools 1, 2 and 4). To evaluate the relative
parts of each component separately, the relative com-
bined expanded uncertainty was further calculated, first
using the intralaboratory imprecision and then without
bias (see online Supplemental Table 2). By using the

intralaboratory imprecision, the minimum acceptable re-
sults for the combined uncertainty were obtained for Sie-
mens reagents on the BN ProSpec system (pool 1) and
DiaSys reagents on the Architect system (pools 2 and 3).
Furthermore, after correcting for bias, the relative ex-
panded uncertainty ranged from 5.9%-19.4% and was
below 10% for all combinations except the DiaSys re-
agents on the Architect system (pools 1 and 2). These
results strongly supported a residual bias as the main
source of uncertainty in most of the assays, except the
DiaSys reagents on the Architect system, for which the
interlaboratory component was predominant.

Discussion

In this study, we showed that although a secondary ref-
erence material has been introduced to align assays, sev-
eral commercially available measurement procedures re-
main clinically unsatisfactory with respect to the
combined expanded uncertainty because of unacceptable



bias. However, random variability is not a major problem
for CysC assays.

Only Siemens reagents on the Siemens systems, and
to a lesser extent the DiaSys reagents on the Cobas sys-
tem, provided results that satisfied the minimum perfor-
mance criterion calculated according to the intraindi-
vidual and interindividual biological variations. These
results were obtained using candidate RMP assigned val-
ues to commutable pooled serum control materials with
CysC concentrations ranging from 0.957-1.962 mg/L.
These values correspond to stages 1-4 of chronic kidney
disease in a wide variety of patients.

The uncertainty attributable to imprecision was in
agreement with data we collected in 2008 (70). The im-
precision of the assays was not a problem except when
reagents not provided by the instrument platform man-
ufacturer were used. It should be noted that a clear
between-laboratory effect was present in the poor com-
bined uncertainty obtained for DiaSys reagents on the
Architect platform; this effect was not observed using
DiaSys reagents on the Cobas system. These results con-
firm the importance of considering all the components of
a measuring system, including the platform, calibrator,
reagents, and control materials (21 ). Measuring systems
from the same manufacturer, as a whole, were all CE
marked. The reagents/calibrators/controls implemented
on the Architect and Cobas ¢502 platforms were CE
marked for Gentian, whereas the applications proposed
by DiaSys were not CE marked and are intended to serve
as guidelines only. Thus, the measured results must be
validated by the clinical laboratories and assessed with
caution. However, CE marking does not guarantee that
the manufacturer has successfully transferred trueness.

It is logical to expect that with the availability of
ERM-DA471 CysC results should be unbiased when
compared to those from commutable pooled serum ma-
terials with a value assigned by the candidate RMP. Our
results demonstrated that unacceptable bias remains for
the clinical use of CysC measurements. Although some
manufacturers have improved their calibration protocols
to correct bias, others have not correctly implemented
traceability to ERM-DA471. The Siemens measurement
procedures (Siemens reagents on Siemens systems) eval-
uated here were the ERM-DA471/IFCC-traceable ver-
sions, and we observed a significant improvement in
2015 with a bias of <3.2% at all tested concentrations.
This finding differed from the negative bias (ranging
from —11 to —18%) we observed in our previous Euro-
pean study performed in 2008 (10), and in the CAP
study performed in 2014 (8). Siemens restandardized its
CysC assays against ERM-DA471/IFCC using a con-
stant conversion factor of 1.11 over the entire measuring
range in 2012 (for BN ProSpec systems) and 2013 (for
Dimension Vista Intelligent Laboratory Systems) outside
the US. However, the transition is still ongoing and was

finalized in mid-2014 for most non-US countries only
(22). The continued availability of 2 reagent/calibrator
kits for the Siemens systems’ that have different calibra-
tions (one traceable to the ERM-DA471/IFCC reference
material and one not traceable) creates considerable con-
fusion (23). Indeed, Zhao et al. (24) demonstrated that
the BN2 CysC results obtained in the US remained in-
accurate 5 years after the introduction of ERM-DA 471.

Abbott reagents on the Architect platform exhibited
positive bias ranging between 16.3% and 20.1% at all
tested concentrations and this bias was not reduced com-
pared to that obtained using the Abbott system in 2008
(25). The data obtained in this evaluation clearly high-
light some important issues in the calibrator value-
assignment protocol for transferring trueness from
higher-order references to the Abbott calibrator used for
the CysC assay. To a lesser extent, the Roche reagents on
the Cobas ¢502 system still exhibited clinically signifi-
cant positive bias ranging from 5.2%—8.3%, which de-
creased with increasing concentrations. This result was
comparable to that obtained in 2008 (70) before stan-
dardization, but inconsistent with those obtained in the
CAP 2014 CysC survey, in which the Roche results dem-
onstrated a high level of agreement using fresh-frozen
samples with ERM-DA471/IFCC-traceable target val-
ues (8). Similarly, Ebert et al. (7) demonstrated that the
bias between the Roche and Siemens CysC assays was
reduced from 7% with the Roche Genl to 0% with the
Roche Gen2 standardized assay. Gentian reagents dis-
played increasing bias with increasing concentration on
both the Architect and Cobas systems. The use of Roche
systems by the CAP participants was not as strictly con-
trolled as in our study; therefore, some assay “customiza-
tion” by individual laboratories cannot be excluded. Such
customization could explain the discrepancies between
the results of our study and those of the CAP study. In
addition, inconsistency in the assignment of values to the
commercial calibrators by the manufacturer and the po-
tential of between-lot (reagents and calibrator) variations
cannot be excluded. Because ERM-DA471/IFCC con-
sists of a 1-level calibrator with a high CysC concentra-
tion (5.48 mg/L), dilutions are required to prepare addi-
tional calibrators with lower CysC concentrations. It can
be speculated that some assay manufacturers failed to
identify an appropriate dilution buffer and/or used non-
commutable dilutions and/or transfer calibrators.

At the patient level, the uncertainty budget com-
bines the uncertainty of the reference material, the un-
certainty of the commercial assay calibration, the system
imprecision and the individual laboratory variability.
Braga et al. recently recommended that 33% and 50% of
the total uncertainty budget should be consumed by the
uncertainty of the references and the manufacturer’s cal-
ibration and value transfer protocol (26). The relative
expanded uncertainties of the IDMS-based targets of the



pools were close to that of the ERM-DA471/IFCC cali-
brator (U = 2.74%). The uncertainties of current state-
of-the-art for absolute protein quantification by IDMS
are not much lower than those reported in our study.
However, IDMS-assigned values are supposed to be un-
biased because IDMS is considered as a high-order mea-
surement procedure. Diagnostic manufacturers are ex-
pected to implement suitable analytical systems (i.e.,
platforms, reagents, calibrators, and controls) that fulfill
the established goals of the field [Joint Committee for
Traceability in Laboratory Medicine (JCTLM), IFCC,
European Federation of Clinical Chemistry and Labora-
tory Medicine (EFLM)] (21 ). In vitro diagnostics (IVD)
manufacturers should provide a calibrator level uncer-
tainty that includes the uncertainty associated with
higher levels of the selected metrological traceability
chain (21, 26). For example, the uncertainty declared by
Roche for its commercial calibrator (C.f.a.s. CysC) is
0.2%, which is lower than that declared for the reference
material ERM-DA471 (2.74%), which was used by the
same company to transfer the measurement trueness.
Clearly, this value corresponds to uncertainty without
including the higher-order ERM uncertainty. The role of
clinical laboratories is to verify consistency with the per-
formance claimed by a measurement system manufac-
turer through daily quality operations performed accord-
ing to the manufacturer’s instructions and structured
external quality assessment programs that meet metro-
logical criteria (27).

The 2012 Kidney Disease: Improving Global
Outcomes recommendations suggest measuring the
€GFR( eq cysc in adults with eGFR based on creatinine
(eGFR(,,) valuesin the range of 45-59 mL * min~ ' - (1.73
m?) ™ 'who do not have markers of kidney damage (3.
Consequently, the measurement uncertainty is especially
important when low concentrations of CysC might be
present because large variations in this range can dramat-
ically impact the GFR estimation (28, 29).

The strengths of this study are that, for the first time,
8 CysC assays that claim to be standardized to ERM-
DA471/IFCC reference material were evaluated using
commutable pools with concentrations assigned by a

candidate RMP. The limitation of this study is that mea-
surements were conducted in a small subset of clinical
laboratories that are active in chronic kidney disease in-
vestigations (n = 7; 2 laboratories for each measuring
system). In comparison, a much larger number of labo-
ratories (n = 141) were involved in the Eckfeldt study
(8). The advantage of the latter study is that it could
better mimic “real-life” conditions. In contrast, expert
laboratories are probably more dedicated to evaluating
the performances of an assay.

In conclusion, among the CE marked IVD assays,
only Siemens reagents on the Siemens systems met the
desirable specifications for bias. IVD manufacturers
should improve the metrological traceability of their an-
alytical systems to the available higher-order references
(21). With few exceptions, the equivalence of CysC re-
sults among the commercially available measuring sys-
tems has not been achieved despite the availability of the
ERM-DA471/TFCC reference material.
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