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P E R S P E C T I V E

Turning natural adaptations to oncogenic factors into an ally in 
the war against cancer

Abstract
Both field and experimental evolution studies have demonstrated 
that organisms naturally or artificially exposed to environmental 
oncogenic factors can, sometimes rapidly, evolve specific adapta-
tions to cope with pollutants and their adverse effects on fitness. 
Although numerous pollutants are mutagenic and carcinogenic, little 
attention has been given to exploring the extent to which adapta-
tions displayed by organisms living in oncogenic environments could 
inspire novel cancer treatments, through mimicking the processes 
allowing these organisms to prevent or limit malignant progression. 
Building on a substantial knowledge base from the literature, we 
here present and discuss this progressive and promising research di-
rection, advocating closer collaboration between the fields of medi-
cine, ecology, and evolution in the war against cancer.

1  | INTRODUC TION

Although medical and evolutionary sciences have traditionally de-
veloped in relative isolation (Williams & Nesse, 1991), applying evo-
lutionary principles and approaches to understand the emergence 
and development of cancer has gained significant international rec-
ognition over the last decade (Aktipis & Nesse, 2013; Greaves, 2007; 
Thomas et al., 2013; Ujvari, Roche, & Thomas, 2017). A flagship di-
rection of this research area is the identification of natural cancer 
suppressive mechanisms, knowing that evolution had eons to fine-
tune adaptations to the fitness cost of malignant selfish cells. Cancer 
is indeed a disease that developed along the transition from unicel-
lular to metazoan life, approximately one billion years ago (Aktipis & 
Nesse, 2013; Merlo, Pepper, Reid, & Maley, 2006; Nunney, 2013). 
Because multicellular individuals with unregulated cell division were 
at a selective disadvantage over those that were able to prevent un-
controlled cell proliferation, strong constraints on somatic evolution 
to suppress cancer have evolved along with multicellularity (Aktipis 
& Nesse, 2013).

In this context, the absence of a positive relationship between 
size/life expectancy and cancer incidence across species, known as 
Peto’s paradox, has attracted the attention of many evolutionary bi-
ologists (Caulin & Maley, 2011). Indeed, if every cell has some chance 
of becoming cancerous, large long-lived organisms should have an 
increased risk of developing cancer compared to small, short-lived 

organisms. The lack of correlation therewith suggests that the 
mechanisms of cancer resistance must have been more strongly se-
lected in large and long-lived species (Caulin & Maley, 2011; Nunney, 
Maley, Breen, Hochberg, & Schiffman, 2015; Roche et al., 2012). 
Accordingly, it has for instance been shown that large vertebrates 
such as elephants have 20 copies of TP53 (humans have only one), 
horses seem to have larger number of T-cell differentiation pro-
tein (MAL) genes, and bats (that live unexpectedly long given their 
small body size) have amplified F-box protein 31 (FBXO31) (Caulin, 
Graham, Wang, & Maley, 2015; Harris, Schiffman, & Boddy, 2017; 
Kokko, Schindler, & Sprouffske, 2017).

Recently, Ducasse et al. (2015) argued that apart from body size 
and longevity, additional ecological, environmental, and behavioral 
factors should also be considered when assessing cancer preva-
lence, and attempting to identify species with resistance to cancer. 
Major steps have been made toward this goal through the study of 
mammal species that seem to be free from cancer or at least exhibit 
extremely low prevalence of tumor occurrence. This has recently 
been synthesized by Tollis, Schiffman, and Boddy (2017) who dis-
cussed the mechanisms of cancer resistance that have so far been 
discovered in two mole rat species, Heterocephalus glaber (see, e.g., 
Seluanov et al., 2009; Tian et al., 2013) and Spalax sp. (e.g., Manov 
et al., 2013; Schmidt, Hangmann, Shams, Avivi, & Hankeln, 2016). 
The same approach has led to important insights into the mecha-
nisms that confer partial cancer resistance in humans suffering from 
different forms of growth hormone receptor deficiency (Guevara-
Aguirre et al., 2011; Shevah & Laron, 2007). However, despite recent 
progress toward greater convergence and dialogue between scien-
tists working on oncology, ecology and evolutionary sciences much 
remain to be done to achieve full integration of these disciplines.

Here, we propose that a promising research direction, still largely 
underexplored at the moment, is the search for cancer suppressive 
mechanisms that may have evolved in organisms living in environ-
ments that favor cancer emergence and progression. Similar to a lack 
of correlation between life expectancy and cancer incidence that led 
to Peto’s paradox, a lack of correlation between cancer incidence and 
rate of exposure to pollutants, especially mutagens and carcinogens 
(hereafter called environmental oncogenic factors or EOF), might also 
hold true. Such lack of correlation, if present, might suggest that evo-
lution has produced solutions to avoid and/or control malignant prob-
lems in EOF-exposed populations. Below we provide information 
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suggesting that both field and experimental evolution studies may be 
promising avenues to the discovery of novel mechanisms of cancer 
resistance that could potentially enable novel cancer therapies.

2  | AVAIL ABLE E VOLUTIONARY-
ECOTOXICOLOGY KNOWLEDGE

Life on earth has evolved under the ubiquitous presence of EOF in-
cluding chemicals present in air, water, and sediment such as poly-
cyclic aromatic hydrocarbons. Various types of radiation have also 
played a significant role as EOF, challenging life processes (Aarkrog, 
1990; Beresford & Copplestone, 2011; Mothersill, Rusin, & Seymour, 
2017; Sivani & Sudarsanam, 2012). Moreover human activities have 
resulted in major, large-scale environmental modifications through-
out our history, with the scale and speed of anthropogenic impacts 
exponentially increasing over the past century (Lebarbenchon, 
Brown, Poulin, Gauthier-Clerc, & Thomas, 2008; Vitousek, Mooney, 
Lubchenco, & Melillo, 2008).

The impact of ecosystem contamination by EOF has been stud-
ied since the 1970s due to growing concern about the consequences 
of increasing environmental pollution on ecosystem function and 
species extinction (Butler, 1978; Truhaut, 1977). At the end of the 
1990s, this field transitioned when it became obvious that the impact 
of EOF could not just be evaluated at the scale of an individual or a 
generation but should also be assessed in terms of consequences on 
population evolution: Evolutionary ecotoxicology was born (Bickham 
& Smolen, 1994; Depledge, 1998). Since then, the evolutionary con-
sequences of EOF ecosystem contamination have been explored at 
different levels (i.e., genetic, epigenetic, and developmental) forming 
an abundant literature, albeit focusing mainly on aquatic species (e.g., 

Oziolor, Bigorgne, Aguilar, Usenko, & Matson, 2014; Reid et al., 2016; 
Wirgin et al., 2011). The development of these studies led to the dis-
covery of a large diversity of adaptation mechanisms allowing popu-
lations to survive and reproduce in highly contaminated sites. Here, 
we suggest that this considerable amount of data and knowledge 
could be used and developed with a focus on cancer resistance and 
tolerance mechanisms. This research axis seems to have attracted 
little interest so far, notably due to the complexity and diversity of 
pathways involved that could be easier to unravel with rapidly im-
proving analytical techniques (see, e.g., Nesnow, 2013).

This topic is still in its infancy. We still need to determine why, 
when exposed to mutagenic substances, certain species display 
higher mutation rates and/or show more rapid adaptive responses 
(e.g., DeWoody, 1999; Eeva, Belskii, & Kuranov, 2006; Rotchell, Lee, 
Chipman, & Ostrander, 2001). For example, large amounts of standing 
genetic diversity may be an important factor facilitating rapid adap-
tations, as observed in the Atlantic killifish (Reid et al., 2016, 2017). 
Distinguishing between physiological acclimation and evolutionary 
heritable changes is also crucial (e.g., Fisker, Sørensen, Damgaard, 
Pedersen, & Holmstrup, 2011; Hamilton, Rolshausen, Webster, & Tyler, 
2017; Mousseau & Møller, 2014). Moreover, we need to determine the 
extent to which species, when naturally or artificially exposed to EOF, 
are selected (i) to better handle toxic compounds in the body, (ii) to 
limit their fitness impact through an adjustment of life-history traits, 
and/or (iii) to select mechanisms that limit the occurrence and progres-
sion of EOF-induced diseases, like cancer. To make the distinction be-
tween the different adaptive strategies species follow when exposed 
to EOF is potentially important from a medical perspective. Obviously, 
it is the latter third option that bears the promises of yielding novel 
treatments against cancer (Figure 1). Both field and experimental 
studies, or a combination of the two, could be used in this context.

F IGURE  1 Detecting anticancer 
adaptations from experimental selection
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3  | ADVANTAGES AND DR AWBACKS OF 
FIELD AND E XPERIMENTAL STUDIES

Selection of genetically inherited tolerance in populations exposed 
to EOF contamination, either of natural or anthropogenic origin, 
has been highlighted in a large range of aquatic and a few terres-
trial species throughout the world (Giulio & Clark, 2015; Johnson 
& Munshi-South, 2017; Medina, Correa, & Barata, 2007; Oziolor & 
Matson, 2015; Whitehead, Pilcher, Champlin, & Nacci, 2012; Wirgin 
& Waldman, 2004). Field studies have highlighted the existence of 
such adaptations arising at time scales varying from millennia to a 
few years only.

For instance, Drosophila melanogaster from high altitude dis-
play local adaptation to cope with DNA-damaging ultraviolet, via 
solutions involving polymorphisms in DNA-repair genes (Svetec, 
Cridland, Zhao, & Begun, 2016). Selection for ultraviolet tolerance 
is also observed in some fungi and bacteria that are exposed to UV 
radiation for part of their life cycles (Paul & Gwynn-Jones, 2003). In 
both Daphnia and humans, pigmentation is considered as an adap-
tation to UV radiation (Jablonski & Chaplin, 2010; Tollrian & Heibl, 
2004). In those cases, selection pressure has acted over thousands 
of generations as is typically the case for adaptations related to EOF 
of natural origin.

By contrast, evolution processes associated with anthropo-
genic pollution can occur on a temporal scale of years and within 
few generations only (e.g., Bélanger-Deschênes, Couture, Campbell, 
& Bernatchez, 2013; Klerks & Levinton, 1989; Knapen, Bervoets, 
Verheyen, & Blust, 2004; Theodorakis, Blaylock, & Shugart, 1997). 
For instance, in the benthic oligochaete Limnodrilus hoffmeisteri 
inhabiting a metal-polluted site in Foundry Cove (New York), re-
sistance to metal pollution evolved within 30 years only (Klerks & 
Levinton, 1989). However, although currently rapidly accelerating, 
anthropogenic impacts on the environment, such as mining related 
contamination, have been ongoing for centuries. As an illustration, 
in England, “metal-river” trout populations are genetically distinct 
from “clean-river” populations despite being geographically in close 
proximity. A split dating back to Medieval times when local mining 
activity was highly intensive (Paris, King, & Stevens, 2015).

Field studies provide the opportunity to examine the evolution 
of naturally occurring EOF tolerance mechanisms in a very large di-
versity of cases. The heritable tolerance mechanisms involved can 
either arise from the initial genetic pool of the focal population, the 
mutation induced by EOF, the genetic pool of neighboring popula-
tions, or a combination of these. This represents both limits and ad-
vantages. Indeed, in a closed population facing a new contamination, 
genetic diversity is expected to decrease due to the mortality or low 
fecundity of nonresistant individuals. Such a decrease has been ob-
served in a number of cases. For example, in Canada, wild yellow 
perch (Perca flavescens) living in lakes impacted by mining activities 
experienced a significant reduction in population genetic diversity 
following pollution (Bourret, Couture, Campbell, & Bernatchez, 
2008). Nevertheless, in most cases, genetic diversity either in-
creases or remains stable following contamination of ecosystems. In 

these cases, increased mutation and/or immigration rates compen-
sate or exceed the loss of diversity due to contamination impacts 
on the initial population. As an illustration, no impact on genetic di-
versity was observed in American mink (Neovison vison) populations 
facing polychlorinated biphenyl contamination in Belgium (Wirgin, 
Maceda, Waldman, & Mayack, 2015). The same was true for bank 
voles (Clethrionomys glareolus) living in Chernobyl in irradiated areas 
(Baker et al., 2001). Moreover “sink-like” populations have been 
identified in different studies following EOF exposure. For example, 
in North Carolina, the genetic diversity of redbreast sunfish (Lepomis 
auritus) was higher in rivers impacted by pulp mill effluent discharge 
(Theodorakis, Lee, Adams, & Law, 2006). Similarly, Giska, Babik, van 
Gestel, van Straalen, and Laskowski (2015) showed that their most 
polluted study site in Poland had the population of rove beetles with 
the highest genetic diversity. Yet, it is important to note that in such 
sink-like populations, only few individuals may contribute to the next 
generation, which means that if the population becomes isolated its 
genetic diversity could decrease rapidly.

The observed high mutation and immigration rates may dilute 
local adaptations and thus hamper the identification of cancer re-
sistance mechanisms. On the other hand, these high mutation and 
immigration rates may also allow for the selection of relevant adap-
tations from a larger than the initial genetic pool. Once established, 
these specific adaptations may incur a fitness cost in the original 
unpolluted environment. Various populations of pollutant-tolerant 
killifish (Fundulus heteroclitus) experienced such costs in clean water, 
including higher mortality associated with infectious diseases and 
higher rates of acute hypoxia, when compared to pollutant sus-
ceptible congeners (reviewed in Whitehead, Clark, Reid, Hahn, & 
Nacci, 2017). Such costs may limit the natural diversity of selected 
EOF resistance mechanisms. But they are also interesting in them-
selves as they identify the possible drawbacks of the EOF resistance 
mechanisms. However, in some cases, these costs could be due to 
hitchhiked genetic regions, which are often associated with rapid 
selective sweeps (Schiffels, Lässig, & Mustonen, 2014; Shiina et al., 
2006). These hitchhiked genetic regions could potentially be re-
moved experimentally to test for the selective value of the relevant 
adaptations in isolation.

Experimental evolution is a complementary approach that con-
sists in the use of laboratory or controlled field manipulations to 
investigate evolutionary processes. It has helped in proving that 
EOF resistance in multicellular organisms is often heritable and can 
rapidly evolve. For instance, selection experiments on the Foundry 
Cove worms (L. hoffmeisteri) indicated that 1–4 generations are 
enough for resistance to metal pollution to evolve (Klerks & 
Levinton, 1989). Similarly, an artificial selection experiment for cad-
mium resistance in the least killifish, Heterandria formosa, showed 
that after only six generations of selection, fish survived about 
three times as long as control-line fish when exposed to cadmium 
(Xie & Klerks, 2003). The evolution of cadmium tolerance has also 
been demonstrated by laboratory experiments on daphnid popu-
lations (Ward & Robinson, 2005). Indeed, the costs of coping with 
interspecific interactions (e.g., predation, competition, parasitism) 
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that are removed in experimental settings may, because of trade-
offs existing under natural conditions, prevent the evolution of ad-
aptations to toxicants (Beketov & Liess, 2006; Foit, Kaske, & Liess, 
2012). In artificial selection experiments, laboratory conditions pro-
vide an environment less affected by these constraints, thereby in-
creasing the probability of specific adaptations to evolve and to be 
detected. Experimental approaches give the opportunity to inten-
sify the selection of already known suppressive mechanisms (e.g., 
additional copies of TP53 as observed in elephants), but could also 
potentially lead to the emergence of novel ones (i.e., existing in nat-
ural populations but not yet discovered, or, indeed, fully novel ones 
evolving during the experiment but not yet existing in the wild). The 
latter scenario could be expected if the artificial selection exerts 
stronger coefficients of selection than any natural or anthropogenic 
processes in the field.

Furthermore, combining field and experimental approaches is 
an established and promising avenue to identify EOF adaptations in 
wild populations. Individuals from polluted and clean sites can be 
collected and then studied under controlled conditions. In this way, 
the variation of the tolerance/resistance capacities can be studied 
over large contaminant-dose gradients and the effect of acute ver-
sus chronic exposure compared. In midges (Chironomus riparius), in-
dividuals were collected in the field in polluted and clean sites and 
then reared for six generations in the laboratory. Chronic responses 
of the studied populations did not consistently converge with acute 
responses to cadmium exposure (Pedrosa et al., 2017). Studying ad-
aptation mechanisms over several generations is also important to 
assess their stability and the stability of their function over time. 
In the same midge population, clutch size and female body weight 
changed across generations in response to the highly toxic biocide 
tributyltin (Vogt et al., 2007).

Insight may be gained by examining the combined effects of con-
taminants and parasites/disease on animals. Such effects may be ad-
ditive, negative, or neutral depending on the host and contaminant 
(Marcogliese & Pietrock, 2011), and may be considered analogous 
to the effects of environmental stressors and cancer on organisms. 
How organisms physiologically respond to natural and anthropogenic 
stressors may also be illuminating. For example, it was observed that 
in yellow perch, two larval trematodes induced oxidative stress, but 
only at polluted sites. Yet, infection levels were never higher at those 
sites than at reference sites (Marcogliese, Dautremepuits, Gendron, 
& Fournier, 2010). Thus, it has been suggested that contaminants 
may affect tolerance, but not resistance, in this particular system, 
possibly providing a framework for further examination of immuno-
suppression elsewhere (Marcogliese & Pietrock, 2011; Marcogliese 
et al., 2010).

There have been few studies of multigenerational effects of 
parasites and contaminants on organisms. However, Daphnia once 
again has proven to be a useful model system. Combined effects of 
the pesticide carbaryl and the bacterial parasite Pasteuria ramosa on 
survival and population growth rate on Daphnia magna were syner-
gistic on survival and population growth rate (Coors & De Meester, 
2008). Exposure to the same pesticide enhanced the virulence of 

P. ramosa and the microsporidium Flabelliforma magnivora (Coors, 
Decaestecker, Jansen, & De Meester, 2008). However, fitness of 
P. ramosa, measured as reproductive output, actually decreased 
when daphnids also were exposed to carbaryl (Coors & Meester, 
2011).

4  | AVAIL ABLE METHODS AND 
PROMISING RESE ARCH AVENUES

So far, field and experimental evolutionary-ecotoxicology ap-
proaches have focused on the understanding of mutation, selection, 
and spatial structure in EOF-exposed populations. Yet, the evolution 
of cancer suppressive mechanisms has rarely been their focus (but 
see Sprouffske, Merlo, Gerrish, Maley, & Sniegowski, 2012). Possibly 
this is due to the complexity of the factors involved in the resistance 
and tolerance to carcinogens. Yet, this is unfortunate, as long-term 
population exposure to mutagenic and carcinogenic substances may 
be expected to efficiently select individuals whose fitness is, by one 
way or another, less affected, or not affected at all, by cancer bur-
den. Moreover, the rapidly evolving analytical methods, including 
full-genome population resequencing and comparative transcrip-
tomics (e.g., Oziolor, Bickham, & Matson, 2017; Reid et al., 2016, 
2017) that allow the unraveling of complex “toxic pathways”, link-
ing EOF exposure to its consequences, and that can deal with large 
datasets, may readily enable such studies.

When candidate genes are already identified, population ge-
netics can help in revealing their association with adaptations to 
EOF exposure. In the flounder Platichthys flesus, a study on the 
polymorphism of the known tumor suppressor gene p53 across 
populations living in highly EOF-contaminated versus reference 
estuaries showed a significantly higher diversity in polluted sites 
(Marchand et al., 2010). More powerful techniques such as restric-
tion site-associated DNA sequencing (RADseq) allow screening 
the genome of individuals from EOF-adapted and control popula-
tions to highlight polygenic selection. Using this approach, Laporte 
et al. (2016) identified a total of 142 and 141 covarying markers 
discriminating European and American eels (Anguilla anguilla and 
Anguilla rostrata) from “control” versus “polluted” sampling locali-
ties. Full-genome population resequencing is yet another promis-
ing method, which is rapidly becoming more affordable and which 
can be used to detect anticancer adaptations. As an example, the 
analysis of 384 whole killifish genome sequences and comparative 
transcriptomics allowed the identification of the aryl hydrocarbon 
receptor (AHR)-based signaling pathway as a shared target of se-
lection, contributing to the adaptation of individuals to normally 
lethal levels of pollution in urban estuaries (Reid et al., 2016). Yet, 
to inspire future cancer treatment development, the identifica-
tion of genes that are associated with adaptation to EOF should 
be coupled with thorough analyses enabling the understanding of 
the complex pathways involved. As an illustration of this, it was 
through the elaborate coupling of genetic, physiological, chemical, 
and histological analyses that it was shown that killifish living in an 
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area contaminated with polycyclic aromatic hydrocarbons (PAHs) 
were resistant to the carcinogenic effects of PAHs (Wills et al., 
2010). The AHR-based signaling pathway seemed to be involved 
in this pollution resistance, as carcinogenesis requires metabolic 
activation by enzymes, including enzymes from the cytochrome 
P450 (CYP)1 family, this activation being mediated by the AHR 
to which PAHs binds. From these findings, the conclusion could 
be drawn that if the gene coding for AHR synthesis is inactivated, 
as proven in mice, individuals are protected against PAH-induced 
carcinogenesis (Shimizu et al., 2000). However, another study in 
mice suggested that, in the absence of a xenobiotic ligand, the 
AHR gene can function as a tumor suppressor gene (Fan et al., 
2010). The above highlights the complexity of the studies we ad-
vocate, but that with the inclusion of transcriptomics, proteomics, 
and metabolomics, we will ultimately be able to better under-
stand phenotypic linkages to genotypes (Oziolor et al., 2017). 
Understanding that may prove crucial to enable the integration of 
ecotoxicological knowledge in human cancer research.

So far we have not addressed variations in levels and duration 
of EOF exposure, whereas these may impact the selective pressure 
associated with EOF exposure and accordingly affect the evolution 
of tumor resistance mechanisms. In this respect, hormesis could 
be an important phenomenon to study, as it could shape the link 
between EOF exposure and tumor resistance evolution. Hormesis 
describes the biphasic dose-dependent response to toxic sub-
stances or other pollutants (i.e., radiation) that have stimulatory or 
beneficial effects at low doses, but detrimental effects at high con-
centrations (Calabrese & Baldwin, 2003; Southam & Erlich, 1943). 
This model of dose response, however, remains debated (see, 
e.g., Kaiser, 2003; Normile, 2011). Yet, under this scenario, at the 
mechanistic level, beneficial effects of toxins in low concentrations 
can be the result of compensatory biological processes following 
an initial disruption in homeostasis (“homeostatic overcompensa-
tion,” Calabrese & Baldwin, 2002). At the cellular level, this over-
compensation phenomenon includes processes associated with 
receptor/signaling mechanisms (Calabrese, 2013), DNA damage re-
pair (Schöllnberger, Stewart, Mitchel, & Hofmann, 2004), immune-
function enhancement (Cui et al., 2017), and alteration of gene 
expression (Sokolov & Neumann, 2015). As epigenetic mechanisms 
have also been described for hormetic effects (Vaiserman, 2011), a 
link to environmental matching theory can be made (Kaiser, 2003).

Even if the vast majority of the toxicology literature has not used 
experimental designs that could be used to test for hormesis (most 
studies use too few or too high doses as regulatory agencies are 
most concerned with high-dose effects, Calabrese & Baldwin, 2000, 
2001), hormesis has been found to be present in numerous animal 
species (Calabrese, 2002; Calabrese & Baldwin, 1998, 2002), and this 
effect is present for a multitude of carcinogenic substances includ-
ing environmental pollutants like PAHs and dioxin (Borak & Sirianni, 
2006). For example, promising studies have detected hormesis of 
carcinogenic substances on tumor formation, reproduction, growth, 
and metabolism (Calabrese & Baldwin, 1998, 2002; Gaya, Akle, 
Mudan, & Grange, 2015). These effects on cancer development have 

been extensively discussed in the framework of radiation hormesis, 
which has been suggested to be one of the mechanisms explaining 
reduction in cancers at low radiation doses in populations of nuclear 
bomb survivors (Doss, 2013). At the population level, it is still de-
bated whether hormesis is under natural selection and can evolve 
in specific types of environments (Costantini, 2014; Parsons, 2001), 
although genetic variation in hormetic effects and nongenetic inher-
itance of epigenetic modifications has already been demonstrated 
(reviewed by Costantini, 2014).

5  | CONCLUSIONS

We would like to propose that scientists should fully exploit polluted 
environments as a widespread “natural” field laboratory to detect 
hormesis responses on cancer development in natural populations. 
Wild animals are usually exposed to a cocktail of pollutants in low 
doses, allowing scientists to even test whether and how interactions 
between these substances might stimulate a hormetic response. 
Once detected, these beneficial effects might constitute new av-
enues of research to test whether these substances or combinations 
of substances can be used to treat cancer.

Because one single method or model cannot thoroughly de-
scribe how organisms challenged with EOF resist cancer progres-
sion, researchers interested in these forms of responses must 
engage in greater exchanges and collaborations involving scien-
tists from different disciplines (field and experimental ecologists, 
eco-toxicologists, immunologists, evolutionary biologists, oncolo-
gists, and pharmacists). As stated above, the interaction networks 
that link genetic adaptation to phenotypic resistance to cancer are 
very complex. Nevertheless, we believe that based on the growing 
available knowledge gained through evolutionary ecotoxicology, 
and thanks to the rapid advancement of analytical methods, the 
identification of cancer resistance mechanisms in wildlife through 
both field and experimental studies is a promising research axis 
that could bring new insights into cancer treatment. A targeted and 
systematic phylogenetic approach may be advisable too: Rather 
than proceeding with scattered and somewhat random case stud-
ies across a wide variety of organisms, a structured phylogenetic 
approach might help guide the search for potentially useful study 
organisms, for instance, increasingly employed in the field of phar-
macologically active plant discovery (e.g., Barbosa et al., 2012). 
Reciprocally, conservation challenges associated with population 
decreases due to EOF-induced carcinogenesis may benefit from 
human cancer research. It may improve our understanding of the 
processes involved in contaminant-induced tumorigenesis, among 
which some are highly conserved among mammals (Tollis et al., 
2017) or even in both mammals and fish (Marchand et al., 2010). 
At the same time, human cancer research may also be helpful in 
developing mitigation strategies. These bridges that could lead to 
fruitful collaborations represent a new step into the One Health 
approach, which is based on the existing close links between 
human health, animal health, and ecosystem health and the efforts 
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of biologists, veterinarians, and human health researchers. The 
One Health approach is increasingly applied in infectious disease 
studies, but still remains to be incorporated into our understanding 
of carcinogenesis and the treatment of cancer.
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