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Highlights

 A new method to interpret LOPC counts was developed.

 The environmental conditions and the mechanisms resulting in detritus formation were 

identified.

 LOPC derived indicators were used successfully to determine the contribution of 

detritus in total counts.

 Thresholds for these LOPC indicators are used to define different situations with 

varying contribution of detritus. 

 The method was applied to worldwide dataset and showed consistent results.
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33 Abstract

34 Recent technical advances in laser-based systems to measure zooplankton distribution have opened 

35 new perspectives in ecological and behavioral studies by significantly improving the horizontal 

36 and vertical sampling resolution, providing information on zooplankton patchiness and on the 

37 influence of small scale physical processes. The application of laser-based systems also led to new 

38 challenges on the identification of organisms vs. particulate matter. In areas with high detritus 

39 abundances, zooplankton abundances might be overestimated by counting plankton and detritus 

40 together. We investigated the contribution of detritus in Laser Optical Plankton Counter (LOPC) 

41 data collected during two cruises on the continental shelf of the Gulf of Lion (NW Mediterranean 

42 Sea). The study area was characterized by several types of ecoregions owing to the influence of 

43 winds, freshwater runoff and intrusion of oligotrophic waters from offshore. We identified the main 

44 mechanisms leading to the formation of detritus as a function of environmental conditions and 

45 developed a method to assess the contribution of detritus in LOPC counts based on the proportion 

46 of large particles (multi-element plankton, MEPs). Highest percentages of detritus (up to 90 % of 

47 the counts, mainly particulate organic matter from various sources) were found in stratified 

48 conditions associated with relatively high chlorophyll a concentration (chl-a; ca 2 mg m-3). 

49 Discontinuities in density profiles alone also resulted in peaks of particles concentrations. We 

50 suggested a threshold of 2 % of MEPs in LOPC counts above which the LOPC is most likely 

51 counting more detritus than organisms. This easy check of the detritus contribution to total LOPC 

52 counts was applied to datasets from different marine ecological situations (glacial input, clear 

53 water, productive shelf) and gave successful results in different biogeographical regions (e.g. high 

54 latitude and tropical habitats).
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58 1. Introduction

59 Owing to the high variability of physical processes at small scales and their impacts on biological 

60 processes, it is necessary to sample plankton at high resolutions for resolving community structure 

61 and dynamics. This issue is particularly critical in coastal areas which are the place of nursery and 

62 feeding area of many fish, and recent programs such as the MERMEX project (Marine Ecosystems 

63 Response in the Mediterranean Experiment; Mermex Group, 2011) called for better evaluation of 

64 the pelagic fish habitats in productive coastal areas. Based on optical technologies, several optical 

65 sensors have been developed in the recent years for high resolution sampling (Benfield et al., 2007). 

66 The in-situ sensors are generally based on imaging technologies with relatively low image 

67 resolution (e.g. Video Plankton Recorder, Underwater Video Profiler) or based on the transmission 

68 or scattering of a laser beam (e.g. Laser Optical Plankton Counter, Laser In-Situ Scattering and 

69 Transmissometry). These optical systems not only provide fine resolution vertical profiles but can 

70 also sense fragile particles that are generally destroyed when sampling with a net (González-Quirós 

71 and Checkley, 2006). Laboratory sensors are mainly based on the high resolution imaging of 

72 samples collected with a net or bottles (e.g. FlowCam, ZooScan). Image-based systems allow for 

73 the taxonomic identification of organisms up to a certain degree, while the laser-based systems 

74 mainly provide sizes and abundances of the organisms studied. The newly developed holographic 

75 technology is an exception, but is more similar to in-situ microscopes facing challenges of sampling 

76 volume and data processing (Davies et al., 2011; Talapatra et al., 2013). Laser-based systems 

77 measure particles in a wide range of sizes and at high frequency but do not allow to distinguish 

78 between organisms and particulate matter. The contribution of detritus to counts can be significant 

79 in highly productive regions such as fronts, estuarine systems or upwelling areas, so that the size 

80 structure of the plankton community cannot be estimated by abundances derived from in-situ laser-

81 based sensors (Zhang et al., 2000; Ohman et al., 2012; Schultes et al., 2013; Basedow et al., 2014; 

113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168



4

82 Trudnowska et al., 2014). Therefore, in studies focusing on the living part of the spectrum, it is 

83 necessary to estimate the proportion of detritus in the total particle pool.

84 The Laser Optical Plankton Counter (LOPC, Rolls-Royce, England) measures particles and 

85 mesozooplankton organisms of sizes between 100 μm and about 3 cm equivalent spherical diameter 

86 (ESD) (Herman et al., 2004). It can continuously profile along transects when it is mounted on 

87 profiling systems (MVP, profiling float, Acrobats etc., see for example Ohman et al., 2012; 

88 Checkley et al., 2008), or can sample vertical profiles when fixed on a net frame or a rosette cage. 

89 When particles pass through the tunnel and cross the laser beam, the attenuation of the light 

90 intensity is measured by one or several of the 35 photodiode elements, each with 1 mm width. The 

91 digital size of a particle is inferred from the intensity changes in shadowed elements, which is 

92 converted to ESD. If a particle is recorded by at least 3 diode elements, it will be considered as a 

93 multi-element plankton (MEP), in contrast to single element plankton (SEP). In addition to the 

94 ESD, more information about the MEPs is provided by the LOPC, allowing to compute an 

95 attenuance index (AI). This index has been successfully used to separate detritus and living 

96 organisms when targeting large-sized copepods (> 1.5 mm ESD) based on their opacity (Checkley 

97 et al., 2008; Gaardsted et al., 2010). For the SEPs, which constitute the dominant part of LOPC 

98 counts in the smaller size ranges, no additional information on the transparency of particles is 

99 provided, making a direct separation of organisms and detritus impossible. Lately, methods to 

100 separate organisms and detritus were proposed, either based on the lognormal distribution expected 

101 for size spectra of non-living particles (Petrik et al., 2013; Marcolin et al., 2015) or based on an 

102 independent estimation of the size distribution of living organisms from synchronous zooplankton 

103 net tows samples (Vandromme et al., 2014). 

104 The proportion of detritus to total LOPC counts varies regionally and seasonally (Schultes and 

105 Lopes, 2009; Gaardsted et al., 2010; Ohman et al., 2012; Petrik et al., 2013; Trudnowska et al., 
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106 2014), but the environmental factors influencing this have not been studied in different regions 

107 making a general application of thresholds difficult. Here, we use data from winter and spring and 

108 from different ecoregions in the Gulf of Lion that are characterized by specific environmental 

109 conditions depending on bathymetry, hydrodynamics, atmospheric conditions and freshwater 

110 discharge volumes (Espinasse et al., 2014; hereafter E2014; Mermex Group, 2011), to study how 

111 environmental conditions influence the LOPC derived indicators AI and %MEPs, and how these 

112 reflect the proportion of detritus in LOPC derived abundance. We then apply the thresholds 

113 obtained from the Gulf of Lion to a broad range of ecological regions (e.g. polar areas, fjords, open 

114 ocean, continental shelf). Our objective is (1) to define the contribution of detritus to particles 

115 counted by in-situ laser-based sensors based on environmental parameters and on LOPC derived 

116 indicators and (2) to develop thresholds for these indicators to assess the viability of LOPC as a 

117 zooplankton counter.

118

119 2. Materials and Methods

120 The study site is the Gulf of Lion, in the northwestern Mediterranean Sea, which has a large 

121 continental shelf up to 80 km wide and a mean depth about 100 m. The hydroclimatic conditions 

122 in the gulf are characterized by strong northerly winds, high freshwater input mainly from the 

123 Rhône River with an annual mean flow of 1721 m3 s-1 (Ludwig et al., 2009) and the Northern 

124 Current (also called Liguro-Provencal Current) running along the continental slope. This results in 

125 several types of ecoregions characterized by specific environmental conditions (E2014).

126 Two research cruises were conducted on board the RV Téthys II, one in spring from 25 April to 2 

127 May 2010 (COSTEAU 4) and one in winter from 23 to 27 January 2011 (COSTEAU 6). Each 

128 cruise consisted of the same six transects from coast to offshore on the shelf with a total of 135 

129 stations sampled with a CTD Rosette system equipped with a LOPC. At 78 out of these 135 
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130 stations, vertical net tows were conducted within 10 to 30 min of the CTD-LOPC casts using a 60-

131 cm diameter Bongo frame equipped with two 120 μm mesh nets. Net samples were used as the 

132 reference for zooplankton abundances allowing the estimation of the proportion of detritus in 

133 LOPC derived abundance. The LOPC has a flow-through tunnel with an opening of 7 × 7 cm and 

134 was integrated with a data logger and a micro-CTD (Applied Microsystems Ltd, Canada). The 

135 sampling rate of LOPC was 2 Hz resulting in a vertical resolution of 0.5 m at 1 m s-1 lowering 

136 speed.

137

138 2.1. Environmental conditions

139 Based on the same cruises, three habitats were defined, characterized by physical parameters such 

140 as sea surface salinity, sea surface temperature, bottom potential density, mixed layer depth and 

141 stratification index, and biological conditions such as chl-a concentration, particle abundances for 

142 3 size classes and the slope of the normalized biomass size spectrum (NBSS) (Table S1, E2014). 

143 Habitat #1 was in the near shore area with shallow waters, steep NBSS slope and high chl-a 

144 concentration; habitat #2 was representative of the zone of dilution of the Rhône plume with 

145 stratified waters and flat NBSS slope; and habitat #3 was on the continental shelf with deep mixed 

146 layer depth, lowest particle concentrations and intermediate NBSS slope.

147

148 2.2. LOPC data processing

149 Counts and sizes of particles sampled were extracted from the LOPC downcast profiles between 2 

150 m depth below the sea surface and 5 m above the sea bottom. Abundance estimates by the LOPC 

151 are dependent on the correct estimation of sampled volume (hereinafter SV). SV can either be 

152 estimated from flow speed calculated using the manufacturers equation or estimated based on the 

153 depth increment acquired together with LOPC counts. Using the manufacturers equation requires 
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154 that enough particles flow through the sampling tunnel. We used the manufactures equation when 

155 the number of particles between 150 and 300 μm was > 30 per sample, otherwise SV was estimated 

156 as the product of the LOPC opening area by the depth increment. To avoid duplicate counts of 

157 particles that can happen in strong wave conditions, LOPC data for which the depth increment was 

158 less than 10 cm were removed (5.1 % of the data). All data were processed using an in-house 

159 program developed using matlab software (Mathworks, USA). At very high particle densities (>106 

160 counts m-3), the data acquisition frequency of the LOPC might not be sufficient. This results first 

161 in incoherent M sequences (data stream containing MEP characteristics), and second in the creation 

162 of false MEPs due to the coincidence effect of counting at the same time several neighboring 

163 particles as one large particle (Schultes and Lopes, 2009; Ohman et al., 2012; Basedow et al., 2014). 

164 Incoherent M sequences were observed at 9 out of 135 stations, all of which showed a strong 

165 density gradient. If the ratio of MEPs to total LOPC counts (TC) is above 5 % this might indicate 

166 coincidence counts (Schultes and Lopes, 2009). We observed ratios above 5 % at 5 out of 135 

167 stations, all located near shore.

168

169 2.3. Net sample processing using ZooScan

170 An aliquot from each net tow sample was processed using the ZooScan (www.zooscan.com) to 

171 calculate the vertically integrated abundances and size structure of the zooplankton communities. 

172 The net tow sample was split using a Motoda box ensuring a minimum of 1000 particles to be 

173 identified by the Zooscan. Each scanned image had a resolution of 2400 dots per inch and was 

174 analyzed using ZooProcess (Gorsky et al., 2010), which is embedded in ImageJ, an image analysis 

175 software (Rasband, 2005). A total of 46 variables, including geometrical and optical characteristics, 

176 are measured by Zooprocess for each individual larger than 300 μm ESD, and are used by the 

177 Plankton Identifier software (Gasparini, 2007) to automatically classify the organisms following 
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178 the supervised learning algorithms implemented in the TANAGRA free statistical pack 

179 (Rakotomalala, 2005). The Random forest algorithm was used for the classification analysis 

180 (Breiman, 2001). Two predefined groups were created for the purpose of this study: organisms and 

181 detritus. The ‘organisms’ group was mainly constituted of copepods (Carlotti, Unpublished data); 

182 and the ‘detritus’ group was a composite category composed of phytoplankton aggregates and 

183 undetermined fragments of organisms, such as gelatinous parts, molts etc. Most of these detrital 

184 particles are created during the net tow by the pressure of the water against the mesh net and by the 

185 aggregation of the material inside the cod-end. Therefore, this detritus cannot be related to those 

186 counted in situ by the LOPC and was discarded from the ZooScan counts. After the automatic 

187 sorting, all images were validated manually.

188

189 2.4. Calculation of normalized biomass size spectra

190 Normalized biomass size spectra (NBSS) were computed from LOPC and ZooScan data. For the 

191 ZooScan, the ESD was calculated from the image area of a particle provided by ZooProcess. 

192 For both data, the biovolume was derived from the ESD using the formula:

193  (1)𝐵𝑖𝑜𝑉 = 𝐸𝑆𝐷3 ×
𝜋

6 × 𝑅

194 R, taken equal to 3, is the ratio of the major axis to minor axis of a prolate spheroid and we used 

195 an organism density of 1 mg WW mm-3 to convert the biovolume into biomass. The NBSS were 

196 calculated for each station using the method described in Herman and Harvey (2006). The linear 

197 regressions were fitted to the part of a spectrum in the size range starting from the mode of the 

198 spectrum in the small size and ending at the first empty size class.

199

200 2.5. LOPC derived indicators
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201 We investigated two potential indicators that might reflect the proportion of detritus in LOPC 

202 counts: (1) the proportion of MEPs in the total number of counts (%MEPs) and (2) the AI indicating 

203 the transparency of particles. The theoretical size threshold between SEP and MEP is about 1.5 

204 mm (Herman et al., 2004), but MEPs generally have a small ESD relatively to their maximum 

205 length because they do not attenuate much light. We hypothesize that, in a region where most of 

206 the organisms are below 1.5 mm of ESD (about 2.5 mm length for a copepod), the MEPs are mainly 

207 composed of detritus so that the %MEPs mainly varies as a function of detritus concentration. 

208 The attenuance index (AI) was calculated based on Checkley et al. (2008) and updated by Basedow 

209 et al. (2013), 

210  (2)𝐴𝐼 = ∑𝑛 ‒ 1
𝑖 = 2𝐷𝑆𝑖

1
((𝑛 ‒ 1) ‒ 1) × 𝑚𝑎𝑥𝐷𝑆 

211 where DS is the digital size of the MEP for each photodiode element, n the number of elements 

212 and maxDS is the maximum digital size of a MEP (corresponding to a complete occlusion of a 

213 diode element). Based on the definition, AI varies from 0 for very transparent particles to 1 for 

214 very opaque particles. The DS values of the elements at the edges of the MEP sequence were not 

215 included to compute the AI, because these elements may only partly cover the area of a diode, 

216 resulting in a lower AI than real (Basedow et al., 2013). The AI should not be understood as an 

217 opacity index only, because both opacity and shape of a particle contribute to it. For example, a 

218 filamentous diatom (opaque but with lots of empty space) and an appendicularian (a very 

219 transparent organism) could have a similar ESD and AI because they would attenuate the same 

220 quantity of light, but they could have very different biovolume and opacity characteristics. 

221  

222 2.6. Estimation of the detritus part in LOPC counts
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223 In the ocean, particulate matter consists of various types of particles including detrital aggregates, 

224 decaying fragments of organisms, fecal pellets and sediments (Alldredge and Silver, 1988), which 

225 will be called detritus hereafter. A total of 78 quasi-synchronous LOPC casts and net tows was 

226 analyzed. Because the reliability and accuracy of abundance assessment with the ZooScan is very 

227 high, the estimated abundance in the group ‘organisms’ was used as reference for zooplankton 

228 abundance in this study. Nevertheless, it is important to keep in mind that nets are biased estimators 

229 of the in-situ abundance of organisms that undersample fragile organisms and are limited to a 

230 certain size range. Also, net avoidance by mobile organism and net clogging can bias abundance 

231 estimates, but were unlikely to be an issue in our study. The size of copepods in the Mediterranean 

232 Sea is generally small and the largest individuals of the dominant taxa Paracalanus and 

233 Clausocalanus are about 1 mm length at the adult stage (Gaudy et al., 2003) limiting their escaping 

234 capability. Moderate chl-a concentrations (maximum of 2.75 mg m-3) measured during the cruises 

235 prevented the net from clogging (mesh size 120 μm).

236 The size range of zooplankton captured quantitatively is limited by the mesh size for the net 

237 samples and the volume filtered for the LOPC (Vandromme et al., 2012). Based on the NBSS, we 

238 estimated that the valid overlap in size range with correct estimation of abundance from both the 

239 ZooScan and LOPC was from 350 μm to 2000 µm ESD.  

240 We hypothesize as Vandromme et al. (2014) that within this size range the difference between the 

241 ZooScan and LOPC is due to particulate matter counted in addition to zooplankton by the LOPC. 

242 For size fraction i=350 to 2000 µm, the percentage of detritus in LOPC abundances was calculated 

243 following the equation: 

244 % detritusi = (LOPC_abi - ZooScan_abi) / LOPC_abi (3)

245 ZooScan abundances were higher than LOPC abundances at 14 stations out of 78, albeit only 

246 slightly for 11 of them (< 30%), the stations being distributed over the gulf without any detectable 
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247 pattern. These stations were not included in the statistical analysis. The factors potentially leading 

248 to this situation and the implications for this study are discussed later.

249

250

251 2.7.  Statistical analyses

252 The Kruskal-Wallis test (one way ANOVA on ranks) was performed to identify potential links 

253 between the percentage of detritus and LOPC particle characteristics (AI and %MEPs) on one hand, 

254 and between percentage of detritus and the zooplankton habitats representative of different 

255 environmental conditions on the other hand. This test was chosen because of the non-normal 

256 distribution of the variables. Post-hoc tests were performed to assess the differences between 

257 habitats. All statistical tests were performed using the R statistical software (version 3.2.3, R 

258 Development Core Team, 2016), Kruskal-Wallis using kruskal.test and and post-hoc tests, 

259 posthoc.kruskal.nemenyi.test (package PCMCR, version 2016-01-06).

260
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271

272

273

274 3. Results

275 3.1. Spatiotemporal distribution of particle characteristics and detritus

276 Fig. 1. Percentage of detritus in LOPC counts in January 2011 (top) and May 2010 (bottom) in the 
277 Gulf of Lion for two particle size fractions: below (left) and above (right) 600 μm size. The three 
278 habitats defined in Espinasse et al. 2014 are delineated, habitat #1: near shore area; habitat #2: area 
279 affected by the Rhône waters; habitat #3: continental shelf. 
280

281 The variability of the detritus in terms of spatial and temporal distribution was analyzed for two 

282 size fractions, above and below 600 μm ESD (corresponding roughly to a total length of 1 mm for 

283 a copepod) (Fig. 1). For both seasons, the percentage of detritus in LOPC counts was lower for the 

284 larger size fraction than for the smaller one while their spatial patterns were similar. In winter, the 

285 percentage of detritus of both small and large size was relatively low (mainly under 50%), except 
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286 for the three stations closest to the Rhône mouth. In spring, detritus represented a large part of the 

287 LOPC counts (mainly over 50%) in the entire continental shelf. Only at the easternmost transect, 

288 influenced by offshore water, a lower percentage of detritus was observed.

289 Fig. 2. Indicators of particles counted by the LOPC in January 2011 (top) and May 2010 (bottom) 
290 in the Gulf of Lion: % of MEPs in total LOPC counts (left side) and the MEPs’ mean attenuance 
291 index (AI, right side). The three habitats defined in Espinasse et al. 2014 are delineated, habitat #1: 
292 near shore area; habitat #2: area affected by the Rhône waters; habitat #3: continental shelf. The 
293 three representative stations (A, B and C) shown in Fig. 4 are marked in the lower left panel.
294

295 Throughout the study area, spatiotemporal differences in LOPC particle counts and characteristics 

296 were observed (Fig. 2). In spring, higher values (> 2%) of the percentage of MEPs in total LOPC 

297 counts were generally observed compared to winter (< 1%). However, high values were observed 

298 in front of the Rhône mouth in winter and low values beyond the continental slope in spring. The 

299 AI of the MEPs showed a pattern rather similar to the %MEPs (Fig.2, right panels). Some 

300 differences existed, such as low values for the near shore area in the western part of the gulf in 
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301 winter and high values for some stations in the most western transect in spring. A highly significant 

302 correlation was found between the percentage of detritus and the %MEPs (r2=0.54, p <10-9) 

303 strongly supporting our hypothesis that the %MEPs can be used as an indicator of detritus (Fig. 3). 

304

305

306 Fig. 3. Percentage of detritus in LOPC counts relative to the percentage of MEPs in total LOPC 
307 counts. The data were fitted with a logarithmic function. Habitats as defined in Fig. 1 and 2.

308

309 3.2. Statistical relationships between environmental conditions and LOPC indicators

310 Station details including LOPC and ZooScan abundances (# part. m-3), percentage of detritus in LOPC 
311 counts, percentage of MEPs in LOPC counts, mean AI, slope of the NBSS, water column stratification 
312 index, maximum of chl-a concentration (mg m-3) and sampling depth. Considering the station denotation, 
313 the letter specifies the transect, from west (A) to east (F), and the number the position of the station along 
314 the transect from coast (1) to offshore (6-8). For example, A1 is the furthest west station and E1 is located 
315 in front of the mouth of the River Rhône. The stations A, B and C displayed in Figs 4-5 are indicated. No 
316 stratification is stated as n.a. for non-applicable. When ZooScan counts were higher than LOPC counts 
317 and, therefore, the percentage of detritus cannot be computed, x states for < 30 % difference in count and 
318 X > 30%.

Cruise Station/
Habitat

LOPC 
Ab.

ZooScan 
Ab.

% of 
det.

%MEPs AI Slope Strat. 
ind.

Max.
chl-a
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COSTEAU 6 A1/1 6514 3609 45 0.63 0.15 -1.07 n.a. 0.93 25
Jan 2011 A2/1 5427 4567 16 0.53 0.19 -0.96 n.a. 0.88 35

A3/3 4533 5900 x 0.44 0.28 -0.87 n.a. 0.77 60
A4/3 1955 3539 X 0.39 0.20 -0.99 n.a. 0.56 80
A5/3 4370 1525 65 1.31 0.30 -0.73 n.a. 0.60 90
A6/3 2426 1555 36 0.80 0.27 -0.81 n.a. 0.67 100
A7/3 1815 1850 x 0.62 0.21 -0.94 n.a. 0.66 170
B1/1 7111 21250 X 0.76 0.09 -1.30 n.a. 1.28 20
B2/3 4046 1975 51 0.67 0.32 -0.79 n.a. 1.14 45
B3/3 3005 3569 x 0.81 0.17 -0.93 0.03 0.97 80
B4/3 3270 1853 43 1.19 0.28 -0.77 n.a. 0.82 90
C1/3 9845 3567 64 1.37 0.39 -0.61 n.a. 0.83 20
C2/3 6300 6985 x 1.00 0.27 -0.78 n.a. 0.92 45
C3/3 2535 1364 46 0.78 0.21 -0.81 n.a. 0.52 75
C4/3 3537 2500 29 0.89 0.26 -0.81 n.a. 0.77 80
C5/3 2524 2903 x 0.62 0.29 -0.83 n.a. 0.70 85
C6/3 2875 1605 44 0.47 0.22 -0.91 n.a. 0.63 90
C7/3 1508 1048 31 0.45 0.24 -0.91 0.02 0.75 90
C8/3 3856 2244 42 1.27 0.18 -0.86 n.a. 0.65 130
D1/1 36498 6313 83 4.18 0.11 -0.77 0.67 1.40 17
D2/1 4318 2543 41 1.49 0.11 -0.99 0.14 1.05 40
D3/1 3209 1907 41 0.90 0.10 -1.14 0.25 0.99 65
D4/3 2388 1979 17 0.63 0.42 -0.73 0.13 0.79 75
D5/3 2834 3263 x 0.82 0.21 -0.88 n.a. 0.67 90
D6/3 1548 1237 20 0.82 0.25 -0.79 n.a. 0.90 110
D7/3 1756 803 54 0.89 0.31 -0.74 n.a. 0.45 270
D8/3 453 238 48 0.33 0.29 -0.82 n.a. 0.46 200
E1/2 10710 1500 86 3.06 0.11 -0.82 0.84 0.75 50
E2/2 7154 965 87 2.35 0.14 -0.80 1.21 0.60 85
E3/3 3065 1681 45 1.02 0.24 -0.80 0.20 0.74 95
E4/3 2367 1495 37 0.80 0.28 -0.82 n.a. 0.71 100
E5/3 992 608 39 0.43 0.32 -0.89 n.a. 0.53 300
F1/3 3768 5250 x 1.56 0.19 -0.85 n.a. 0.71 55
F2/3 2239 1641 27 1.11 0.38 -0.68 n.a. 0.70 80
F3/3 1767 813 54 0.40 0.20 -0.84 n.a. 0.68 100
F4/3 1257 1174 7 0.33 0.26 -0.95 n.a. 0.70 130

COSTEAU 4 A1/1 5924 9851 X 1.29 0.08 -1.02 0.06 1.70 25
May 2010 A2/1 15354 7646 50 2.90 0.09 -1.03 0.11 2.43 36

A3/3 5343 3021 43 1.22 0.17 -0.89 0.05 0.87 55
A4/3 4733 1361 71 3.46 0.23 -0.64 0.03 0.58 80
A5/3 4168 1599 62 2.82 0.25 -0.66 0.03 0.63 80
A6/3 3946 1462 63 1.73 0.22 -0.82 0.04 0.46 100
A7/3 3088 287 91 2.00 0.25 -0.71 0.03 0.50 145
B1/2 19440 5070 74 4.37 0.11 -0.79 0.29 0.33 20
B2/1 10675 2725 74 1.78 0.10 -0.99 0.18 1.68 50
B3/3 7298 1887 74 3.06 0.11 -0.87 0.20 0.73 80

Stn. B B4/3 3933 1597 59 2.00 0.14 -0.78 0.17 0.53 90
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B5/3 2373 462 81 2.24 0.18 -0.74 0.11 0.82 150
Stn. A B6/3 1687 1736 x 1.15 0.24 -0.80 0.04 1.10 200

B7/3 2271 1433 37 1.41 0.16 -0.90 0.15 0.55 265
B8/3 1411 1392 1 1.35 0.15 -0.92 0.10 0.76 200
C1/2 44544 13513 70 4.44 0.22 -0.62 0.47 0.43 20
C2/2 10514 1622 85 2.07 0.13 -0.87 0.28 1.35 45
C3/3 5109 2046 60 1.89 0.14 -0.85 0.23 0.80 75
C5/3 8609 2382 72 3.24 0.22 -0.65 0.25 0.90 90
C6/3 8902 3134 65 4.50 0.15 -0.75 0.27 0.61 90
C7/3 5193 1294 75 2.43 0.16 -0.76 0.36 0.91 85
C8/3 3491 993 72 1.62 0.15 -0.85 0.24 0.41 140
D1/2 33804 3244 90 5.87 0.12 -0.68 0.61 0.77 15
D2/2 21171 3231 85 4.93 0.14 -0.62 0.41 0.69 40
D3/2 16739 2239 87 4.22 0.13 -0.72 0.54 0.90 65
D4/2 15823 1856 88 3.13 0.15 -0.71 0.74 1.20 75
D5/2 11200 2645 76 2.87 0.16 -0.66 1.05 1.13 95

Stn. C D6/2 8968 905 90 3.79 0.12 -0.68 0.51 2.27 115
D7/3 4356 613 86 1.58 0.16 -0.89 0.40 0.49 200
D8/3 1257 664 47 1.23 0.21 -0.79 0.25 0.59 200
E1/2 40713 3925 90 5.21 0.15 -0.60 2.10 2.73 50
E2/2 15312 3602 76 3.97 0.15 -0.72 0.71 2.70 90
E3/3 10570 2130 80 2.38 0.23 -0.74 0.31 0.44 95
E4/3 2734 1503 45 1.65 0.24 -0.74 0.07 0.54 100
E5/3 2047 869 58 1.31 0.27 -0.76 0.06 0.49 200
E6/3 2284 2922 x 1.29 0.20 -0.82 0.05 1.35 200
F1/3 4991 5357 x 1.96 0.19 -0.79 0.02 0.73 60
F2/3 2679 2340 13 1.22 0.22 -0.78 0.05 0.45 80
F3/3 4086 755 82 1.15 0.19 -0.83 0.07 0.40 100
F4/3 1816 1455 20 0.86 0.24 -0.83 0.03 0.54 200
F5/3 1799 1307 27 0.67 0.24 -0.90 0.01 0.76 200
F6/3 1645 2046 x 1.01 0.25 -0.83 0.02 0.55 200

319

320

321 To get a better understanding of the mechanisms underlying the relationship between the %MEPs 

322 and the detritus abundances, we tracked how they changed with different environmental conditions 

323 (Table 1) as described by the three habitats defined in E2014. The percentage of detritus, percentage 

324 of MEPs and AI changed significantly between the habitats defined in E2014 (Table 2). The area 

325 affected by the Rhône River freshwater (defined as habitat #2) had a significantly higher percentage 

326 of detritus and a higher %MEPs than the other two habitats. The average %MEPs in habitat #2 was 

327 2.48 (2.18-3.07, n = 3) in January and 3.51 (2.07-5.88, n = 17) in May compared to an overall 

841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896



17

328 average of 1.65 (0.67-4.59, n = 48) and 0.67 (0.32-4.18, n = 67) for habitats #1 and #3. The 

329 continental shelf (habitat #3) was characterized by particles with a significantly higher AI, overall 

330 average of 0.23 (0.09-0.43, n = 97), than for habitats #1 and #2, overall average of 0.11 (0.07-0.19, 

331 n = 18) and 0.14 (0.10 – 0.22, n = 20), respectively. The changes in distribution of detritus, %MEPs 

332 and AI within the habitats showed that the conditions where stratified waters were coupled with 

333 high chl-a concentrations in the surface layer resulted in a higher percentage of detritus and a higher 

334 %MEPs. This was observed in habitat #2 influenced by Rhône waters. The lower AI and higher 

335 percentage of detritus in habitat #2 demonstrated the general transparency of the detritus, compared 

336 to the higher AI associated with lower detritus observed on the continental shelf (habitat #3). 

337

338 Table 2. Kruskal-Wallis test applied on the percentage of detritus, % of MEPs and AI considering 
339 as factors the 3 habitats defined in Espinasse et al. 2014. Post-hoc results are also shown.

340

341

342

343

344

345

Parameter Χ2 p-value Post-hoc

%detritus 25.88 2.39 10-6 Habitat #1 Habitat #2
Habitat #2 <0.001 -
Habitat #3 n.s. <0.001

H2 > H1; 
H2 > H3

%MEPs 39.09 3.23 10-9 Habitat #1 Habitat #2
Habitat #2 <0.001 -
Habitat #3 n.s. <0.001

H2 > H1; 
H2 > H3

AI 61.85 3.7 10-14 Habitat #1 Habitat #2
Habitat #2 n.s. -
Habitat #3 <0.001 <0.001

H3 > H1; 
H3 > H2
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346

347 3.3. Detailed analyses of particle characteristics at three typical stations 

348

349 Fig. 4. Vertical profiles of water density σθ (kg m-3; full line, left panels) and chl-a concentration 
350 (mg m-3; dashed grey line, left panels), the stratification (Brunt-Väisälä frequency squared N2, s-2 ; 
351 center left panels), total LOPC abundance (Tot. ab., centre right panels) and MEP abundance (right 
352 panels) at stations A, B and C typical of different environmental conditions. The integrated % of 
353 MEPs and the average of AI are specified in brackets for two (station A) or three (stations B and 
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354 C) depth layers (horizontal dotted grey lines). The location of the stations is shown in Fig. 2. Note 
355 the change in x-axis range among stations. 
356 Based on the results provided by the spatial distributions, three stations representing different 

357 scenarios in terms of water stratification and chl-a concentration were chosen to investigate the 

358 vertical variations of TC, MEPs, %MEPs and AI (Fig. 4). 

359 Vertical profiles at station A showed a homogeneous water density and Brunt-Väisälä frequency, 

360 and a deep peak of chl-a concentration reaching 1.2 mg chl-a m-3 at 60 m depth. TC and MEP 

361 counts had a peak in the surface layer, reached minima between 20 and 40 m, and slightly increased 

362 in the layer between 40 and 70 m and the layer below, while AI was lower in the layer of maximum 

363 of chl-a. At this station, %MEPs and average AI integrated over the entire water column were 1.15 

364 and 0.24, respectively, and the percentage of detritus was estimated to be of 0% (i.e. LOPC 

365 abundance = ZooScan abundance). 

366 Profiles at station B showed a stratified water column with a pycnocline located at 12 m depth and 

367 relatively low chl-a concentration (0.09-0.36 mg chl-a m-3). TC and MEP counts peaked in the 

368 pycnocline layer. The AI was high in the surface layer (0.27) and dropped strongly in the 

369 pycnocline layer to 0.07. %MEPs was relatively high in the surface layer and increased below the 

370 pycnocline. At this station, %MEPs and average AI integrated over the entire water column were 

371 2.00 and 0.14, respectively, and the percentage of detritus was estimated to be of 59% in LOPC 

372 counts. 

373 Station C was located in the Rhône plume, approximately at 45 km from the Rhône mouth, showing 

374 a thin layer of very low salinity water in surface resulting in strong stratification. Highest chl-a 

375 concentrations were found in the surface layer (maximum of 2.3 mg chl-a m-3). The halocline layer 

376 between surface low salinity water and deep saltier water was spread between 5 and 20 m depth. 

377 High LOPC abundance and very high MEP abundance were found in the surface and gradient 
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378 layers. Very low AI values were observed in the surface layer, and low AI values and very high 

379 values of %MEPs were found in the halocline. Below the stratified layer these parameters were 

380 similar to those at stations A and B. At station C, %MEPs and average AI integrated over the entire 

381 water column were 3.79 and 0.12, respectively, and the percentage of detritus was estimated to be 

382 up to 90% in LOPC abundance (i.e. LOPC abundance was 10 times the zooplankton abundance 

383 estimated with the ZooScan).

384 The NBSSs of particles estimated for the whole water column by both devices showed good 

385 agreement in their size range overlap (1.1 to 3.4 log(µg)) for the stations A and B (Fig. 5), but 

386 relatively high difference for the station C with higher biomasses from LOPC. NBSS inside the 

387 different water layers provides information on the homogeneity of the biomass distribution as a 

388 function of depth. The NBSSs at station A were vertically homogeneous, although the biomass in 

389 the surface layer was slightly higher. The NBSSs at station B and C showed much higher values in 

390 the stratified layers. At station C, the NBSS in the surface layer was characterized by high biomass 

391 values in the lower size classes and a relatively steep NBSS slope (-1.21) towards higher size 

392 classes, which is a signature of productive layer. In the halocline and below, the NBSS slopes were 

393 flatter (-0.64 and -0.79) and similar in shape, potentially resulting from a uniform distribution of 

394 the detritus along the size spectrum.
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401 Fig. 5. Normalized biomass size spectra (NBSS) from LOPC data integrated over the water column 
402 (grey line) and in different layers as defined in Fig. 4 (blue lines, NBSSs in stratified layers are 
403 displayed with dashed line), and NBSS from ZooScan data over the whole water column (black 
404 squares) for 3 stations typical of different environmental conditions (see Fig. 2 and 4).
405
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410 3.4. Typical distribution of particles and LOPC indicators under specific environmental 

411 conditions

412 Four typical associations between particle distribution and environment could be identified from 

413 the detailed analyses of the stations: 

414 (1) Vertical density stratification coincided with a peak in LOPC counts. To test this statement, we 

415 investigated the occurrences of a peak of LOPC abundance in relation to the occurrences of a 

416 strongly stratified layer at all stations. A peak of LOPC counts was defined for concentrations > 50 

417 % of the average concentration over the whole profile. Stratified layers were defined using a 

418 threshold value of N2 = 0.001 s-2 (Brunt-Väisälä frequency). A co-occurrence between a 

419 stratification layer and a peak of LOPC counts was found for 93 % of the stations (81 out of 87 

420 stratified stations, χ2 test, p< 10-9). 

421 (2) The percentage of MEPs in total LOPC counts increased when stratification was associated 

422 with high chl-a concentrations (chl-a > 1 mg m-3) in the surface layer. Density gradients in the 

423 water column typically lead to aggregate formation, and the number of aggregates increase with 

424 high production in the surface layer resulting in more MEPs, which is illustrated in the MEP profile 

425 and NBSS comparison at station C (Fig. 4 and 5). It was also indirectly confirmed by the changes 

426 in AI values as a function of size: larger MEPs (> 1.5 mm) were very transparent (mean 0.21, std 

427 0.10) in the stratified layer compared to the other layers (mean 0.50, std 0.18; Fig. 6b). 

428 (3) Situations without stratification and with high chl-a concentrations were associated with a low 

429 AI and a relatively low %MEPs (Figs 2 and 4). This situation is exemplified in the surface layer at 

430 station C, and to a lesser extent in the middle layer (40 to 75 m depth) at station A. It also 

431 corresponds roughly to all the stations within habitat #1, characterized by mixed waters and high 

432 chl-a concentrations (Fig. 2). In such situations, the peak in MEP size spectra appears to be shifted 

433 towards smaller size classes (Fig. 6a). Accordingly, MEP size in habitat #1 was generally much 
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434 smaller than in habitat #2 (high chl-a concentration and stratification), with an average of 505 μm 

435 ESD (406-705 μm) and 823 μm ESD (619-1387 μm), respectively.

436 (4) The AI stayed relatively constant over all the stations without stratification or high chl-a 

437 concentration with an average value of 0.25 (std 0.05). 

438

439 Fig. 6. (a) Size spectra of MEPs and (b) mean attenuance index (AI) as a function of the MEP size 
440 (0.1 mm interval) at station C (see Fig. 2, 4 & 5) in 3 different water layers. Because of lower 
441 values, MEP abundances for the deepest layer (20-115 m) is displayed on a separate axis (right).
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445 4. Discussion

446 4.1. Optimal conditions to use the LOPC as a zooplankton counter

447 Based on our dataset from the coastal waters of the Northwestern Mediterranean Sea, we identified 

448 three main ecological situations where the LOPC counted various amounts of detritus. In 

449 unstratified water columns with low chl-a concentrations (< 1 mg m-3), LOPC abundances were 

450 comparable to net abundances, meaning that the LOPC counted mostly zooplankton and only few 

451 detritus. This was reflected by LOPC particles having a low %MEPs in total counts (< 2 %), and a 

452 high mean AI (> 0.2).  In stratified waters with high chl-a concentrations, LOPC abundances were 

453 up to ten times higher than net abundances most likely due to the LOPC counting detritus. In this 

454 situation, LOPC counts were characterized by high %MEPs and low AIs. In stratified waters with 

455 low chl-a concentrations, LOPC abundances were also higher than net abundances but in a lesser 

456 extent, and particles here were again characterized by a high %MEPs and a low AI. These results 

457 suggest that information on the large particles counted by the LOPC (MEPs) can be used to infer 

458 the percentage of detritus counted by the LOPC. Our results also suggest that the LOPC counted 

459 mainly living organisms when the %MEPs was < 2 %, a more conservative limit than the 5 % limit 

460 found by Schultes and Lopes (2009) off the Brazilian coast.  In most water columns without 

461 stratification and/or high chl-a concentration the mean AI remained constant, around 0.25, which 

462 allowed us to define a threshold below which aggregation or phytoplankton chains likely occur. 

463 The usage of %MEPs and AI as indicators of different physical and biological situations is 

464 summarized in Table 3. By applying our thresholds to the data from our study area and to data from 

465 high latitudes, we could identify in total four different situations in which detritus represent 

466 between 0 and 90 % of the total LOPC counts.  
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469

470 Table 3. Summary describing how to interpret the LOPC abundance with the help of the two 

471 indicators, %MEPs and AI. The thresholds defined in this study lead to 4 situations. The possible 

472 causes for these situations are detailed and clues to interpret the data based on the study context are 

473 proposed. The threshold for overestimation (5 %) is from Schultes and Lopes 2009.

474

Low AI (< 0.2) High AI (> 0.2)

High % of MEPs (> 2)

(> 5 overestimation)

Aggregate formation if stratified 

waters, can be promoted by high 

primary production in surface layer. 

Sediment input or resuspension in 

nearshore areas.

High concentration of big 

copepods (> 1.5 mm), 

mainly in high latitude 

areas, or terrestrial input 

(sand).

Low % of MEPs (< 2) Low detritus abundance. If high chl-

a concentration, phytoplankton 

chains or colonies characterized by 

small MEP size (< 400 µm ESD)

Clear water, LOPC mainly 

counting zooplankton.

475

476

477 4.2. Potential biases linked to the sampling protocol

478 The LOPC was placed on the CTD rosette to obtain simultaneous profiles of physical and 

479 biogeochemical parameters and net tows were conducted afterwards. The time lag between a LOPC 

480 cast and corresponding net tow could have affected the comparison between ZooScan and LOPC 

481 results, even though it was reduced to its minimum. The general patchiness of particles and 

482 zooplankton in the water column can create some variability in abundance data collected at the 

483 same location over a short amount of time. In general however, the vertical distributions of particles 

1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400



26

484 measured by the LOPC along the coastal-offshore transects (stations separated by 5 km) showed 

485 consistent abundances between the stations with gradual changes, suggesting a limited patchiness. 

486 Furthermore, for the majority of the offshore stations with no stratification and low chl-a 

487 concentration, the percentage of detritus was intermediate and rather constant (mean 39, standard 

488 deviation 17). Therefore, we argue that even if patchiness potentially created some variability 

489 blurring our results, especially where percentage of detritus was low, at most of our stations it was 

490 valid to use a comparison of abundances to determine the detritus contribution. At 3 out of 78 

491 stations, abundances determined from net samples were >30 % higher than those determined by 

492 the LOPC, two of these stations being in shallow waters. We suggest that these values might be 

493 due to technical issues (difference in sampling depth, mistake through the subsampling preparation, 

494 etc.) and they were, therefore, not included in any part of the analysis.

495

496 4.3. Impact of stratification and/or high production on LOPC counts and the formation 

497 of MEPs

498 The relationship between the detritus distribution and the habitats defined in E2014 (Table 2) 

499 provided a good base to analyze the link between detritus formation and environmental conditions. 

500 Consistent results were found analyzing the spatial distributions and the vertical profiles in the 

501 changes of percentage of detritus, LOPC counts and MEP characteristics. The stratification of the 

502 water column seems to be the main factor influencing the vertical distribution of LOPC counts. 

503 The interface between water layers of different densities acts as a barrier, locally accumulating 

504 particles. The high concentrations of particles within pycnoclines can be explained by the change 

505 in buoyancy of aggregates, reducing their downward settling velocities (Macintyre et al., 1995, 

506 Prairie et al., 2015). Our case study from the Mediterranean Sea shows that this process induces 

507 particle aggregations resulting in the formation of transparent MEPs with a low AI (< 0.2), and in 
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508 an increase of the %MEPs in total counts (see again Fig. 1, situation described in the upper left part 

509 of the Table 3). The mechanisms underlying the aggregate formation can be mechanical, due to 

510 transparent exopolymer particles, mucus or dead phytoplankton cells (Alldredge and Silver, 1988), 

511 or chemical, when strong salinity changes promotes flocculation processes. When such a 

512 stratification is combined with high production in the surface layer, the higher concentration of 

513 particles will promote the formation of more aggregates, resulting in very high %MEPs.

514 When high chl-a concentrations were not associated with stratification, the size of the MEPs was 

515 smaller and the AI decreased below 0.2 while the %MEPs remained constant. One explanation is 

516 that without stratification, settling particles could freely fall through the water column, and the 

517 probability of colliding between particles is reduced. But also, phytoplankton colonies typically 

518 produce small MEPs with lower AI due to a high degree of empty space at the activated 

519 photodiodes. Further investigations at stations that show a large contribution of detritus could also 

520 give insight into the changes of the size structure of organic matter in different water layers, which 

521 could be useful to study carbon vertical flux.

522

523 4.4. Limits of the methods

524 Our method is based on the information from the MEPs, which represent only a small part of the 

525 LOPC counts, but we successfully extrapolated this result to assess the contribution of detritus in 

526 the total LOPC counts. We suggest that there is a relationship between the % of SEPs being detritus 

527 and the %MEPs in LOPC counts. Indeed, the aggregation processes described earlier in the text 

528 (see 4.3) attest that if detritus represents a substantial part of the SEPs, some will aggregate and 

529 end up as MEPs. This is due to the detritus constitution and has been described by several studies 

530 focusing, for instance, on phytoplankton blooms (Alldredge and Jackson, 1995) or appendicularian 

531 houses (Lombard and Kiørboe, 2010).
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532 In some specific cases the %MEPs can be affected by others causes than the ones described in this 

533 study. In places with very clear water and high concentrations of big organisms, e.g. Calanus 

534 finmarchicus overwintering in North Atlantic waters, the %MEPs can drastically rise even though 

535 the percentage of detritus is low (Table 3, upper right). In that case, we suggest to use the AI alone 

536 as an indicator to separate between living and non-living particles (Checkley et al., 2008; Gaardsted 

537 et al., 2010), and estimate the part of the MEPs being detrtital particles. In this study, where the 

538 dominating species were small copepods, we assume that MEPs that have a low AI were detritus. 

539 However, transparent gelatinous organisms can also a have similar MEP signal. Given the opening 

540 of the LOPC tunnel (7 x 7 cm), appendicularians are among potential organisms that can be counted 

541 by the LOPC in amounts high enough to affect the MEP signal. In our case, although substantial 

542 abundance of appendicularians were recorded during the winter cruise (ca 30 000 # m-2), this did 

543 not seem to affect the MEP signal as the AI was higher in winter than during the spring cruise. 

544 Nevertheless, we suggest that when using the LOPC, occasional net samples are needed to describe 

545 the plankton community and to attest of peaks of specific groups such as gelatinous zooplankton.   

546

547 4.5.  Use of our results in other regions

548 The indicators developed in this study to interpret the detritus part of LOPC abundances are based 

549 on a large dataset collected in a coastal area of the NW Mediterranean Sea. However, the processes 

550 leading to the formation of detritus are not specific to this area. They take place in the epipelagic 

551 zone of most of the marine ecosystems, and it is likely that these indicators will be valid in other 

552 areas. To test this, we applied the thresholds for %MEPs and AI that were developed in this study 

553 to other datasets from around the globe. 

554 A dataset collected in a tropical system (Schultes and Lopes, 2009), sampled from mixed and 

555 weakly stratified stations over the continental shelf and slope, had generally a low %MEPs (mean 
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556 0.87, standard deviation 0.33) and rather high AIs (mean 0.22, standard deviation 0.04) over 37 

557 stations (Table 4). The biomass estimated with the LOPC for particles > 500 µm ESD was 

558 significantly correlated to zooplankton displacement volume of net samples (n= 37, r= 0.4, p< 

559 0.01), indicating a limited influence of detritus (Table 3, lower right). 

560 Two datasets from polar areas (Antarctic Peninsula and Svalbard) were characterized by clear 

561 water, and LOPC counts had a very low %MEPs (< 0.5 %) and generally high AIs (> 0.2). Here, 

562 the indicators show that the LOPC counted mainly zooplankton (Table 3, lower right), which was 

563 supported by a good agreement between LOPC and net data.

564 In an Arctic fjord characterized by glacial melt water input, freshwater run-off resulted in a 

565 dramatic increase in LOPC counts (> 500 x 103 # m-3) in the inner part of the fjord and very low 

566 AI values in the entire fjord (Trudnowska et al., 2014). The %MEPs, on the other hand, was 

567 gradually decreasing from 3.90 in the inner part to 1.16 in the outer part while the zooplankton 

568 abundances estimated from net tows were rather constant along the transect. Based on the 

569 thresholds developed for the indicators %MEPs and AI, the fjord can be divided into two areas, i.e. 

570 the inner part characterized by high %MEPs, low AIs and high (glacial) detritus concentrations 

571 (Table 3, upper right); and the outer part characterized by low %MEPs, low AIs, high chl-a 

572 concentration and realistic zooplankton abundances estimated by the LOPC (Table 3, lower left).
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580 Table 3. Comparison of particle characteristics in different regions and different environmental 
581 conditions. Only stations deeper than 50 m were included. High chl-a: max chl-a > 1 mg m-3.

582 *data which are out of the optimal conditions for LOPC use (based on the thresholds defined in Table 2)

Environmental 

conditions

Region / remarks # part m-3

min-max

nbr. of stn.

AI

mean

(min-max)

%MEPs

mean

(min-max)

References

Mixed waters Antarctic Peninsula –

Continental bay

Clear water and few 

large-sized organisms

3600 – 

36200

n=16

0.24

(0.09 – 0.54)

0.34

(0.16 – 1.61)

Espinasse et 

al., 2012

Svalbard – 

Cross shelf section

2000 – 

26000

n=10

0.48

(0.36 – 0.56)

0.33

(0.14 – 2.17)

Basedow, 

Unpublished 

data

North Atlantic – 

Open ocean

Very clear water

4000 – 

6000

n=3

0.46

(0.31 – 0.62)

0.76

(0.70 – 0.85)

Basedow et 

al., 2016

Brazil coast – 

Continental slope

6900 – 

146000

n=37

0.22

(0.13 – 0.3)

0.87

(0.54 – 2.04)

Schultes and 

Lopes, 2009

NW Mediterranean Sea – 

Continental slope

18000 – 

30000

n=43

0.25

(0.11 – 0.44)

0.90

(0.40 – 1.92)

This study

Polar fjord – Outer part

high chl-a  

130000 –

240000

n=2

0.10*

(0.08 – 0.11)

1.16

(0.71 – 1.61)

Trudnowska 

et al., 2014

Stratified waters Polar fjord – Glacier area

Input of particles from 

melt-water discharge

475000 – 

865000

n=4

0.08*

(0.07 – 0.08)

3.90*

(2.27 – 6.25)

Trudnowska 

et al., 2014

NW Mediterranean Sea - 

Continental shelf

48000 – 

70000

n=8

0.15*

(0.11 – 0.22)

2.08*

(1.13– 4.01)

This study

Stratified waters

+ high chl-a

NW Mediterranean Sea - 

Freshwater run-off

100000 – 

215000

n=13

0.12*

(0.07 – 0.14)

3.21*

(1.70 – 5.36)

This study
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583 5. Conclusion

584 We defined thresholds for two indicators based on LOPC data, which allowed to quickly check the 

585 contribution of detritus to total LOPC counts. These indicators were developed based on an 

586 extensive dataset from the Gulf of Lion and showed to be successful in different marine 

587 biogeographical regions. Applying the indicators %MEPs and AI provides a good basis to assess 

588 the detrital part in LOPC counts. When the thresholds for %MEPs and AI indicate that the LOPC 

589 is not mainly counting zooplankton, data should be interpreted carefully with respect to 

590 environmental data and the zooplankton community. This is especially important in shallow coastal 

591 waters, and more generally in strongly stratified waters. Here, LOPC data and other laser-based 

592 sensors should always be interpreted in parallel with a complementary dataset providing an 

593 independent estimate of the zooplankton part in particle counts. 

594
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Fig. 1. Percentage of detritus in LOPC counts in January 2011 (top) and May 2010 (bottom) in the 

Gulf of Lion for two particle size fractions: below (left) and above (right) 600 μm size. The three 

habitats defined in Espinasse et al. 2014 are delineated, habitat #1: near shore area; habitat #2: area 

affected by the Rhône waters; habitat #3: continental shelf. 
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Fig. 2. Indicators of particles counted by the LOPC in January 2011 (top) and May 2010 (bottom) 

in the Gulf of Lion: % of MEPs in total LOPC counts (left side) and the MEPs’ mean attenuance 

index (AI, right side). The three habitats defined in Espinasse et al. 2014 are delineated, habitat #1: 

near shore area; habitat #2: area affected by the Rhône waters; habitat #3: continental shelf. The 

three representative stations (A, B and C) shown in Fig. 4 are marked in the lower left panel.
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Fig. 3. Percentage of detritus in LOPC counts relative to the percentage of MEPs in total LOPC 

counts. The data were fitted with a logarithmic function. Habitats as defined in Fig. 1 and 2.
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Fig. 4. Vertical profiles of water density σθ (kg m-3; full line, left panels) and chl-a concentration 

(mg m-3; dashed grey line, left panels), the stratification (Brunt-Väisälä frequency squared N2, s-2 ; 

center left panels), total LOPC abundance (Tot. ab., centre right panels) and MEP abundance (right 

panels) at stations A, B and C typical of different environmental conditions. The integrated % of 

MEPs and the average of AI are specified in brackets for two (station A) or three (stations B and 

C) depth layers (horizontal dotted grey lines). The location of the stations is shown in Fig. 2. Note 

the change in x-axis range among stations. 
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Fig. 5. Normalized biomass size spectra (NBSS) from LOPC data integrated over the water column 

(grey line) and in different layers as defined in Fig. 4 (blue lines, NBSSs in stratified layers are 

displayed with dashed line), and NBSS from ZooScan data over the whole water column (black 

squares) for 3 stations typical of different environmental conditions (see Fig. 2 and 4).
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Fig. 6. (a) Size spectra of MEPs and (b) mean attenuance index (AI) as a function of the MEP size 

(0.1 mm interval) at station C (see Fig. 2, 4 & 5) in 3 different water layers. Because of lower 

values, MEP abundances for the deepest layer (20-115 m) is displayed on a separate axis (right).
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Table 1. Station details including LOPC and ZooScan abundances (# part. m-3), percentage of detritus in 
LOPC counts, percentage of MEPs in LOPC counts, mean AI, slope of the NBSS, water column 
stratification index, maximum of chl-a concentration (mg m-3) and sampling depth. Considering the 
station denotation, the letter specifies the transect, from west (A) to east (F), and the number the position 
of the station along the transect from coast (1) to offshore (6-8). For example, A1 is the furthest west 
station and E1 is located in front of the mouth of the River Rhône. The stations A, B and C displayed in 
Figs 4-5 are indicated. No stratification is stated as n.a. for non-applicable. When ZooScan counts were 
higher than LOPC counts and, therefore, the percentage of detritus cannot be computed, x states for < 30 
% difference in count and X > 30%.

Cruise Station/
Habitat

LOPC 
Ab.

ZooScan 
Ab.

% of 
det.

%MEPs AI Slope Strat. 
ind.

Max.
chl-a

Depth

COSTEAU 6 A1/1 6514 3609 45 0.63 0.15 -1.07 n.a. 0.93 25
Jan 2011 A2/1 5427 4567 16 0.53 0.19 -0.96 n.a. 0.88 35

A3/3 4533 5900 x 0.44 0.28 -0.87 n.a. 0.77 60
A4/3 1955 3539 X 0.39 0.20 -0.99 n.a. 0.56 80
A5/3 4370 1525 65 1.31 0.30 -0.73 n.a. 0.60 90
A6/3 2426 1555 36 0.80 0.27 -0.81 n.a. 0.67 100
A7/3 1815 1850 x 0.62 0.21 -0.94 n.a. 0.66 170
B1/1 7111 21250 X 0.76 0.09 -1.30 n.a. 1.28 20
B2/3 4046 1975 51 0.67 0.32 -0.79 n.a. 1.14 45
B3/3 3005 3569 x 0.81 0.17 -0.93 0.03 0.97 80
B4/3 3270 1853 43 1.19 0.28 -0.77 n.a. 0.82 90
C1/3 9845 3567 64 1.37 0.39 -0.61 n.a. 0.83 20
C2/3 6300 6985 x 1.00 0.27 -0.78 n.a. 0.92 45
C3/3 2535 1364 46 0.78 0.21 -0.81 n.a. 0.52 75
C4/3 3537 2500 29 0.89 0.26 -0.81 n.a. 0.77 80
C5/3 2524 2903 x 0.62 0.29 -0.83 n.a. 0.70 85
C6/3 2875 1605 44 0.47 0.22 -0.91 n.a. 0.63 90
C7/3 1508 1048 31 0.45 0.24 -0.91 0.02 0.75 90
C8/3 3856 2244 42 1.27 0.18 -0.86 n.a. 0.65 130
D1/1 36498 6313 83 4.18 0.11 -0.77 0.67 1.40 17
D2/1 4318 2543 41 1.49 0.11 -0.99 0.14 1.05 40
D3/1 3209 1907 41 0.90 0.10 -1.14 0.25 0.99 65
D4/3 2388 1979 17 0.63 0.42 -0.73 0.13 0.79 75
D5/3 2834 3263 x 0.82 0.21 -0.88 n.a. 0.67 90
D6/3 1548 1237 20 0.82 0.25 -0.79 n.a. 0.90 110
D7/3 1756 803 54 0.89 0.31 -0.74 n.a. 0.45 270
D8/3 453 238 48 0.33 0.29 -0.82 n.a. 0.46 200
E1/2 10710 1500 86 3.06 0.11 -0.82 0.84 0.75 50
E2/2 7154 965 87 2.35 0.14 -0.80 1.21 0.60 85
E3/3 3065 1681 45 1.02 0.24 -0.80 0.20 0.74 95
E4/3 2367 1495 37 0.80 0.28 -0.82 n.a. 0.71 100
E5/3 992 608 39 0.43 0.32 -0.89 n.a. 0.53 300
F1/3 3768 5250 x 1.56 0.19 -0.85 n.a. 0.71 55
F2/3 2239 1641 27 1.11 0.38 -0.68 n.a. 0.70 80
F3/3 1767 813 54 0.40 0.20 -0.84 n.a. 0.68 100
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F4/3 1257 1174 7 0.33 0.26 -0.95 n.a. 0.70 130
COSTEAU 4 A1/1 5924 9851 X 1.29 0.08 -1.02 0.06 1.70 25
May 2010 A2/1 15354 7646 50 2.90 0.09 -1.03 0.11 2.43 36

A3/3 5343 3021 43 1.22 0.17 -0.89 0.05 0.87 55
A4/3 4733 1361 71 3.46 0.23 -0.64 0.03 0.58 80
A5/3 4168 1599 62 2.82 0.25 -0.66 0.03 0.63 80
A6/3 3946 1462 63 1.73 0.22 -0.82 0.04 0.46 100
A7/3 3088 287 91 2.00 0.25 -0.71 0.03 0.50 145
B1/2 19440 5070 74 4.37 0.11 -0.79 0.29 0.33 20
B2/1 10675 2725 74 1.78 0.10 -0.99 0.18 1.68 50
B3/3 7298 1887 74 3.06 0.11 -0.87 0.20 0.73 80

Stn. B B4/3 3933 1597 59 2.00 0.14 -0.78 0.17 0.53 90
B5/3 2373 462 81 2.24 0.18 -0.74 0.11 0.82 150

Stn. A B6/3 1687 1736 x 1.15 0.24 -0.80 0.04 1.10 200
B7/3 2271 1433 37 1.41 0.16 -0.90 0.15 0.55 265
B8/3 1411 1392 1 1.35 0.15 -0.92 0.10 0.76 200
C1/2 44544 13513 70 4.44 0.22 -0.62 0.47 0.43 20
C2/2 10514 1622 85 2.07 0.13 -0.87 0.28 1.35 45
C3/3 5109 2046 60 1.89 0.14 -0.85 0.23 0.80 75
C5/3 8609 2382 72 3.24 0.22 -0.65 0.25 0.90 90
C6/3 8902 3134 65 4.50 0.15 -0.75 0.27 0.61 90
C7/3 5193 1294 75 2.43 0.16 -0.76 0.36 0.91 85
C8/3 3491 993 72 1.62 0.15 -0.85 0.24 0.41 140
D1/2 33804 3244 90 5.87 0.12 -0.68 0.61 0.77 15
D2/2 21171 3231 85 4.93 0.14 -0.62 0.41 0.69 40
D3/2 16739 2239 87 4.22 0.13 -0.72 0.54 0.90 65
D4/2 15823 1856 88 3.13 0.15 -0.71 0.74 1.20 75
D5/2 11200 2645 76 2.87 0.16 -0.66 1.05 1.13 95

Stn. C D6/2 8968 905 90 3.79 0.12 -0.68 0.51 2.27 115
D7/3 4356 613 86 1.58 0.16 -0.89 0.40 0.49 200
D8/3 1257 664 47 1.23 0.21 -0.79 0.25 0.59 200
E1/2 40713 3925 90 5.21 0.15 -0.60 2.10 2.73 50
E2/2 15312 3602 76 3.97 0.15 -0.72 0.71 2.70 90
E3/3 10570 2130 80 2.38 0.23 -0.74 0.31 0.44 95
E4/3 2734 1503 45 1.65 0.24 -0.74 0.07 0.54 100
E5/3 2047 869 58 1.31 0.27 -0.76 0.06 0.49 200
E6/3 2284 2922 x 1.29 0.20 -0.82 0.05 1.35 200
F1/3 4991 5357 x 1.96 0.19 -0.79 0.02 0.73 60
F2/3 2679 2340 13 1.22 0.22 -0.78 0.05 0.45 80
F3/3 4086 755 82 1.15 0.19 -0.83 0.07 0.40 100
F4/3 1816 1455 20 0.86 0.24 -0.83 0.03 0.54 200
F5/3 1799 1307 27 0.67 0.24 -0.90 0.01 0.76 200
F6/3 1645 2046 x 1.01 0.25 -0.83 0.02 0.55 200
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Table 2. Kruskal-Wallis test applied on the percentage of detritus, % of MEPs and AI considering 

as factors the 3 habitats defined in Espinasse et al. 2014. Post-hoc results are also shown.

Parameter Χ2 p-value Post-hoc

%detritus 25.88 2.39 10-6 Habitat #1 Habitat #2
Habitat #2 <0.001 -
Habitat #3 n.s. <0.001

H2 > H1; 
H2 > H3

%MEPs 39.09 3.23 10-9 Habitat #1 Habitat #2
Habitat #2 <0.001 -
Habitat #3 n.s. <0.001

H2 > H1; 
H2 > H3

AI 61.85 3.7 10-14 Habitat #1 Habitat #2
Habitat #2 n.s. -
Habitat #3 <0.001 <0.001

H3 > H1; 
H3 > H2
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Table 3. Summary describing how to interpret the LOPC abundance with the help of the two 

indicators, %MEPs and AI. The thresholds defined in this study lead to 4 situations. The possible 

causes for these situations are detailed and clues to interpret the data based on the study context are 

proposed. The threshold for overestimation (5 %) is from Schultes and Lopes 2009.

Low AI (< 0.2) High AI (> 0.2)

High % of MEPs (> 2)

(> 5 overestimation)

Aggregate formation if stratified 

waters, can be promoted by high 

primary production in surface layer. 

Sediment input or resuspension in 

nearshore areas.

High concentration of big 

copepods (> 1.5 mm), mainly in 

high latitude areas, or terrestrial 

input (sand).

Low % of MEPs (< 2) Low detritus abundance. If high chl-

a concentration, phytoplankton 

chains or colonies characterized by 

small MEP size (< 400 µm ESD)

Clear water, LOPC mainly 

counting zooplankton.
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Table 4. Comparison of particle characteristics in different regions and different environmental 

conditions. Only stations deeper than 50 m were included. High chl-a: max chl-a > 1 mg m-3.

*data which are out of the optimal conditions for LOPC use (based on the thresholds defined in Table 2)

Environmental 

conditions

Region / remarks # part m-3

min-max

nbr. of stn.

AI

mean

(min-max)

%MEPs

mean

(min-max)

References

Mixed waters Antarctic Peninsula –

Continental bay

Clear water and few 

large-sized organisms

3600 – 

36200

n=16

0.24

(0.09 – 0.54)

0.34

(0.16 – 1.61)

Espinasse et 

al., 2012

Svalbard – 

Cross shelf section

2000 – 

26000

n=10

0.48

(0.36 – 0.56)

0.33

(0.14 – 2.17)

Basedow 

Unpublished 

data

North Atlantic – 

Open ocean

Very clear water

4000 – 

6000

n=3

0.46

(0.31 – 0.62)

0.76

(0.70 – 0.85)

Basedow et 

al., 2016

Brazil coast – 

Continental slope

6900 – 

146000

n=37

0.22

(0.13 – 0.3)

0.87

(0.54 – 2.04)

Schultes and 

Lopes, 2009

NW Mediterranean Sea – 

Continental slope

18000 – 

30000

n=43

0.25

(0.11 – 0.44)

0.90

(0.40 – 1.92)

This study

Polar fjord – Outer part

high chl-a  

130000 –

240000

n=2

0.10*

(0.08 – 0.11)

1.16

(0.71 – 1.61)

Trudnowska 

et al., 2014

Stratified waters Polar fjord – Glacier area

Input of particles from 

melt-water discharge

475000 – 

865000

n=4

0.08*

(0.07 – 0.08)

3.90*

(2.27 – 6.25)

Trudnowska 

et al., 2014

NW Mediterranean Sea - 

Continental shelf

48000 – 

70000

n=8

0.15*

(0.11 – 0.22)

2.08*

(1.13– 4.01)

This study

Stratified waters

+ high chl-a

NW Mediterranean Sea - 

Freshwater run-off

100000 – 

215000

n=13

0.12*

(0.07 – 0.14)

3.21*

(1.70 – 5.36)

This study
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Table S1. Mean values of the parameters within the 3 habitats for the two campaigns. Z_ML = 
Mixed layer depth, Rho_grad = Stratification index, Temp_0 = Sea surface temperature, Sal_0 = 
Sea surface salinity, Rho_b = Water density on the bottom, Chla_int = Integrated chl-a 
concentration, X0.1_0.3mm = Particle abundances from 0.1 to 0.3 mm ESD. From Espinasse et 
al, 2014.

Z_
ML

Rho
grad T_0 Sal_0 Rho_

b
Chla
int

X0.1_
0.3mm

X0.3_
0.5mm

X0.5
mm

NBSS 
slope

January
Habitat #1 18 0.07 11.35 37.08 28.69 0.93 127910 6119 890 -1.15
Habitat #2 1 1.46 11.57 33.88 28.71 0.47 63480 7610 2730 -0.79
Habitat #3 74 0.02 12.58 37.70 28.70 0.53 35620 2932 1207 -0.85

May
Habitat #1 1.8 0.13 16.16 36.78 28.72 0.50 165491 14800 3075 -1.03
Habitat #2 2.6 0.59 17.26 34.95 28.64 0.38 89478 15480 6389 -0.74
Habitat #3 5.3 0.13 16.19 37.07 28.73 0.32 31656 4698 1632 -0.80
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