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Generalized Pareto optimum and semi-classical

spinors

M Rouleux
Aix-Marseille University, Université de Toulon, CNRS, CPT, Marseille, France

E-mail: rouleux@univ-tln.fr

Abstract. In 1971, S.Smale presented a generalization of Pareto optimum he called the critical
Pareto set. The underlying motivation was to extend Morse theory to several functions, i.e.
to find a Morse theory for m differentiable functions defined on a manifold M of dimension
£. We use this framework to take a 2 x 2 Hamiltonian H = H(p) € C®(T*R?) to its
normal form near a singular point of the Fresnel surface. Namely we say that H has the
Pareto property if it decomposes, locally, up to a conjugation with regular matrices, as
H(p) = «'(p)C(p)(v'(p))*, where u : R?* — R? has singularities of codimension 1 or 2, and
C(p) is a regular Hermitian matrix (“integrating factor”). In particular this applies in certain
cases to the matrix Hamiltonian of Elasticity theory and its (relative) perturbations of order 3
in momentum at the origin.

1. Matrix valued Hamiltonian systems and crossing of modes

Here we recall some well known facts about generic normal forms for a matrix Hamiltonian near
a crossing of modes. Consider a real valued symmetric Hamiltonian H# € C®°(T*R%) @ R". We
may also replace H(z,£) by a more general symbol (in a suitable class) with asymptotic sum
H(z, & h) = Ho(z,§) + hHi(z,€) + - - -, and consider its semi-classical Weyl quantization

H o, Dy U (s ) = (2h) @ [ [ ey I ) dyay

This defines an operator essentially self-adjoint on the space of square-integrable “spinors”
L?(R%) ® C". For simplicity we keep denoting by H the principal symbol H, which actually
plays the main role in the present analysis.

Let Az, &) = det H(z,€), and N = {(z,€) € T*R?, A(x,€) = 0} be the characteristic variety.

At points of N, the polarisation space ker H(z, &) has positive dimension k& > 1.

For k=1, {(z,£) € N : dA # 0} is a smooth hypersurface, and modulo an elliptic factor, we
can reduce H to a scalar symbol with simple characteristics; the corresponding operator, of real
principal type, can again be locally conjugated to hD,, by an elliptic Fourier integral operator
(FIO); this induces well-known polarization properties for solutions of the original system.

Effects which are truly specific for systems occur therefore when k > 2; let ¥ = {(z,£) € N :
dA = 0} be the singular part of N.

For generic Hamiltonian H, 3 is a stratified set. Splitting off elliptic summands, H can be

(generically) reduced to a 2 x 2 system. For a 2 x 2 symmetric system <a —g / —ab—i— f>’ one



should generically move 2 parameters to bring it to a matrix with an eigenvalue of multiplicity
2, and one more to bring this eigenvalue to 0; thus the top (larger) stratum of ¥ is of codim 3.
On directions transverse to X, N looks like a quadratic cone. In the next item we review some
known results, making these observations more precise.

a) Classical and semi-classical normal forms for generic H

We first mention Arnold’s [1] normal forms for (generic) A = det H near the stratum of ¥ of
codim 3: at a conical point (i.e. where a = b = ¢ = 0), there are symplectic coordinates (p, q)
such that modulo an elliptic factor, we can bring A to one of the following expressions :

A(z,€) = p1g1 — p5  hyperbolic conical point
Az, &) = p? +¢? — p2  elliptic conical point

When d > 3 Braam and Duistermaat [6] [7] have further brought H to its normal form near
the stratum of ¥ of codim 3 at a conical point : Modulo elliptic summands, we can reduce to
the case where H is a 2 x 2 real symmetric matrix, and in the sense of quadratic forms, i.e. by
replacing H by A*H.A, where A is elliptic, there are symplectic coordinates (p,q) such that

A*HA = <—Z;1;-p2 pql—iz—)?]’) > hyperbolic conical point
1P3 1+ D2

A*HA = <p 1q_pp 2 quf?]’? > elliptic conical point
203 1+ D2

Moreover these normal forms extend naturally to quantization of Weyl symbols, composing
A by a suitable FIO U/ microlocally defined near the conical point, and associated with the
canonical change of coordinates (z, &) — (gq,p). Namely, in the hyperbolic case

w/ g% wy, [ —hDg + hDy, q1hDg,
u (A HA) U= ( QIths h‘DQI + thz)
and similarly in the elliptic case.

Normal forms are useful for studying the Hamiltonian flow of H(xz,§) or finding quasi-modes
for H(z,hD,) in terms of classical functions. These normal forms are structurally stable, i.e.
they are not affected by small perturbations of a generic H in the C*°(T*R%)®R" topology. Even
more precise results are available in 1-D, see e.g. [15] in the framework of Born-Oppenheimer

approximation, or [8], [3] for Bogoliubov-de Gennes Hamiltonian.
b) Particular cases: k =2, codim 3 singularities

In many physical situations however, the genericity assumption is not fulfilled, and special
reductions should be carried out :

o Conical refraction in 3-D Recall from [11] in dimension d = 3 that the normal form is given

by the symmetric matrix
H = p1+p2 b3 (1)
b3 p1—Dp2

which is independent of space variables. This is not structurally stable, because the singular
part X of N is involutive.



e Graphene Hamiltonian in 2-D. The Hamiltonian is a complex Hermitian matrix [9]:

H(p) = (7( 0 f(p10,pz)> = [A(p)| <ei%(p) e_w(p)> (2)

P1,p2)

Here p = (p1,p2) € R? are quasi-momenta, and the eigenvalues are explicitely given by

Ap) = :I:t\/?) + 2cos(V3p1a) + 4 cos(V3paa/2) cos(3paa/2)

Energy vanishes at Dirac points (2 Dirac points per hexagonal cell). The linearization at the
Dirac point is of the form

o =y, Ly, MM o=z ®)

¢) Particular case: higher order singularities

Here we are concerned in the case where A vanishes of order 4 at the conical point (leaving
open the case k = 3). The physical example is the Hamiltonian quadratic in the momenta from
Elasticity Theory [5] in (241)-D, that is obtained in the following way.

On the set of maps I' : Ry x R2 — R2, (t,2,5) — (¢(z,y,t),v(z,y,t)) with Sobolev regularity
H'(R3), we consider the Lagrangian density:

(D) () () () == v = 56t + 0= 3062 +03) = Ao, + P

Euler-Lagrange equations from the variational principle ¢ [ £dtdzdy = 0 lead to extremal
curves (rays) in the (¢,z,y)-space, and the set of points (¢,,%) connected to the origin in R?
by such a ray is called the “world front”. A matter of interest are the singularities of the world
front.

Applying Fourier transformation with respect to (z,y,t)

¢'—><ZA5, ¢:1:'—>£$, ¢y'_>77$, ¢tr—>7'$, ete. ..

switches from Lagrangian formulation to Hamiltonian formulation and leads to a Pseudo-
differential Hamiltonian system (as a quadratic form in ((b 1/1)) with principal symbol

_ (T 0\ [+ Al y)n® Alz,y)n
%_<0 72> < Al y)én A(:v,y)£2+n2> (4)

Genericity properties for this Hamiltonian imply as above that the singular set ¥ is of
codimension 3, so that it can be brought to one of Arnold-Braam-Duistermaat normal forms
(in 2-D) near ¥. However, genericity breaks down in the case of constant coefficient A(z,y) =
Const., which justify a direct approach.

In particular, for A = %, the spatial part has determinant

A(g,n) = %(52 +n%)?

which vanishes of order 4 at (¢,7) = 0.

Our purpose, precisely in this case, is to provide a normal form for H near 7 = £ = n = 0. This
could be achieved by a straightforward diagonalisation of H, but our method carries naturally
to (relative) perturbations of this Hamiltonian, depending on (£,n) alone; more naively this
example is intended as an illustration of the role played by the generalized Pareto set.



2. Generalized Pareto optimum

A central problem in Differential Calculus consists in maximizing a function: Morse theory on
a smooth manifold provides a globalization of this problem.

Economists are rather concerned in maximizing simultenaously several “utility functions”,
obtaining this way the notion of Pareto optimum in a free exchange economy.

In 1971, S.Smale presented a generalization of Pareto optimum he called the critical Pareto
set [16]. The main mathematical motivation is to find a Morse theory for m differentiable func-
tions defined on a manifold M of dimension £. Note that this problem is distinct from this of
relative extrema of a single function, which is relevant to Lagrange multipliers.

a) “Classical” Pareto optimum in a free exchange economy

Consider a free exchange economy consisting in m consumers ¢ = 1,--- ,m, and for each i, let
T; = (xgl), e ,xZ(J)) represent the (positive) amount of goods j = 1,--- ,J, with xgj) > 0. We
define the “commodity space” as P = {z = (z(M,...  z())) € R/;20) > 0}. An unrestricted
state of the economy is a point & = (z1,- - , ;) € P™, but we may restrict to the affine space
M={zepPm™:> ", xz(j) =CU),j=1,---,J} with total ressource CY) of good j.

Each consumer is supposed to have an utility function u; : P — R (generally an homogenous
function of z() ... x())). Thus consumer i prefers x; to a} iff u;(x;) > w;(z}). The level sets
u; (c), ¢ > 0 are called “indifference surfaces”.

One considers exchanges in M which will increase each u; on M. A state ¥ € M is called
“Pareto optimal” iff there is no @’ € M such that w;(z;) > u;(z}) for all i, and u;(2;) > u;(z})
for some j. If £ € M is not Pareto, & is not economically stable. For m = 1 Pareto optimum
equals the usual notion of a (constrained) maximum of v : M — R,z — u(z).

Physicists would replace everywhere the words “maximizing” by “minimizing”, and “total
resource” by “total energy”.

b) Generalized Pareto optimum in the sense of Smale.

Here we do not only consider (joined) maxima, but also (joined) critical points.
Let M be a smooth manifold, dim M = ¢, and v : M — R™ be m smooth functions defined

by u = (ug, - ,up) (vector of “utilities”).
Let H(z) = (u/(x)) ' (RT), where '(z) : T, M — R denotes the derivative (Jacobian) of u
at x € M, and R’ the set of v = (v1,--- ,vp,) € R™ with v; > 0 all j.

Definition 1 [16]: We call © = {x € M : H(z) = 0} the Pareto critical set.

Thus the relation z € © means that there is no smooth curve v :| — ¢,e[— M starting at x,
and such that ¢ — wu; o y(t) increases for all i’s (gradient flow dynamics). For m = 1, Pareto
critical set is just the set of critical points of w.

If u is a (single) Morse function on M, © is a discrete set, and the Hessian u”(z) is defined
intrinsically on ©. For m > 1, © need not be discrete; but when it consists, as is usual, of a
submanifold of dim m — 1, then u”(x) is still intrinsically defined on © and valued in the 1-D
space R™ /Ranu/(x).

The open subset ©g C O of stable points (classical Pareto set), which reduces for m =1 to
the set of local maxima of u, plays a special role.

e Paradigm of Pareto critical in 2-D: the immersed Klein bottle in R?.



The paradigm of a Morse function on a compact 2-manifold is the “height function” on the
embedded torus, and its (Pareto) critical points are the minimum, 2 saddles, and maximum.
Similarly Pareto critical set for 2 functions of 2 variables will be obtained from Klein bottle
[Wan], by projecting the immersed bottle in R? onto a suitable plane, and looking at the
“joined extrema” of the coordinates functions on the projection plane. Another, more convenient
immersion of Klein bottle in R? (though not so easy to visualize) is the so called “figure eight”
or “bagel” immersion, given by

x1 = (r + cos g sinv — sin g sin 2v) cos
x9 = (r + cos g sinv — sin g sin 2v) sin 0
23 = sin g sin v + cos g sin 2v

with r > 2 a parameter, —7m < 6 < 7,0 < v < 27 are the variables. It is obtained by gluing
two Mobius bands along their edges. Then the map with typical critical Pareto set is given by

u=(\/2? + 23, x3).

© is a stratified set, consisting in a finite number of segments (codimension 1 strata) where
rank(u') = 1, terminating at codimension 2 strata (isolated points) where rank(u’) = 0.

We will only consider £ = m which leads to the simplest topology.

e Flementary Pareto sets: the case of quadratic polynomials in 2-D.

As in the one-dimensional case, quadratic polynomials in R provide useful examples of maps
with a typical critical Pareto set. For m = ¢ = 2 we may take

uy(z) = §(a} +23), uz(z) = 3(2} + 2122+ 23), ©={0}
u(z) = 3122, uz(z) = 3(a? —23), ©={0}

i) = §a? +23), use) = $a? —23), O ={x1 =0}

More generally, the critical Pareto set of two elliptic or two hyperbolic quadratic linearly inde-
pendent polynomials reduces to the origin, and to a line for a “mixed” pair.

3. Matrix valued Hamiltonian systems with the Pareto property

Since we are interested in 2-spinors, we work with m = ¢ = 2 and H(x,p) = H(p).

Definition 2: Let H € C*°(R?) ® R? ® R? be a (real) Hermitian matrix. We say that #
has the Pareto property iff there exists a smooth map (but with possibly degenerate derivative)
u: R? — R?, and a (regular) Hermitian matrix C(p) such that, locally, and up to conjugation
with an elliptic factor of the form H(p) — A(p)*H(p)A(p), we have:

H(p) = u'(p)C(p)(v' ()

Remark: A hint on this definition is the following: let p € R? such that u}(p) = 0, then the
“pure classical state” (é) € N(p), and similarly for ((1]) when u4(p) = 0. So any “classical state”
(5) is a superposition of “classical pure states”.

These decompositions are local and sometimes can be checked only in the sense of germs. If
exact, we say that H is “integrable in Pareto sense”. Only in 1-D problems, one can consider
general Hamiltonians of the form H(z,p).



4. Pareto property and the quadratic Hamiltonian of Elasticity Theory

Because Hamiltonians depending on p alone are not structurally stable, few Hamiltonian sys-
tems verify Pareto property. We have :

Theorem 1: For A = 1/2, the quadratic Hamiltonian of Elasticity Theory (4) is integrable
in Pareto sense: with u1(&§,n) = 2—\1/5(52 — %), ua(é,m) = %577, we have H(&,n) =

u'(€,m)diag(2,1) (' (&, 7)) with o/ (u/)* = 2(€2 4+ n?)Id. Let o9 = (—Oz é), we have the “skew-

diagonalization”

SoaM(Em) — 705 = (6. m) (dins(5, 1) — (€ + %) 1) (o' (€,))" (5)

From this we can construct by inverse Fourier transformation semi-classical spinors

Hp, ) (x,y; T) that verify near “Helmholtz equation” corresponding to (4), 72 standing for the
energy parameter. We write ¢ for the Fourier transform w.r.t the space variables. There are
two linearly independent solutions *(¢1,11)(z,y; 7) of the equation

(diag(5,1) — (€ + 7)) (G0, 1) = 0

given by
d1(x,y,7) = Jo(/ 22 +y2%)7 1 = Jo(v/ 22 —|—y2%) (6)

and ¢, are derived from (5) by convolution integrals. From this it is standard to deduce the
spectral properties of H.

o Relative stability of the Pareto property

Theorem 2: Let s 1o .
£+ 31 387 > 3
H ) = 2 3 + O )
(&mn) < %@7 %§2+772 ((&:m)°)
Then #H(&,n) has the Pareto property (at least in the sense of germs at 0), with C(&,n) =
Co + O(&,m), u(&,n) = up(&,n) + O((&,1)?). Moreover there is a skew-diagonalization of type
(5), and we can find a set of solutions to the “Helmholtz equation” as in (6).

The proof goes as in Poincaré-Dulac theorem [2]: Namely we seek for a “new” wu of the

form v = u + f, with f = O(|¢,5]*), and a “new” C of the form diag(2,1) + <Z Z) The

upper-left matrix element of v'H(v')* is given by 2Ly f1 + (€2 + 1723) + %(a&Q — 2bén + dn?),
with L; = Qm(% — ya%, which has a resonance 2:1. Its lower-right matrix element is given by

V2Lo fo + (0 + %) + %(an2 + 2bEn + d€?) with Ly = 23/8% + xa%. The off-diagonal terms involve
the term Lj fa + Lo f1. It turns out that we can solve (at least perturbatively) this system, the
coefficients a = a1 +aan+---, b = b +ban+---, d = di§ + dan + --- being determined
to fulfill the compatibility conditions. The skew-diagonalization of type (5) follows from the
fact that v'(&,1)(v'(€,1))* = 2(€2 + n*)?(Id + O(|¢,|) is close to a multiple of Id. We can still
construct semi-classical solutions, and their asymptotics in A for small E, obtained by varying
the argument of the Bessel functions.



5. Conclusion

We have made an attempt to extend the notion of “non-degenerate critical point” for a scalar
Hamiltonian to the notion of “Pareto critical set” © for a 2 x 2 Hamiltonian system. We focussed
to the case where © reduces to a point. Our analysis applies to the Hamiltonian #(p) quadratic
in momenta arising in Elasticity theory, for a particular value of the coefficients. It allows to
account for the spectral properties of H together with the semi-classical spectral asymptotics of
(relative, i.e. depending again only on p) perturbations of H near E' = 0. These Hamiltonians
present a codimension 3 singularity of order 4 at © = {0}. It seems difficult to extend this purely
algebraic approach for general Hamiltonians of the form H(z,p): namely, when trying a map
u: R* = R2, eigenvectors of H are given from those of C(z,p) by applying a pseudo-inverse of
(u")*, which is not uniquely defined.
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