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Abstract

The present study is devoted to the generalization of the Nonuniform Transformation Field

Analysis (NTFA), a model-reduction approach introduced by the authors. First, the local fields of

internal variables are decomposed on a reduced basis of modes. Second, the effective (average)

dissipation potential of the phases is replaced by accurate approximations. The reduced evolution

equations of the models, in other words the homogenized constitutive relations, can be entirely

expressed explicitly in terms of quantities which are pre-computed “off-line”. The example of

creep of polycrystalline ice is used to assess the accuracy of the models. Their predictions, both

the overall response and the local response, are shown to be in good agreement with full-field

simulations with a significant speed-up.

1 Reduced-order models

A common engineering practice in the analysis of composite (or polycrystalline) structures is to use

effective or homogenized material properties instead of taking into account all details of the individual

phase properties. Unfortunately when the individual constituents are nonlinear, the exact description

of the effective constitutive relations requires the determination of the local fields (at the microscopic

scale). For structural computations, the consequence of this theoretical result is that the two levels

of computation, the level of the structure and the level of the unit-cell, remain intimately coupled.

The nested resolution of these coupled problems (known as FE2 analysis) is so far limited by their

formidable size.

It is therefore quite natural to resort to model-reduction techniques achieving a compromise be-

tween analytical approaches, which are costless but often very limited by nonlinearity, and full-field

simulations which resolve all complex details of the exact solutions, but come at a very high cost. This

is the aim of reduced-order modelling (ROM) in general ( [1, 2]). However, ROM is often understood
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as a way to reduce the cost of a numerical simulation. In homogenization problems, the objective is not

only to reduce the computational cost, but also to arrive at an explicit constitutive model, where internal

variables are identified and evolution equation for these internal variables are explicitly derived. The

model which is reduced is not only the computational model, but also and primarily, the constitutive

model.

General procedures to achieve the model reduction do exist, at least for the computational model.

However, without a proper physical insight in the problem to be reduced, it is likely that these general

procedures will not deliver satisfactory answers. The model initially proposed by the authors ( [3])

and further developed in [7–9] and by other authors ( [4, 5]) is limited in scope to materials with a

microstructure, comprised of constituents with a certain type of constitutive relations involving internal

variables. In turn, the approximations on which the model is based are physically sound in this context.

The three main ingredients of the model are as follows.

1. Experiments and numerical simulations evidence the patterning of the local fields induced by

the presence of a microstructure. This patterning reveals the existence of a few microscopic

mechanisms by which the composite deforms.

2. When the mechanical response of the individual constituents is governed by two potentials, the

free-energy potential corresponding to reversible effects and the dissipation potential correspond-

ing to dissipative effects, the overall response of the composite is also governed by two effective

potentials which are the average of the local potentials. However deriving an exact expression

for these two potential is a difficult task, which cannot be achieved in a closed form when the

constituents are nonlinear.

3. Recognizing that the problem of finding an averaged potential is similar to that encountered in

homogenization of nonlinear composites with a single potential ( [10]), it is quite natural to

transpose some of the techniques of nonlinear homogenization to the present context of ROM.

1.1 Individual constituents

The composite (or polycrystalline) materials considered in this study are comprised of individual con-

stituents undergoing partly reversible and partly irreversible transformations modelled by a finite num-

ber of internal variables α. It is further assumed that the stress derives from a free-energy function

w(ε,α) and that the evolution of the variables α is governed by the driving forces associated with α.

It is often the case (but not always) that this last relation can be expressed with the help of a dissipation

potential ϕ and the constitutive relations take the compact form,

σ =
∂w

∂ε
(ε,α),

∂w

∂α
(ε,α) +

∂ϕ

∂α̇
(α̇) = 0. (1)

1.2 Effective potentials

A representative volume element (r.v.e.) V of the material is comprised of phases occupying domains

V (r). The spatial averagings over V and V (r) are respectively denoted by 〈.〉 and 〈.〉(r). Each indi-

vidual phase is governed by the above differential equation with potentials w(r) and ϕ(r) in V (r). The
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r.v.e. V is subjected to a path of macroscopic strain ε(t) and periodicity conditions on ∂V . The local

problem to be solved to determine the local fields σ(x, t), ε(x, t) and α(x, t) consists of a generalized

thermoelastic problem (2), in which the field of internal variables α(x) is fixed,

σ(x, t) =
∂w

∂ε
(x, ε(x, t),α(x, t)), div σ(x, t) = 0,

ε(x, t) = ε(t) + 1
2
(∇u∗(x, t) +∇u∗T (x, t)), u∗ periodic on ∂V,

σ.n anti-periodic on ∂V,





(2)

coupled with the differential equation (12) at every point x in the volume element. The homogenized

(or effective) response of the composite along the path {ε(t), t ∈ [0, T ]} is the history of average stress

{σ(t), t ∈ [0, T ]} where σ(t) = 〈σ(x, t)〉. It can be shown that the overall response of the composite

is governed by two potentials

σ =
∂w̃

∂ε
(ε,α),

∂w̃

∂α
(ε,α) +

∂ϕ̃

∂α̇
(α̇) = 0, w̃(ε,α) = Inf

〈ε〉=ε

〈w(ε,α)〉 , ϕ̃(α̇) = 〈ϕ(α̇)〉, (3)

where unfortunately α is a field (infinitely many internal variables).

1.3 Reduced variables and reduced potentials

In order to reduce the number of macroscopic internal variables, and inspired by numerical simulations

and experiments which clearly show the patterning of the plastic strain field in the volume element,

the Nonuniform Transformation Field Analysis (NTFA) proposed by Michel and Suquet [3] is based

on a decomposition of the fields of internal variables on a finite set of pre-determined shape functions

(NTFA decomposition)

α(x, t) =
M∑

k=1

ξ(k)(t) µ(k)(x), (4)

where the fields µ(k)(x) are the modes and the ξ(k) are the reduced variables. The modes have the

same tensorial character as the internal variables α. To avoid a possible indeterminacy in the definition

of the reduced variables ξ(k), it is further assumed that the modes µ(k) are linearly independent fields.

How the modes are generated is recalled in section 1.4. Using the decomposition (4) into the varia-

tional definition (3) of the two effective potentials, an approximation of the evolution equations for the

reduced variables ξ is given by

σ =
∂w̃

∂ε
(ε, ξ),

∂w̃

∂ξ
(ε, ξ) +

∂ϕ̃

∂ξ̇

(
ξ̇
)
= 0, w̃(ε, ξ) = Inf

〈ε〉=ε

〈w(ε,α(ξ))〉 , ϕ̃(ξ̇) =
〈
ϕ(α̇(ξ̇))

〉
,

(5)

where α(ξ) is given by the NTFA decomposition (4). In many cases of interest, the effective free-

energy w̃ can be expressed in terms of pre-computed quantities and the difficulty lies in the evaluation

of the effective dissipation potential ϕ̃ in terms of ξ̇ without computing “on-line” the local fields α̇.
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1.4 Snapshot POD

The modes µ(k)(x) are generated by the snapshot Proper Orthogonal Decomposition (POD) method

along some training loading paths, whose choice depends heavily on the application that the user has

in mind ( [6]). Along a given training path, T snapshots of the appropriate internal variable fields

computed by the full-field method are stored at different time steps. Then, following the classical

POD procedure, the correlation matrix g of these snapshots is formed and its eigenvalues λ(k) and

eigenvectors v(k) are computed. The actual modes are expressed as a combination of the eigenvectors

as

g(kℓ) =
〈
θ(k) : θ(ℓ)

〉
, µ(k)(x) =

T∑

ℓ=1

v
(k)
ℓ

θ(ℓ)(x). (6)

A main interest in the snapshot POD method lies in the fact that the quantity of relevant information (its

correlation with the set of snapshots) contained in an eigenvector v(k) is expressed by the magnitude

of the corresponding eigenvalue λ(k). This property is used to truncate the set of modes, retaining the

most relevant ones ( [6]).

1.5 Approximate effective potentials and nonlinear homogenization

The “reduced kinetic” equations of the model consist of (5). In order to arrive at a closed form expres-

sion of these equations one has to compute explicitly the effective potentials w̃ and ϕ̃. This is the most

difficult part of the procedure which requires additional physical and mathematical simplifications.

The first simplification is that the free-energy function w of the individual constituents is assumed

to be quadratic with respect to ε and α (when this is not the case a work-around has been proposed

in [7] and [8]). Then the thermoelastic problem (2) becomes linear, its solution can be expressed by

superposition as

σ(ε, ξ,x) = L(x) : A(x) : ε+
M∑

k=1

ρ(k)(x) ξ(k), (7)

where A is the elastic strain localization tensor and ρ(k) are elastic fields generated by the modes µ(k).

Using the decomposition (7), the effective free-energy w̃ can be expressed explicitly in terms of ε and

ξ (see [7, 8]).

Expressing the effective dissipation potential ϕ̃ is an even more difficult task. Fritzen and Leuschner

[4] have proposed an hybrid formulation making use of the dual potential ψ̃ = ϕ̃∗. Their definition of

ψ̃

ψ̃(ε, ξ) = 〈ψ(σ(ε, ξ)〉, σ given by (7), (8)

is not rigorously equivalent to the exact definition by duality (as shown in [7]), but is a fairly accurate

approximation of it.

But still the cost of evaluating 〈ψ(σ)〉 is very high, since it involves the evaluation of the local

field σ(x) from (7), followed by the evaluation of ψ (σ(x)) which is a nonlinear local function of σ,

which is then averaged. An additional (and essential) step is achieved by approximating the average

of the force potential ψ. For the sake of simplicity, attention is restricted here to polycrystals where
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the phases V (r) are the grains with characteristic function χ(r)(x), volume fraction c(r) and with slip

systems m
(r)
s . The potential ψ(σ) can be expressed as

ψ(σ,x) =
N∑

r=1

χ(r)(x)
S∑

s=1

ψ(r)
s
(τ (r)

s
(x)), τ (r)

s
(x) = σ(x) : m(r)

s
(x). (9)

Two approximations of 〈ψ(σ)〉 have been investigated so far. The first approximation consists in

replacing ψ by its tangent second-order expansion (TSO) in each individual phase ( [7, 8]):

ψ̃(ε, ξ) ≃ ψ̃TSO(ε, ξ) =
N∑

r=1

c(r)
S∑

s=1

[
ψ(r)
s
(τ (r)

s
) +

1

2

∂2ψ
(r)
s

∂τ 2
(τ (r)

s
) C(r)(τ (r)

s
)

]
, τ (r)

s
=

〈
τ (r)
s

〉(r)
,

(10)

where C(r)(τ
(r)
s ) =

〈
(τ

(r)
s − τ (r)

s
)2
〉(r)

denotes the quadratic fluctuations of τ
(r)
s over grain (r). The

second approximation was proposed in [9], based on numerical integration and following and extending

on Ponte Castañeda “fully optimized” method [11]. In its simplest version it consists in replacing ψ̃ by

ψ̃FO(ε, ξ) =
N∑

r=1

c(r)
S∑

s=1

1

2

(
ψ(r)
s
(τ̌ (r)

s
) + ψ(r)

s
(τ̂ (r)

s
)
)
, τ̌ (r)

s
=

〈
τ (r)
s

〉(r)
− C(r)(τ (r)

s
),

τ̂
(r)
s =

〈
τ
(r)
s

〉(r)

+ C(r)(τ
(r)
s ).

(11)

2 Sample example: creep of polycrystalline ice

Ice, as a single crystal, is an HCP material with 12 slip systems (3 basal, 3 prismatic and 6 pyramidal).

The single crystal plasticity model used in the present example is that proposed in [12]. This model

accounts for both kinematic and isotropic hardening. A creep test on polycrystalline ice is simulated.

The representative polycrystalline aggregate used in the full-field simulations is shown in Fig. 2a.

Three full-field simulations were performed with different material data. The first data set is that iden-

tified in [12]. The other two data sets correspond to different values of the latent hardening parameters

and have been chosen to highlight the sensitivity of the response to the hardening parameters ( [8]).

The predictions of the two NTFA models for the overall response of the polycrystalline aggregate with

these three different data sets are compared in Figs 1a and 1b with full-field simulations. The agree-

ment between the NTFA predictions and the full-field simulations is seen to be slightly better in Fig.

1a than in Fig. 1b. This is due to the fact that the modes used in the NTFA simulations of Fig. 1b are

those determined with the first set of material parameters. However, the plots in Fig. 1b show that the

modes determined with the first set of material parameters can be used with other parameters and still

capture correctly the influence of these parameters.

The activity of the basal slip systems, the most active ones, as found from the full-field simulation

with the first set of material paramaters and as obtained by post-processing the results of the NTFA

models are compared in Figs 2b-d at the end of the creep test. Regarding the gain in computational

time, the acceleration provided by the NTFA models is of the order of 102 for both models. The

NTFA-FO model is however more appropriate for porous materials (Michel and Suquet [9]).
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a) b)

Figure 1: Creep of polycrystalline ice. Comparison between the full-field simulations (black solid line)

and the predictions of the NTFA-TSO model (dotted-dashed blue line) and of the NTFA-FO model

(dashed red line) for the response of the polycrystalline aggregate. a Material parameters identified

in [12]. b Influence of the latent hardening parameters.

Volume element

a)

Full-field

b)

NTFA-TSO

c)

NTFA-FO

d)

Figure 2: Creep of polycrystalline ice. a Configuration with 500 grains used in the full-field simu-

lations. b-d Snapshots of the activity of the basal slip systems at the end of the creep test. Material

parameters identified in [12]. Comparison between the full-field simulation and the predictions of the

NTFA models. b Full-field. c NTFA-TSO. d NTFA-FO.
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