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Abstract—We address the problem of maintaining high voltage
power transmission networks in security at all time. This requires
that power flowing through all lines remain below a certain
nominal thermal limit above which lines might melt, break
or cause other damages. Current practices include enforcing
the deterministic “N-1” reliability criterion, namely anticipating
exceeding of thermal limit for any eventual single line discon-
nection (whatever its cause may be) by running a slow, but
accurate, physical grid simulator. New conceptual frameworks
are calling for a probabilistic risk based security criterion and
are in need of new methods to assess the risk. To tackle this
difficult assessment, we address in this paper the problem of
rapidly ranking higher order contingencies including all pairs of
line disconnections, to better prioritize simulations. We present a
novel method based on neural networks, which ranks “N-1” and
“N-2” contingencies in decreasing order of presumed severity.
We demonstrate on a classical benchmark problem that the
residual risk of contingencies decreases dramatically compared to
considering solely all “N-1” cases, at no additional computational
cost. We evaluate that our method scales up to power grids of
the size of the French high voltage power grid (over 1 000 power
lines).

I. INTRODUCTION

Although our application domain is power systems, the
problem that we address is relatively general. It consists in
ranking rapidly items/samples/entities, hereby referred to as
”events” with a fast “proxy” method, then re-evaluating results
with a slower (more accurate) method. The goal is to identify
“bad” events, which should be ranked first. The hope is to gain
in speed without sacrificing accuracy of the overall ranking or
to increase the accuracy of ranking at no additional computa-
tional cost. In our power grid setting, an "event" will be "line
disconnection(s)" or "line outage(s)" and will be referred to
as a "contingency". Today’s, ranking entails running a power
grid simulator to compute power flow through all lines at a
given time (so-called “load flow”). “Bad” events or "dangerous
contingencies" correspond to the disconnection of a power
line, that put the grid in an unsecure state: the thermal limit of
(at least) one other line is exceeded due to an excess of current
flowing through it. If no remedial actions are taken quickly,
this overloaded line becomes out of service as well. As the
grid weakens, the problem propagates like a snow ball effect
(which may lead to a black-out). This can typically happen
when the power grid is overloaded at peak consumption times
and/or one or several lines have been disconnected. In this
paper, we will consider that the system is in quasi-stationary

conditions under given static “injections”, corresponding to
balanced productions and consumptions. This is typical of the
conditions experienced by grid operators (dispatchers), which
review grid conditions at intervals of five minutes. In our
setting, grid events consist in line disconnections. Our novel
contribution is to use neural networks to perform a first fast
ranking of would-be “bad contingencies”, using an architecture
we recently published [1].

The problem of ranking contingencies in power system
is not new. In [2] for example, the authors studied voltage
stability problems after some unplanned line disconnection
(contingency) occurs.

Other authors use machine learning to address power sys-
tem related problems. Most papers address the problem of
classifying grid states according to given security criteria ([3],
[4], [5], [6]), or predicting how a system will react after an
unplanned event occur ([7]). To the best of our knowledge,
using neural networks for screening “bad contingencies” has
not been done before.

Closest to our work, [8] use Artificial Neural Networks and
Restricted Bolztman Machine to predict "Composite security
indices", a concept similar to our scores ŝ (see section IV),
allowing us to rank the contingencies z. A key difference
between their work and ours is that we use our neural network
to make predictions under multiple contingencies. Our neural
network architecture is more efficient and better adapted to the
task at hand.

Our method can also be seen as a particular case of "point-
wise approach" by the "learning to rank community" ([9]).
These models are widely used in documents retrieval ([10])
or medical drug discovery ([11]). To our knowledge, none of
the above methods applies directly to contingencies ranking
in power system.

II. STATEMENT OF THE PROBLEM AND NOTATIONS

Formally, given a set Z of candidate events z, our goal is
to identify the subset B of “bad” events by evaluating with a
slow simulator the smallest possible number of events z. We
run first a fast “proxy” simulator (our neural network), on all
events in Z to obtain a set V of “at risk” candidates to be
verified with the slow simulator. This saves us the effort of
checking the remaining events in set Z − V .

Under our assumptions, a “system state” x consists of the
power flowing in all lines, resulting from given (fixed) injec-



tions, for a specific grid topology. We always analyze a situa-
tion corresponding to a fixed state in this paper and sometimes
omit x for brevity of notation. We also omit to specify time
ordering, although states are time ordered. What we denote by
z ∈ Z are sudden would-be (potentially disruptive) events,
corresponding to a change in grid topology, such as a line
disconnection, assuming injections remain constant. In some
sense, z is a variation ∆x. In the language of power systems,
such events are also referred to as “contingencies”. Therefore
in this paper “event” and “contingency” will be synonymous
and “bad event” and “bad contingency” will be synonymous.
An contingency z might arise with probability p(z)1 and is
associated with a loss function L(z;x). The overall risk is
defined as2:

Rmax(x) =
∑
z∈Z

p(z)L(z;x) (1)

where, in our application context, we assume that L(z;x) is
the {0, 1} loss, with 0 meaning that the contingency z arising
in state x is innocuous and 1 that it is risky or “bad” or
"dangerous" for our system (i.e. at least one line, still in service
after z arose, will exceed its thermal limit)3. Thus:

L(z;x) =



0 “No current flowing on any line
exceeds the line thermal limit
under contingency z
in grid state x”⇒ OK

1 “Otherwise”⇒ “Bad” event

(2)

Because of computational cost, we will only evaluate the
subset V ⊂ X of events, which will be identified as “poten-
tially bad” by the fast “proxy” (i.e. neural network), using the
slow (but accurate) simulator (i.e. load flow simulator). We
assume that corrective actions are taken for all events found
“truly bad” in V using the slow simulator, bringing the loss to
zero for such events.

Thus, the residual risk, corresponding to events in Z − V ,
which we neglected to evaluate with the slow simulator, is:

R(V;x) =
∑

z∈Z−V
p(z)L(z;x) (3)

The residual risk R is bounded between:

R(Z;x) = 0 and R(∅;x) = Rmax(x) (4)

The fast proxy provides a total ranking of z ∈ Z yielding
nested subsets V1 ⊂ V2 ⊂ · · · ⊂ Z including an increasing
number of events z, starting from those considered most at
risk by the screening method. We can thus study R(Vi;x)

1For instance, events z might be single line disconnections occurring
with probability p(z) = π(1) or double line disconnections occurring with
probability p(z) = π(2) = π(1)2.

2In the power system community this criterion is similar to the “discarding”
principle of the GARPUR methodology (see [12] Eq. 3, for instance).

3This is a simplification. The real damage of the grid would endure after
contingency z would require computing a full "cascading failure" (as presented
in [13] for example), which is computationally too expensive to calculate
presently, even for a small test case like ours.

as a function of i = rank(z) = |Vi|, where |·| denotes the
cardinal of a set.

In our simulations, the computational cost of the fast proxy
is negligible compared to running the slow simulator. Previous
experiments indicate that a 2000× speed-up is achievable4

Hence the computational cost is proportional to the number of
events |V| identified “potentially at risk” by the neural network
that are actually run by the simulator (no offset for the neural
network computational cost):

rank(z)

|Z|
=
|V|
|Z|

=
C(V)

Cmax
(5)

In Figure 1 we schematically represent a hypothetical case
to illustrate our notations. It is the opposite of a lift curve
used in marketing in which revenue = (1 - risk) is plotted
as a function of investment. We consider a given state of the
system x and study the effect on the residual risk R(V;x)
of various ranking strategies obtained by various screening
methods (i.e. what we referred to as fast “proxy”). The
horizontal axis represents increasing size nested subsets V
of events z “called bad” by a given screening method. Such
events incur a computational cost C(V) to evaluate which of
them are “truly bad” (using the slow simulator). To limit costs
as much as possible, we want R(V;x) to decrease fast, i.e. we
want V to contain as many “truly bad” events as possible. We
represented three cases:
• The blue line is the expected value of the risk for a

random ranking.
• The orange curve is the risk for an “ideal” ranking in

which all “bad” events are ranked first.
• The green curve is the ranking obtained by a given

proposed screening method.
To select between alternative methods, we can either fix a
maximum budget C∗ and compare R(V;x) or set a maximum
risk R∗ and compare C(V).

It is worth noting that estimating R(V;x) is another difficult
aspect of the problem. In this paper, because we use a
benchmark of modest size, we exhaustively compute L(z;x)
for all z with the slow simulator to draw curves such as those
of Figure 1. In practice R(V;x) might have to be approximated
by replacing L(z;x) by an approximate loss L̂(z;x), obtained
using power flows estimated by our “proxy” simulator. This
yields a risk estimator:

R̂(V;x) =
∑

z∈Z−V
p(z)L̂(z;x) (6)

III. ASPECTS SPECIFIC TO THE POWER GRID PROBLEM

Our proposed method relies on previously published
work in [14] and [1] in which we devised a neural-network
trained with "guided dropout", which allows us to predict

4Once the data x are loaded, Hades2, the fast high end simulator used by
RTE makes approximately 300 ms to compute a load flow, first experiment
on neural network show that a they can perform 5900 load-flow per second,
provided that all 6000 grid states are already loaded in memory.
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Fig. 1: Didactic representation of risk as a function of
computational cost. We introduce notations in this schematic
plot (not corresponding to actual numerical simulations). The
black horizontal dash-dotted line represent R∗: the maximum
residual risk we are willing to accept. The Black vertical dotted
line represents C∗ the maximum computational cost we are
willing to pay. We assume for simplifity that all events have
the same probablity, which yields staight segments for the blue
and orange curves.

power flows in power grids for given topology variants while
training only on a small subset of these.

Our new contributions in this paper are (1) to formulate the
detection of "bad" events (= dangerous contingencies) as a
ranking problem; (2) to use our “guided dropout” network as
“proxy” simulator to provide a total ranking of events; and
(3) to evaluate the performance of such ranking in several
scenarios implied by slow or fast changing environments
(distribution of the grid state x). In particular, we examine 2
variants of our “proxy” simulator: one in which training and
test data are identically distributed (implying that either the
distribution of x does not change over time or that the proxy
can be often retrained), and another one where contingencies
never seen during training also need to be ranked (testing the
ability of the method to deal with novelty in real time, a critical
aspect for real time operation in a fast changing environment).

Following the nomenclature of power systems, we recall
that events correspond to line outages and are called “con-
tingencies”. "Bad" events correspond to contingencies after
which at least one power line exceeds its “thermal limit” (a
limit on maximum flow essentially set to prevent the line
from melting). In this paper, we consider only two kinds of
contingencies: “single contingencies”, denoted by zi, repre-
senting the disconnection of a single power line, and “double
contingencies” zi,j representing the disconnection of two lines.

After the power grid suffers a single contingency, we will

say its state is in "n-1" (notice the quotes, this is not an
algebraic formula), namely: “it has lost one in "n" lines”. If
n denotes the number of lines in our power grid, there are
exactly n different "n-1" grid states. Similarly, a power grid
suffering a double contingency will be referred to as being
in a degraded state "n-2". There are exactly n(n− 1)/2 such
"n-2" grid states.

To further elaborate on the specifics of our problem in
application to power systems, we explain in the following
subsections the security criteria used by TSO’s (Transmis-
sion System Operator, responsible of the power grid safety)
and define a baseline ranking method corresponding to the
operational strategy in place in today’s French power grid
management.

A. Risk modeling

Fig. 2: Application-specific risk as a function of cost
(didactic representation). We schematically illustrate the ran-
dom curve (dark blue), baseline curve (light blue) simulating
the "n-1" contingencies first, and the optimal curve (orange)
simulating first all "bad" events.

In this paper, we focus on assessing the "N-2" security, that
is the state of the system ("secure" / "non secure") after each
possible "n-2" OR "n-1". Computing this safety would require
n(n + 1)/2 calls to the high end power grid simulator, since
n computations are required for all "n-1" contingencies (loss
of one line) and n(n− 1)/2 for all "n-2" contingencies (loss
of two lines). In our notations, this means that the set of all
events under consideration is:

Z = "N-2" with |Z| = n(n+ 1)

2
. (7)

We ignore the effect (and the residual risk) associated with
higher order contingencies ("n-3", "n-4", etc.). As a further
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simplification, we assume that all single disconnections zi have
equal probability:

p(zi)
def
= π(1) (8)

and all double disconnection zi,j have equal probability:

p(zi,j)
def
= π(2) = π2

(1). (9)

In reality, such probabilities vary depending on factors such
as line length, pair of line proximity, local climate, weather
variations, etc.

To illustrate the conceptual framework and our notations,
we represent in Figure2 a schematic hypothetical case. Our
goal is to improve over the "N-1" policy, thus our baseline
method (represented as a dark blue line) will be to rank first
all "n-1" contingencies. We define:

V∗ = "N-1" with |V∗| = n, (10)

corresponding to an associated cost and residual risk:

C∗ = C(V∗) and R∗ = R(V∗, x). (11)

The dark blue curve is composed of two straight segments. It
corresponds to the expected value of R(V, x) when ranking
first (in random order) all "n-1" events, then (in random order)
all "n-2" events. Between |V| = 0 and |V| = |V∗| = n, we
have:

R(V, x) = Rmax(x)− α1π(1)|V| (12)

and between |V| = |V∗| = n and |V| = |Z|, we have:

R(V, x) = R(V∗, x)− α2π(2)|V| (13)

where α1 and α2 are the fraction of “bad” "n-1" events
(contingencies) and “bad” "n-2" events respectively.

To compare our proposed method with the baseline, we will
either:
• Evaluate the reduction of residual risk R∗−R(V, x) for
C(V) = C∗, C∗ being the maximum (computational)
cost we are willing to incur, or;

• Evaluate the reduction of cost C∗−C(V) for R(V, x) =
R∗, R∗ being the maximum residual risk we are willing
to incur.

Our proposed method can at best achieve an optimal strategy
(orange curve in Figure2) in which all “bad” events (first all
"n-1" then all "n-2" contingencies) are ranked first. This yields
a first segment with slope −π(1) as a function of |V|, then a
second segment with slope −π(2).

B. Parameters setting

We wanted our simulations to be as close as possible to the
situation of the real French power system.

Expert dispatchers (TSO operators responsible to operate
the grid in security) estimate that a full "N-1" simulation yields
approximately 100 "bad" events (dangerous contingencies).
This means that approximately 1% of the single events should
present a serious risk requiring a corrective action. To respect
the order of magnitude of this proportion of "bad" events, we
used a calibration dataset, which allowed us to set the thermal

limits5 of each line in our test case grid. Having set these
values, we evaluate them on the full "N-1" for 100 different
grid states6, requiring to compute 18 600 load flows. Among
all the "n-1" events investigated, 1.75% were found unsafe in
our simulations and 4.22% for "n-2" events.

To be as close as possible to the French power system,
we also calibrated the failure probabilities π(1) and π(2). We
wanted that the ratio between the risk due to single failures
and the one due to double failure to be constant across grid
sizes, this leads to consider:

π(1) ≈ 5.4 10−3 (14)

π(2) ≈ 2.9 10−5 (15)

For more information, the section V of the supplemental
material5 shows in detail how we obtained these probabilities.

IV. PROPOSED METHODOLOGY

In this section, we explain how we rank the contingencies
z with respect to their estimated severity L̂(z;x) for a given
system state x. L̂(z;x) is provided by an artificial neural
network, trained on simulated data generated using a high-end
load flow simulator.

Consider a fixed grid state x and a given contingency z, we
denote by fi the flow, computed with the high-end simulator,
on the inth line of grid x after contingency z occurs, and by
f̄i the thermal limit for this line.

We propose to first train a neural network with “guided
dropout”, as describe in [1] to approximate rapidly the power
flow for the given grid state x and contingency z. We will
denote by f̂i the flow predicted by our proxy (in this case our
neural network) for the inth line of the power grid.

It has been observed that neural network tend to be "over
confident" in their predictions (see for example [15]). This
overconfidence could lead to a bad ranking in practice with
dramatic effects. We propose to calibrate the score of our
neural network taken into account a fixed (yet calibrated)
uncertainty by assuming:

∀i, (fi − f̂i) ∼ N (0, σi) (16)

where σi represents the model uncertainty for line i. We
calibrate the vector σ (of dimension n) using a calibration set
distinct from the training set the neural network was trained
with and also distinct from the final test set we use to evaluate
performance. On this calibration set, we compute the true
values fi, using the high-end simulator, and the predictions
f̂i coming from our proxy (neural network). Then, σi is set
to:

σi
def
=

1

number of simulations
.
∑

simulations

(f̂i − fi)2 (17)

5See supplemental material at https://github.com/BDonnot/acpgunn for a
detailed value of the thermal limits used.

6See the section V-A for a detailed description of this dataset.

4

https://github.com/BDonnot/acpgunn


These σi’s are then used to compute the scores L̂i that a
given line is above its thermal limit as:

L̂i
def
= 1− Fσi

(f̄i − f̂i) (18)

where Fσi
is the cumulative density function of the Normal

law with mean 0 and variance σi.
This gives us a score for each power line. For our problem,

a grid is said to be “non secure” after contingency z, if at
least one of its line is above its thermal limit. The score of
the power grid, in state x after contingency z, is then obtain
with:

L̂(z;x)
def
= max

1≤i≤n
L̂i(z;x) (19)

We now have defined L̂(z;x). If all contingencies z were
equiprobable (π(1) = π(2)), we could use this approximation
for ranking. In practice, some events occur more often that
others and therefore must be prioritized accordingly.

The first thing we tried was to rank directly the con-
tingencies z with respect to their relative cost p(z)L̂(z;x).
This worked, but this order tends to be really conservative:
all the single contingencies were ranked first. This can be
explained. There is a 103 relative factor between π(1) and
π(2), so for a double contingency zi,j to be simulated before a
single one zi, this would mean that L̂(zi,j ;x) > 103.L̂(zi;x).
But, we made various hypothesis, in particular that the error
on the flow where normally distributed (see equation 16)
which is not the case in reality. In general we have then
L̂(zi;x) − L(zi;x) >> 10−3. Even if the contingency zi is
harmless (L(zi;x) = 0), this would imply L̂(zi;x) > 10−3,
so this single contingency would be ranked before any "n-2"
contingency, which can be different in reality.

To remedy this problem, we tried various weighting
schemes, and found that scaling the “n-1” event relatively to
the “n-2” events with the logarithm of π(1)/π(2) leads to the
best results in almost every situation (z;x).

To wrap up, all the grid states and contingencies are sorted
with respect to their "scores" ŝ(z;x) defined as:

ŝ(z;x)
def
=

L̂(z;x)× log

(
π(1)

π(2)

)
if z is a single contingency

L̂(z;x) otherwise
(20)

V. EXPERIMENTS

In this section we report extensite experiments validating
our proposed methodology, using a standard grid benchmark
(the 118 bus grid of the matpower library [16], used for
example in [8]). We begin by explaining our data generation
methodology to create a dataset with over 2 million samples.
Then we report results showing a 50 fold speedup to achieve
the same residual risk currently obtained with the “N-1”
policy. We also show how the remaining computational time
can be exploited to significantly reduce the residual risk by
simulating higher order contingencies (for example double
contingencies).

A. Datasets generation

We conducted systematic experiments on small size bench-
mark grid (the 118 bus grid) from Matpower [16], a library
commonly used to test power system algorithms [17].

We generated 500 different grid states varying the injec-
tions x of the initial grid given in Matpower. We used our
knowledge of the French grid to mimic the spatio-temporal
behavior of real data [1] when simulating our new datasets. For
example, we enforced spatial correlations of productions and
consumptions and mimicked production fluctuations, which
are sometimes disconnected. Target values were obtained by
computing resulting flows in all lines with the proprietary AC
power flow simulator Hades2.

Training and validation sets. On these 500 test cases, we
then computed, still using the high-end simulator Hades2, the
full "N-1" (making 500 × 186 = 93.000 load flow compu-
tations). We also simulated k = 5000 load flows randomly
selected among the 186×185

2 = 17 205 possible "n-2" double
contingencies. This last dataset counts then 2 500 000 rows.
We split this dataset in two subsets: 75% for training and
25% for validation/model selection i.e. for finding the best
architecture and hyper-parameters of the neural networks. The
detailed architecture tested can be found in the supplemental
material at https://github.com/BDonnot/acpgunn.

Calibration and test sets. For the calibration dataset, used
to fit the error of the model σ, we simulated 75 different
grid states x, and the full "N-1" and "N-2" for all of these
simulations. The test set is composed of 25 grid states, and
their full "N-1" (all single contingencies) and "N-2" (all double
contingencies) associated dataset.

B. Neural network architecture

In this part, we will explain more about the neural network
architecture used for the experiments, the way we trained it as
well as the method used to find the so called "meta parameters"
that gives the best results.

The used architecture (introduced in [1]) allows fast assess-
ment of power flows given injections (productions and con-
sumptions). We used this architecture that we called "guided
dropout" as a fast proxy of the power flows simulator. The
main idea of this purposely designed architecture is to adapt
the architecture of the neural network to the topology of the
grid. For example, we switch on/off hidden unit of the neural
network depending on the sate off a given line in the power
grid (connected / disconnected). We showed in this previous
paper, that this architecture allows to super-generalize, eg. even
when trained on a small grid configurations, it is able to predict
flows properly to unseen grid states.

To present more this architecture we consider the neural
network is a function F with input x, l layers each counting u
units, and output y (the flows ins our cases), and non linearities
φ(·). We have, for layer k ∈ {1, . . . l}:

y(k) = φ(W (k).x(k)) (21)

where y(k) is the output of layer k and x(k) its input (x(k) =
y(k−1)), and . denotes the matrix multiplication. For a sake
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of simplicity, bias are not written. The "guided dropout" (see
[1]) consist in "masking" some part of the output of certain
layers depending on external condition (here the state of a line:
connected / disconnected).

In our power system example, we decided to "guided mask
out" the layer k of our neural network. We then define (once
and for all) for each power line i a masking vector m(i) of
0’s and 1’s. The equation for layer k would become:

y(k) = m� φ(W.x(k)) (22)

with � denote the adamar product (element wise multiplica-
tion), and m is a mask build from the m(i)’s with:

m =


identity if both li1 and li2 are connected

m(1) if li1 is disconnected and li2 is connected

m(2) if li2 is disconnected and li1 is connected

m(1) �m(2) if both li1 and li2 are disconnected
(23)

This can be viewed as an adaptation of the neural network
configuration, depending on the power grid topology. The
"presence / absence" of power line will have a direct impact
on the "presence / absence" of unit in some layers.

To train the neural networks, we use the "adam" optimizer,
variant of the stochastic gradient descent first introduced in
[18]. All the neural networks have been trained with the same
number of minibatches. This number of minibatches have
been calibrated such that the error on the validation set stop
decreasing. Among all the meta parameters, we use a cross
validation scheme to find the best combination of learning
rate, number of layer and number of units per layer. The "relu"
(rectifier linear unit) was used as the non linearity, except in
the last layer. More details about the architecture used and the
meta parameters can be found in the supplemental material at
https://github.com/BDonnot/acpgunn.

We trained the same architecture according to two schemes.
The first one "Guided Dropout (trained n-1 only)" is trained
only with single contingencies. During the training we never
show input/output pairs coming from a power grid having
suffered 2 contingencies. We do that to evaluate the robustness
to the method to the input distribution: how the model will
generalize facing unseen situations. In the second training
scheme refered as ""Guided Dropout", we suppose that the
distribution of the training set is really close to the one of the
test set. This is a viable hypothesis in practice if the neural
network can be retrained very often.

C. Results

Figures 3 and 4 represent the lift curves including:
• the random ranking (light blue curve);
• the baseline ranking (dark blue curve) corresponding to

ranking the “n-1” events first, as TSO operators would
do;

• the ideal ranking (orange curve) in which the “bad” “n-
1” events come first followed by the “bad” “n-2” events,
and;

• the ranking for two different neural networks (green
curves).

– the plain curve represents the ranking for a neural
network trained on the entire training set, which
includes all "n-1" and randomly selected "n-2" con-
tingencies; training and test data are similarly dis-
tributed.

– the dashed curve represents the ranking for a neural
network trained on the "N-1" dataset only i.e. no
double contingency is used for training. This neural
network therefore exhibits “super-generalization” to
multiple contingencies. Such change in distribution
of data may occur in actual grid operation situations
and the performances obtained are encouraging.

The curves represented in Figure 3 are computed for a grid
state x corresponding to a worse case scenario, yielding the
highest loads of our dataset. This simulates “peak demand”,
when loads are ' 40% higher than for the reference case.
Studying such extreme cases validates best our approach.

As we can observe in Figure 3, both neural networks
perform better than the emulation of TSO operator ranking
in every situation. Remarkably, even the neural network that
has never seen double contingencies during training is capable
of ranking all single AND double contingencies quite well.
This is an encouraging result indicating that our methods
(called "guided dropout") is capable of “super-generalization”
a form of transfer learning to cases of contingencies never
seen before.

TABLE I: Comparison of methods on the whole test set
(mean over all x cinsidered ± one standard deviation). Gini
coefficient (between 0 and 1, 1 is best), residual risk R(V∗)
for a maximum computational budget V∗and computation cost
C(R∗) ensuring that the risk residual risk remains below R∗

(in test data). For both R(V∗) and C(R∗), smallest is best.

Operators G. Dropout
trained n-1 only

G. Dropout Ideal

Gini coeff. 0.41
±0.04

0.52
±0.04

0.95
±0.01 1.00

R(V∗)
Rmax

0.59
±0.04

0.58
±0.04

0.46
±0.03

0.44
±0.03

C(R∗) 186 3
±2

3
±2

3
±2

The table I presents the Gini coefficient (normalized area
under lift curve; an index between 0 and 1, highest is best)[19]

as well as the residual risk at a fixed computational budget
R(V∗), and the cost for achieving a residual risk below
R∗. Our neural network method is always better that the
TSO operator strategy, with respect to all metrics. The most
promising results of Table I is in the 3rd row. Our neural
networks perform as well as the optimal strategy. On average,
we need to simulate only 3 − 4 contingencies to achieve a
residual risk below the risk taken by operators. This is at the
sale of this problem a speedup by a factor of more than 50.
Given that we scale the ratio of "bad" contingencies to be
representative of the French power grid, we expected speed-
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Fig. 3: Contingency ranking using two neural networks. The first network (plain line) is trained with both “n-1” and “n-2”
contingencies, and it is tested on a situation not seen during training. The second neural network (dashed green line) is trained
only on the "n-1" data: it has seen during training only "single contingencies" (a small fraction of all the contingencies it is
tested on).

Fig. 4: Zooming on the contingency ranking. This figure corresponds to zooming the yellow rectangle in the previous figure,
focusing on the region between |V| = 0 and |V| = n in which we hope to improve over the current “N-1” TSO security policy.
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up in the same order of magnitude (10 fold improvement) for
the French Extra High Voltage powergrid. We can achieve that
with both neural networks, even the network trained only on
“n-1” data! Testing on new contingencies only improve results,
as seen on Figure 3. Thus, the time saved with our method
can be used to further reduce the residual risk by investigating
more candidate “contingencies”.

To sum up, both neural networks are capable of correctly
ranking first all "bad" single contingencies, and single contin-
gencies are ranked before double contingencies. As in every
ranking problem, there is a tradeoff between the hit rate
(detecting true “bad” contingencies) and the false alarm rate
(falsely diagnosing harmless contigencies as “bad”). From the
point of view of ensuring the security of a power grid, the
severity of both types of errors is not symmetric. It is far
more important to have a high hit rate than a low false alarm
rate. The Gini coefficient does not capture such imbalance
but C(R∗) does. What is practically important to ensure the
adoption of the method by the power system community is
that the residual risk curve R(V) decreases very fast, ensuring
that the “hit rate” be high initially. Remarkably, both neural
networks rank first the “bad” “n-1” contingencies., then chose
among the worst “n-2” contingencies. The neural networks
privileged a high“hit rate” over lowering the “false alarm rate”,
a risk adverse behavior, which is expected to operate power
systems in security.

VI. CONCLUSION

In this paper, we proposed a novel approach to rank the
most dangerous contingencies in power grids (namely those
leading to lines exceeding their thermal limits and posing
problems of grid security). This approach is quite general:
it can rank single contingencies (one line disconnection) or
multiple contingencies (two or more lines disconnected), with
different probabilities of occurring. In this paper we studies
the case of single and double contingencies.

Our methodology in a nutshell can be summarized as
follows: (1) Train a neural network to mimic a load flow
simulator. (2) Use it (on new test data) to evaluate how
close each line it to its thermal limits.(3) Rank contingencies
accordingly in decreasing order of severity. Our simulations
results on a standard benchmark case are quite promising:

First, with this approach, we can accurately identify the
most dangerous contingencies. In all cases, we could use a
computational budget of only 2% of the “N-1” policy budget
(the strategy presently delyed in production).

Second, this method is robust to changes in distribution
between training and test time. Training a neural network with
only 0.5% of all possible contingencies (single contingencies)
is enough to achieve a better performance than today’s "N-1"
criterion.

We evaluated that this method is scalable to the full Ultra
High Voltage powergrid, and may result in speed-ups by a
factor of 2 000 or more in power flow calculations.

Although our approach was developed for power systems
and demonstrated on a particular case study, it is rather generic

and could easily be extended to other domains in which
risk can be evaluated by a high-end but slow simulator and
simulations must be prioritized for efficiency reasons.
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