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Abstract   

In this contribution, we investigate the optoelectronic properties of a donor-acceptor 

poly(N-Dodecyl-2,7-carbazole-alt-benzothiadiazole (CBZ-BT) copolymer in 

solutions and thin films, by a combination of complementary optical and electronic 

spectroscopy techniques including stationary absorption and fluorescence, 

femtosecond time-resolved and ultraviolet/x-ray photoelectron spectroscopy. 

Absorption spectroscopy revealed two bands at 322/338 and 445/475 nm for CBZ-BT 

in solutions/films attributed to the carbazole and benzothiadiazole groups 

respectively. Photoexcitation either to the absorption band of the carbazole or 

benzothiadiazole group led to a broad and structureless fluorescence spectrum due to 

large torsional disorder in the excited state, originating from intramolecular energy 

transfer between carbazole and benzothiadiazole. Time resolved spectroscopy in 

solutions reveals a transient red-shift of the emission spectrum within less than 5 ps 

due to exciton migration and/or conformational relaxation of the polymer backbone. 

In films, this relaxation is faster accompanied by a quenching of the exciton lifetime. 
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Fluorescence depolarization in solutions follows the rate of spectral relaxation. In 

films, the overall depolarization is faster leading to a reduced limiting anisotropy, due 

to efficient energy transfer to adjacent chains with different polarization of the 

transition dipoles and increased disorder in the solid state. An almost complete 

quenching of the copolymer fluorescence, taking place on ~ 150 fs, was observed 

upon blending with a fullerene PC70BM acceptor pointing to an efficient electron 

transfer. CBZ-BT shows a large solid-state ionization potential of 6.2 eV and an 

electron affinity of 3.7 eV. Its potential as an electron donor in polymer solar cells 

(PSCs) was unveiled upon fabrication of relatively high open circuit voltage (~0.85 

V) but low power conversion efficiency (~1.7%) bulk-heterojunction single layer 

PSCs with PC70BM as electron acceptor.  

 

1. Introduction 

Since the discovery of organic photovoltaic (OPV) cells in the early 1990’s [1,2], a 

new era in renewable energy applications has emerged. OPV technology has attracted 

significant interest because of their many advantages such as their compatibility with 

low cost roll-to-roll [3] or lithography-based [4] manufacturing processes and their 

easy and low cost fabrication [5-7]. Currently, the critical challenge for OPVs is to 

extend their long term stability combined with a high power conversion efficiency 

(PCE) of 15% , a goal that has been recently approached by employing novel 

conjugated copolymers with improved optoelectronics properties, non-fullerene 

acceptors and more sophisticated tandem structures enabled by intelligent interfacial 

engineering and passivation [8-20]. Highly efficient organic solar cells utilize a 

solution-processed bulk-heterojunction (BHJ) structure, in which polymeric donor 

and fullerene acceptor molecules form nanoscale interpenetrating hole and electron 

transporting networks, respectively [5-7].
 
The open circuit voltage (Voc) of OPVs 

critically depends on the energy level offset between the HOMO level of the polymer 

and the LUMO level of the fullerene and is primarily limited by the rather low 

ionization potential of most conjugated polymers and interfacial, non-radiative, 

recombination. The short circuit current (Jsc)is mainly limited by the narrow 

absorption range of most conjugated polymers and the donor:acceptor film 

morphology that needs to be optimized in order to maximize the interfacial area for 

efficient exciton dissociation and charge separation.  

New donor-acceptor (D-A) copolymers may provide an efficient route for utilizing 

longer wavelength absorption as a result of intramolecular energy transfer from the 

donor to the acceptor unit [21,22]. Additionally, for higher Voc  polymer solar cells 

(PSCs), there is a need for new polymer donor materials with larger ionization 

potentials that will enable stable cell operation in air. There are three main 

prerequisites for such an efficient donor (co)polymer in PSCs꞉ enhance compatibility 

to allow uniform mixing with appropriate acceptors and stable film morphology, a 

large ionization potential (deep lying HOMO, >5.5 eV) to increase both Voc and cell 
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stability against oxidation, a relatively small bandgap and a low electron affinity (high 

lying LUMO) to allow enhanced utilization of the solar spectrum and efficient, 

ultrafast, photoinduced electron transfer to fullerenes, respectively. A large variety of 

narrow band gap D-A copolymers have been constructed mainly by alternative 

electron-rich and electron-deficient units in the main chain and employed as donors in 

combination with various acceptors to fabricate PSCs with enhanced efficiencies, 

manifested primarily with increased Voc and Jsc. Various ingeniously designed donor 

and acceptor units such as carbazole, fluorene, cyclopentadithiophenethiophene, 

benzo(1,2-b:4,5-b')dithiophene and benzothiadiazole, oxadiazole, 

diketopyrrolopyrrole, thieno(3,4-c)pyrole-4,6-dione, respectively, have been 

employed in an effort to improve solar cell performance [23-43]. To gain a deeper 

understanding on the influence of polymer properties on solar cell performance, a 

detailed characterization is required to unveil structure-property relationships, the 

nature of the excited states and possible limiting factors in their application in solar 

cells. Towards this goal, numerous studies have been published so far focusing on the 

use of ultrafast spectroscopic techniques for the investigation of other well known 

polymers like P3HT, PPV and PCDTBT [44-64]. 

Herein, we report in detail on the optoelectronic properties of a solution-processed 

polycarbazole-benzothiadiazole (CBZ-BT) based copolymer recently synthesized and 

computationally investigated by our group [65,66], its steady state and ultrafast 

photophysics upon blending with a fullerene PC70BM acceptor and its utilization as a 

donor in simple architecture polymer solar cells. A set of optical spectroscopy 

techniques such as stationary absorption and fluorescence as well as fs to ns time 

resolved and upconversion fluorescence spectroscopy have been used including 

polarization sensitive measurements. X-Ray and ultra-violet photoemission 

spectroscopy (XPS and UPS) measurements were also carried out in order to 

characterize the chemical elemental composition of the copolymer, the chemical and 

electronic state of its elements as well as its electronic structure (i.e. highest occupied 

molecular orbital (HOMO) and workfunction, respectively). 

 

2. Experimental section 

2.1 Optical spectroscopy (absorption/photoluminescence). Solution and thin film 

absorption spectra of CBZ-BT (on a glass substrate) were measured using a Jasco V-

650 UV-Vis spectrophotometer while the fluorescence spectra were detected using a 

Fluoromax spectrometer (Horiba). The solid samples were placed on specific holders 

with an inclination angle of 10 degs. The measured spectra were appropriately 

corrected for the sensitivity of the detector. The fs-ps excited state dynamics were 

studied by means of a fs upconversion technique [67]. The excitation of the samples 

was realized at 400 nm i.e. at the second harmonic of the fundamental beam of a fs 

Ti:Sapphire laser. The excitation power was ~ 2 mW (80 MHz repetition frequency) 

and the pulse duration was 80 fs. The fluorescence of the samples was collected and 

focused on a 0.5 mm BBO crystal together with the fundamental laser beam (optical 
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gate) which has passed through a delay line generating an upconversion beam. This 

beam, generated in the BBO crystal, passed through appropriate filters and a 

monochromator and was finally detected by a photomultiplier. For anisotropy 

measurements, the polarization plane of the excitation beam was changed with respect 

to that of the optical gate by means of a Berek compensator. The fluorescence 

anisotropy was determined from the equation 

       
               

                
   (1) 

The time resolved anisotropy parameters were determined by fitting the difference 

factor                      (difference fit). From equation (1) we obtain 

 

     
               

                 
      

               

         
                                

Therefore, for obtaining the anisotropy parameters, the fitting function of the magic 

angle dynamics (with fixed parameters) was multiplied by a trial anisotropy fitting 

function (single or bi-exponential) and convoluted with the IRF. The parameters 

sought are those of       and were determined by fitting the final function to the      

experimental results. 

The ns fluorescence dynamics were studied by using a Time Correlated Single Photon 

Counting (TCSPC) system (Fluotime, Picoquant) equipped with a Microchannel Plate 

photomultiplier (MCP-PMT) [68]. A pulsed diode laser at 400 nm was used for the 

excitation of the samples. The IRF of this system was ~80 ps. The light emitted by the 

samples was collected by a lens and passed through an analyzer and a monochromator 

before being detected by the MCP-PMT. For the ns anisotropy measurements the 

detection analyzer was set to horizontal and vertical orientation with respect to the 

polarization plane of the laser beam. The different response of the monochromator to 

the vertical and horizontal polarization was corrected by calculation of the G-factor. 

The ns anisotropy dynamics was analyzed by a tail fitting method. 

2.2 Morphology, electronic structure and chemical state characterization. Surface 

morphology was investigated with a Veeco atomic force microscope (AFM), operated 

in tapping mode. XPS and UPS measurements were performed for samples without 

any further cleaning treatment prior to their introduction into an ultra-high vacuum 

chamber. For XPS, the Mg Kα line at 1253.6 eV (12 kV with 20 mA anode current, 

not monochromatized) is used in combination with an analyser (Leybold EA-11) with 

a pass energy of 100 eV, giving a full width at half maximum (FWHM) of 1.3 eV for 

the Au 4f7/2 peak. The analyzed area was approximately a 2x5 mm
2
 rectangle, 

positioned near the geometric centre of each sample. XPS analysis was carried out at 

0º take-off angle (normal to the sample surface). In all XPS spectra, the binding 

energy (BE) of the predominant aliphatic contribution to the C 1s peak at 284.8 eV 

was used as a measured BE reference. For the UPS measurements, the He I excitation 
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line (21.2 eV) was used, and a negative bias of 12.23 V was applied to the specimen 

in order to separate the high binding energy cut-off from the analyser. The position of 

its HOMO level was extracted from the low binding energy (BE) (near-Fermi level) 

region while its workfunction was calculated from the high BE cutoff region.  

2.3 Solar cell fabrication and characterization. CBZ-BT:PC70BM concentrations 

of 1:2 or 1:4 by weight in chloroform or 1,2 dichlorobenzene with a total 

concentration of 12.5 mg/ml (i.e: 2.5 mg copolymer and 5 or 10 mg PC70BM) were 

prepared for thin film fluorescence measurements and solar cell fabrication. Solutions 

were annealed and simultaneously stirred at ~40°C for a few hours to ensure a 

homogeneous dispersion. Then, a few tens of μls of the solution was spin-coated at 

600-1000 rpm for 40-60 sec (depending on the solvent used) on indium tin oxide 

(ITO) coated glass substrates (purchased from Sigma-Aldrich) that have been 

previously precoated with poly(3,4-ethylenedioxythiophene) polysterene sulfonate 

(PEDOT꞉PSS, purchased also from Sigma-Aldrich, spin coated at 4000 rpm for 40 sec 

and then annealed at 150° C for 30 min). PEDOT:PSS was used as an anode 

interfacial layer to planarize ITO and improve hole extraction and device 

reproducibility. ~100 nm thick blend films from chlorobenzene were solvent annealed 

for 30 minutes and then thermally annealed at 130°C for 15 min in air. Finally, an Al 

cathode was thermally evaporated through a shadow mask to complete device 

fabrication. Current density-voltage characteristics of the fabricated solar cells were 

measured with a Keithley 2400 source-measure unit in air immediately after 

fabrication. Cells were illuminated with a LCS-100 solar simulator (Newport 

Corporation) equipped with an AM 1.5G filter to simulate solar light illumination 

conditions with an intensity of 100 mW/cm², as was recorded with a calibrated power 

meter. 

 

3. Results and discussion 

3.1 Electronic properties of CBZ-BT films. The investigated poly(N-dodecyl-2,7-

carbazole-alt-benzothiadiazole) (CBZ-BT) copolymer synthesized via Suzuki 

coupling polymerization
 

was optically and electronically characterized both in 

solution and thin films [65]. Its chemical structure is shown in Fig. 1. 

 

Fig. 1. Chemical structure of the poly(N-dodecyl-2,7-carbazole-alt-benzothiadiazole 

(CBZ-BT) copolymer.  



6 
 

The copolymer has a low number average molecular weight (Mn) of 1800 g/mol and a 

weight average molecular weight (Mw) of 2300 g/mol. It is soluble in common 

organic solvents such as THF, chloroform and chlorobenzene. Its electrochemical 

characterization using cyclic voltammetry revealed an ionization potential of 5.5 eV 

(i.e oxidation potential of 0.7 V vs. Fc/Fc
+
 potential at 4.8 V) and an electron affinity 

of 3.0 eV (i.e reduction potential of 1.8 V vs. Fc/Fc
+
) resulting in an electronic band 

gap of 2.5 eV. 

In Figures 2a-d, the XPS spectra which contain valuable information concerning the 

chemical composition (stoichiometry), the spectral shape of the core-level orbitals and 

their binding energies (BEs) are presented. 
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Fig. 2. (a)-(d) XPS core-level spectra of the CBZ-BT copolymer: a) Wide scan, b) 

C1s, c) O1s, d) N1s spectra. (e) UPS spectrum of the CBZ-BT copolymer (the middle 

part depicts the full spectrum whereas the left and right part depict the high and low 

BE (near Fermi level) region, respectively).  
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In Figure 2a the XPS wide scan can be seen whereas the atomic ratios supposing a 2.5 

nm-thick carbon contamination layer on top of the surface 

(C꞉O꞉N꞉S꞉Si=1.00꞉0.44꞉0.11꞉0.03꞉0.02) may be extracted upon taking into account 

each core level’s photoionization cross section to correct for their sensitivity. Figs. 2b-

d depict the C1s, O1s and N1s core-level spectra with peaks at 285.0, 532.4 and 399.9 

eV, respectively. In Fig. 2e, the UPS spectrum of the CBZ-BT copolymer is presented 

(middle part of the Figure). On the right side of the Figure which depicts the spectrum 

at low BEs near the Fermi level, the highest occupied molecular orbital (HOMO) is 

found to be 2.4 eV below the Fermi level. From the left side of the figure, the work 

function of the polymer can be calculated to be 3.8 eV (from the onset at high BEs). 

This results in an ionization potential of 6.2 eV and an electron affinity of 3.7 eV, 

upon substraction of its band gap (2.5 eV) from the ionization potential value. The 

distinct difference (~0.7 eV) between the ionization potential values obtained by 

electrochemistry (in solution) and by UPS spectroscopy (in solid-state) may be 

indicative of strong polarization effects upon film self-organization. Furthermore, the 

local environment of the polymeric chains (solvent vs. thin film under high vacuum) 

may play a significant role in the determination of the ionization potential, as 

previously suggested [69].
 

 

3.2 Photophysical properties of CBZ-BT and CBZ-BT:PC70BM.  Figure 3a shows 

the absorption and fluorescence spectra of CBZ-BT polymer in chloroform solution 

with a concentration of 0.027 mg/ml. The photophysical parameters are summarized 

in Table 1. The polymer exhibits two absorption peaks in the visible and UV regions, 

as observed previously for other donor-acceptor copolymers, with no indication for 

ground state interaction [46, 70-73]. The high energy band located at 322 nm 

originates from the carbazole donor moiety while the lower energy band at 445 nm is 

assigned to the benzothiadiazole acceptor group [70,71]. Upon excitation, there is a 

significant charge displacement since the HOMO is extended over the whole 

polymeric chain i.e. both the carbazole and benzothiadiazole units while the LUMO is 

localized at the acceptor fragments i.e. benzothiadiazole [66]. Its fluorescence 

spectrum is broad and structureless and has a peak centered at 564 nm. The peak 

position and shape of the spectrum is identical upon excitation at the high or low 

energy absorption peak pointing to emission that originates from excitation energy 

transfer between carbazole and benzothiadiazole. The only difference is that upon 322 

nm the fluorescence intensity is 1.5 times higher (not shown), in agreement with the 

excitation spectra, being more intense at the high energy band. The agreement 

between the absorption and fluorescence excitation spectra indicates that energy is 

transferred very efficiently from carbazole to the benzothiadiazole group pointing to 

minimized energy losses. Finally the broad and structureless fluorescence spectrum 

indicates large torsional disorder in the excited state. If the fluorescence spectrum was 

structured and narrow displaying vibronic feature, it would point to a localized 

exciton to a state with weak torsional freedom (planarization). 
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In films, the absorption peaks are red-shifted (Figure 3b) and the bands are broader. 

Specifically, the two absorption peaks are found at 338 and 475 nm (Table 1). The 

optical band gap is calculated 2.5 eV by the absorption onset. As in the case of 

solutions, the fluorescence spectra in films were taken by exciting at both absorption 

peaks and the spectra were identical. Compared to the spectra of the solution, the 

fluorescence peak in films is red shifted to 588 nm. Apart from the red-shift, there is 

not obvious broadening of the fluorescence spectrum of the films compared to that in 

solution. However, a small narrowing of the high energy part is observed possibly due 

to self absorption. The red-shift of both absorbance and fluorescence in solid-state 

films suggests increased intermolecular interactions (such as π-stacking).  
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Fig. 3. Absorption, fluorescence and excitation spectra of CBZ-BT copolymer in (a) 

CHCl3 solutions and (b) neat film. In (b) the absorption spectrum of CBZ-

BT:PC70BM blend film is also shown. 

 λAbs (nm) λFluor (nm) 

CBZ-BT/ChCl3 322/445 564 

CBZ-BT/film 338/475 588 
 

Table 1. Photophysical parameters of CBZ-BT in solution and thin film. 

As in solutions, the excitation spectrum for CBZ-BT thin films is similar to the 

absorption one. Specifically, the peak positions remain unchanged. The only 

difference is that the relative intensity of the highest energy band (due to carbazole 

group) reduces vs. the intensity of the lowest energy one. This finding can be 

primarily ascribed to a part of the excitation energy provided to the carbazole moiety 

that is lost before energy transfer to the benzothiadiazole moiety by hopping to chain 

defects acting as quenching sites or by the formation of free polarons on separate 

chains which are non-fluorescent species [73].
 

In Figure 3b, the absorption spectrum of a CBZ-BT:PC70BM blend film (1:2 wt.% 

ratio) is also shown. The absorption bands at ~ 340 and 470 nm are only slightly 
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broader compared to those of CBZ-BT and exhibit a reduction in their intensity and 

the corresponding absorption coefficients. At ~370 nm, a new peak arises due to 

absorption from PC70BM. Also, a slight blue shift of the 470 nm CBZ-BT peak is 

observed upon blending with PC70BM which is probably due to reduced 

intermolecular interactions and a decrease of the interchain stacking in the presence of 

PC70BM. Again, no evidence for ground state interaction between CBZ-BT and 

PC70BM is observed. On the other hand, the fluorescence spectrum of CBZ-

BT:PC70BM shows an almost complete quenching (more than 90%) at a 50% ratio 

(not shown), which is attributed to efficient exciton dissociation and photoinduced 

electron transfer from the excited state of the CBZ-BT donor to the PC70BM 

acceptor.  

In order to shed light to the excited state dynamics of the copolymer and its blends 

with PC70BM, the fluorescence dynamics of CBZ-BT were first investigated in 

chloroform solutions to determine the fundamental decay properties of this polymer. 

The dynamics were studied upon excitation at 400 nm and detection at various 

wavelengths across the fluorescence spectrum. The excitation wavelength lies within 

the benzothiadiazole absorption band, but provides excess energy to the system and 

therefore relaxation phenomena such as thermalization of carriers and vibrational 

relaxation may be present. Figure 4a shows characteristic results at three decay 

wavelengths. The dynamics detected at high energies (short wavelengths) exhibit a 

fast decay while no rise mechanism is found. The absence of rise indicates that loss of 

the excess energy occurs faster than our instrument response function (IRF). At low 

energies (long wavelengths) the dynamics exhibit a rise followed by a slow decay. 

This behavior points to a transient red-shift of the fluorescence spectrum at short 

times in agreement with qualitatively similar results that have been found for other 

conjugated polymers in solutions [46,47,74,75]. In order to analyze the results, a 

global fitting method was performed based on a multiexponential function convoluted 

with the IRF. The obtained time constants were τ1=0.54 ps, τ2=4.9 ps, τ3=46 ps and 

τ4=1.4 ns (Table 2). These time constants are in great similarity with those found for 

PCDTBT in chlorobenzene solution using the same experimental method [46]. The 

pre-exponential factors are shown in Figure 4b and Table 2 together with the average 

lifetimes calculated by       
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Fig. 4. (a) Excited state dynamics for CBZ-BT in chloroform solutions at three 

different detection wavelengths measured by FU, (b) pre-exponential amplitudes as a 

function of emission wavelength obtained after a global fitting analysis with a 

multiexponential function.  

The time constants found via a multiexponential fitting may represent an average time 

originated by different competing mechanisms taking place on a similar timescale. 

Therefore, imposing a specific physical mechanism to each time constant may be 

complicated and risky. In our case, the two fast time constants (τ1 and τ2) of the order 

of 0.5-5 ps are responsible for the spectral relaxation as they have positive amplitudes 

at short wavelengths and negative at long ones pointing to a decay and rise 

respectively.  

 

Table 2. Fitting results of the FU fluorescence dynamics for CBZ-BT in chloroform solution 

obtained after a global analysis. The excitation wavelength was 400 nm. 

Mechanisms such as vibrational cooling, conformational changes of the polymer 

backbone and inter- or intra-chain energy transfer of excitons could contribute to the 

spectral relaxation. However, vibrational cooling occurs on a 100 fs timescale [46] 

λdet (nm) A1 τ1 (ps) A2 τ2 (ps) A3 τ3 (ps) A4 τ4 (ps) τaver (ps) 

485 0.70 0.54 0.21 4.9 0.02 46 0.07 1400 100 

500 0.48  0.37  0.03  0.12  171 

515 0.26  0.45  0.05  0.24  340 

530 0.18  0.37  0.08  0.37  520 

545 -0.07  0.26  0.13  0.61  860 

560 -0.23  0.11  0.09  0.80  1120 

575 -0.20  -0.03  0.03  0.97  1360 

590 -0.21  -0.17  0  1  1400 

605 -0.21  -0.22  0  1  1400 

620 -0.04  -0.33  0  1  1400 
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and therefore it is most possible that conformational changes and transfer of excitons 

are the origin of the spectral relaxation on the timescale of 0.5-5 ps observed here. On 

the other hand, spectral relaxation due to solvation cannot be ruled out since 

chloroform has been found to exhibit solvation times of ~4 ps [76]. Besides, exciton 

self localization has been reported to occur on a <100 fs timescale and most probably 

it is not observed through our magic angle dynamics [46]. However, the processes 

taking place within our IRF could affect the polarization sensitive experiments (vide 

infra). Finally, τ3 has positive amplitudes at all emission wavelengths and therefore 

corresponds to a decay procedure, maybe from an unrelaxed non-localized exciton. 

This is the reason why its pre-exponential factors are small. The longest time constant 

(τ4=1.4 ns) suffers from increased uncertainty due to the temporal limit of the fs 

upconversion technique and it is due to a population decay from the relaxed excited 

state. Since the fluorescence spectrum of CBZ-BT is broad and unstructured, various 

emitting conformers exist. This means that the 1.4 ns lifetime is most probably an 

average lifetime of the emitting species and it can be analyzed in more details by 

means of ns spectroscopy.  

Therefore, in order to better analyze the dynamics on long timescales, a TCSPC 

technique was used and the long decay of CBZ-BT in chloroform solution is shown in 

Figure 5. Fitting of the TCSPC decay curve revealed three decay mechanisms with 

lifetimes (normalized amplitudes) τ1=0.65 ns (0.37), τ2=2.5 ns (0.24) and τ3=4.3 ns 

(0.39) with χ
2
 equal to 1.01, while fitting with a bi-exponential function gave a less 

satisfactory χ
2
 parameter higher than 1.15. The observation of three decay 

mechanisms reveals the existence of various emitting species as mentioned before.  In 

order to correlate the fluorescence dynamics detected on a short (upconversion) and 

long (TCSPC) timescale, the amplitude averaged lifetime of the two first mechanisms 

(0.65 ns and 2.5 ns) obtained by TCSPC was calculated and found 1.38 ns. This value 

is very close to the 1.4 ns found by the fs upconversion measurements. The longer 4.3 

ns component was not used for the calculation of the average lifetime and comparison 

with the upconversion results because this is much longer than the upper temporal 

limit (1.5 ns) of the fs technique.  
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Fig. 5. Fluorescence dynamics in the ns timescale of CBZ-BT in chloroform solutions 

and deposited as a neat film on glass obtained by TCSPC. The inset shows the ns 

anisotropy dynamics of CBZ-BT in chloroform. 

 

Figures 6a and b show the fluorescence dynamics polarized parallel and vertical to the 

polarization plane of the excitation beam for two emission wavelengths i.e. 500 and 

565 nm, while Figure 6c presents the corresponding anisotropy r(t) of CBZ-BT in 

chloroform solutions. In general, anisotropy dynamics is a valuable experimental tool 

to investigate energy transfer/migration phenomena as these lead to depolarization of 

fluorescence and thus to a decay of anisotropy [46,47,77-83]. The initial anisotropy, 

r0, at 565 nm is 0.25 i.e. lower than the upper limit of 0.4 which is predicted for 

parallel absorption and emission transition dipoles. The fact that the initial anisotropy 

is lower than the theoretical upper limit could indicate non-parallel absorption and 

emission dipoles but it also indicates significant depolarization within the IRF of our 

system. In that case, ultrafast mechanisms such as exciton self localization and energy 

vibrational relaxation may contribute to emission depolarization. Fitting of the 

anisotropy decay on the ps timescale, gave a time constant of 43 ps, i.e. very close to 

the 46 ps time constant found in magic angle dynamics. This means that rotation of 

the emission dipole takes place on this timescale. After a few tens of ps, the 

anisotropy reaches a limiting value of ~ 0.2 as shown at the inset of Figure 6c, 

indicating an angle of ~ 35
o
 between the absorption and emission dipole moments.

 

Since, excitation by means of the fs pulses is realized at the lowest energy band (i.e. 

the benzothiadiazole absorption band), this dipole rotation involves energy transfer 

steps between various benzothiadiazole units and does not involve the 

carbazole→benzothiadiazole energy transfer. The drop of anisotropy within 200 ps is 

small, pointing to a small amount of hopping steps. 
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Fig. 6. Fluorescence dynamics polarized parallel and perpendicular with respect to the 

polarization plane of the laser beam for CBZ-BT in chloroform detected at (a) 500nm 

and (b) 565nm. (c) The corresponding anisotropy dynamics at 500 and 565 nm. The 

inset in (a) shows the difference factor D(t)=Ipar(t)-Iper(t) used for determining the 

anisotropy decay parameters. The inset in (c) shows the anisotropy dynamics on a 0-

200 ps timescale. 

However, the faster time constants observed in magic angle dynamics because of 

exciton transfer, leading to spectral relaxation, are not observed in the anisotropy 

dynamics detected at 565 nm possibly because at this wavelength the fluorescence 

intensity is mainly due to an already relaxed state that is generated after energy 

migration.  In order to probe higher excited states i.e. non-relaxed states, the 

anisotropy dynamics was studied at 500 nm i.e. at the blue edge of the fluorescence 

spectrum. The initial anisotropy, r0, found at 500 nm is 0.3 i.e. higher than that found 

at 565 nm while a fast decay component is also observed which was not found at 565 

nm. After fitting of the difference factor D(t)=Ipar(t)-Iper(t), at 500 nm, the fast decay 

time was found 3.4 ps which is in very good agreement with the average of the fast 

decay times found under magic angle detection meaning that exciton migration leads 

to emission depolarization. This depolarization takes place after electronic dephasing 

has taken place and is due to a hopping excitation energy transfer. Next, the 

anisotropy at 500 nm decays with a ~ 45 ps component with small amplitude as at 565 

nm i.e apart from the 3.4 ps time constant found at 500 nm, the anisotropy at the two 

detection wavelengths decays on the same manner after the first 20 ps. So, in our case 

the fluorescence depolarization is due to a bi-phasic homotransfer among the 

benzothiadiazole units. Note that this type of hopping among iso-energetic species 

affects the transition dipole orientation but not the emission spectrum. On the ns 
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timescale, a long component of 1.48 ns which is due to the very slow rotation of the 

polymer chains is found by TCSPC (inset of Figure 5).  

Next, the dynamics for CBZ-BT thin film on glass substrates was studied as shown in 

Figure 7a. The dynamics were detected again at various wavelengths across the 

fluorescence spectrum. Care was taken to minimize exciton-exciton annihilation 

which occurs at high excitation powers. In that case, two excitons combine to form a 

higher energy one causing a quenching of fluorescence and acceleration of the decay 

dynamics. Various excitation powers were used and measurements showed that the 

decays become slower as the excitation power decreases due to vanishing contribution 

of annihilation while this retardation saturates at low energies. Therefore our 

measurements were performed with the smallest excitation power possible where 

annihilation is considered absent. A similar global fitting analysis, as in the case of 

solutions, was used and the time constants were found τ1=0.8 ps, τ2=3.0 ps, τ3=22 ps 

and τ4=160 ps (Table 3). The fastest time constant has amplitudes that become 

negative at long wavelengths and is therefore responsible for a gradual shift of the 

fluorescence spectrum to lower energies (Figure 7b and Table 3). This time constant 

is larger than the corresponding one observed for solutions (0.54 ps). This fact, 

together with the absence of a longer spectral re-organization time constant is due to 

the reduced conformational freedom of CBZ-BT in film and absence of solvation. If 

conformational and torsional changes were important, then spectral relaxation in films 

within the few ps timescale would be slower than that in solutions. The other three 

time constants have positive amplitudes meaning that they represent decay 

mechanisms. These three time constants are found faster in films than in solutions 

implying that they are affected by interchain interactions. τ2 and τ3 could potentially 

represent the decay of unrelaxed species while τ4 represents the decay of the relaxed 

state. τ4 is much smaller that the corresponding time in solutions pointing to a 

significant quenching due to interchain effects. Such a reduced lifetime is due to 

increased non-radiative transitions [84,85]. Measurements via the TCSPC method 

revealed two decay mechanisms with lifetimes (amplitudes) equal to τ1=0.12 ns (0.76) 

and τ2=0.42 ns (0.24) (Figure 5). The average of these lifetimes is 0.178 ns, i.e. close 

to the value found by fs upconversion.  
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Fig. 7. a) Excited state dynamics of a CBZ-BT film at three detection wavelengths. 

(b) pre-exponential amplitudes as a function of emission wavelength obtained after a 

global fitting analysis with a multiexponential function, (c) Excited state dynamics of 

the same film on glass and FTO and of a CBZ-BT:PC70BM (1:2 wt%) blend on FTO. 

Table 3. Fitting results of the FU fluorescence dynamics for CBZ-BT deposited as neat film on 

glass obtained after a global analysis. 

Besides, magic angle dynamics, the time dependent anisotropy was also studied in the 

polymeric neat films at the peak of the fluorescence spectra and the results are shown 

in Figure 8. First, the initial anisotropy is close to that found at the emission peak of 

the polymeric solution (565 nm) meaning that the initial (< 100 fs) coherent 

depolarization is mainly of intrachain character. Fitting of the difference factor (inset 

in Figure 8a) led to a fast decay time of 0.7 ps and a second one of 7 ps. The former is 

within the spectral relaxation timescale observed under magic angle conditions. 

However, in films, the anisotropy decays much faster than in solutions due to the 

λdet (nm) A1 τ1 (ps) A2 τ2 (ps) A3 τ3 (ps) A4 τ4 (ps) τaver (ps) 

530 0.47 0.8 0.29 3.0 0.23 22 0.01 160 7.9 

545 0.15  0.45  0.38  0.06  19 

560 0.11  0.23  0.40  0.22  44 

575 -0.07  0.2  0.48  0.32  62 

590 -0.09  0.05  0.52  0.33  65 

605 -0.11  0.08  0.54  0.38  73 

620 -0.14  0.06  0.33  0.41  77 
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much increased possibility of inter-chain energy transfer because of the much closer 

proximity of the polymeric chains. This leads to an increased rotation of the 

transmission dipole and finally to a loss of anisotropy. The limiting anisotropy (at 40 

ps) for CBZ-BT in films, being smaller than that in solutions, is also an indication of 

increased disorder compared to solutions. 
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Fig. 8. (a) Fluorescence dynamics polarized parallel and perpendicular with respect to 

the polarization plane of the laser beam for CBZ-BT neat film detected at 590 nm. (b) 

The corresponding anisotropy dynamics. The inset in (a) shows the difference factor 

D(t)=Ipar(t)-Iper(t) used for determining the anisotropy decay parameters. 

Finally, CBZ-BT was studied in blend films with PC70BM deposited on fluorine 

doped tin oxide (FTO) substrates. For comparison, a neat CBZ-BT film deposited on 

FTO was also studied. The results are shown in Figure 7c. In this figure, the 

corresponding results for CBZ-BT on glass are presented as a reference. It is obvious 

that the decay of CBZ-BT on FTO is identical to that in glass. On the other hand, the 

decay of CBZ-BT/PC70BM film exhibits an ultrafast decay of ~150 fs with 

pronounced contribution while only ~ 5 % of the initial intensity survives after 5 ps 

(the IRF is also shown). This indicates highly efficient emission quenching due to the 

exciton dissociation and charge transfer from the polymer to PC70BM [45,86,87], in 

excellent agreement with the steady state fluorescence measurements. This process is 

obviously highly desirable towards high solar cell efficiency and suggests that this 

copolymer could be an effective donor in polymer solar cells with PC70BM or other 

fullerene acceptors. 
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3.3 Polymer solar cell characteristics. The potential of using CBZ-BT as a polymer 

donor in solar energy conversion was next investigated. Polymer solar cells from a 

chloroform CBZ-BT:PC70BM (1:2 or 1:4 wt.%) solution were fabricated and 

electrically characterized. A simple architecture ΙΤΟ/PEDOT:PSS/CBZ-

BT:PC70BM/Al was used for the fabricated solar cells. Optimum performance was 

demonstrated for a CBZ-BT:PC70BM 1:4 wt.% ratio either in chloroform or in 1,2 

dichlorobenzene. Only a minor influence of the solvent or additives such as 1,8-

diiodooctane (DIO) on solar cell performance was noted, possibly as a result of its 

amorphous nature (vide infra). Solar cells with this donor:acceptor ratio showed a 

relatively high Voc of 0.83 V, a Jsc of 4.3 mA/cm
2
, and a FF at 0.48 resulting in a 

relatively low power conversion efficiency (PCE) of 1.7%. Cells with a 1:2 wt.% ratio 

showed a Voc of 0.85 V, a Jsc of 4.7 mA/cm
2
, a FF at 0.37 resulting in a similar PCE 

of 1.5%. The main difference upon increasing the PC70BM:CBZ-BT ratio is the 

significantly increased FF with only a small influence on Voc and Jsc. The increased 

FF suggests more balanced charge transport and reduced nongeminate recombination, 

probably caused by an improved degree of intermixing and, thus, an increased number 

of pathways for charges to reach the electrodes. Despite the relatively high Voc 

obtained that is directly attributed to the large ionization potential of the CBZ-BT 

copolymer, the low Jsc suggests a limited charge collection efficiency. Although the 

significant difference between the LUMO of CBZ-BT and PC70BM that amounts 

ΔΕLUMO~0.6 eV should provide the necessary driving force for charge separation, the 

low Jsc may be a direct result of the relatively small value of the change in the Gibbs 

free energy ΔG between the excited and the charge separated state defined by the 

relation ΔG=IPD-EAA-Eexciton, where IPD is the donor ionization potential (6.2 eV), 

EAA is the acceptor electron affinity (4.3 eV) and Eexciton is the photogenerated donor 

exciton energy (2.1 eV, as calculated from the emission spectrum peak energy).  

Herein, ΔG=-0.2 eV which is lower than the optimal ΔG=-0.3-0.5 eV for PSCs [88], 

potentially leading to a decreased charge-separation rate and, thus, an overall lower 

charge collection. In Figure 9, the J-V characteristics of the fabricated PSCs in the 

dark and under illumination are depicted. The dark J-V characteristics demonstrate a 

good diode behavior (i.e. low leakage current and distinct turn-on voltage of ~0.8 V).  
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Fig. 9. (a) J-V characteristics for ITO/PEDOT꞉PSS/CBZ-BT꞉PC70BM (1:4 or 1:2 

wt.% ratio)/Al PSCs. (b) The dark J-V characteristics of the CBZ-BT:PC70BM (1:4 

wt.%) based cell.   

XRD spectra of CBZ-BT and its blends with PC70BM showed no diffraction peaks 

(not shown), even after annealing up to 150° C, indicating that the copolymer is 

amorphous, as also verified previously by differential scanning calorimetry analyses 

[65]. Finally, the surface morphology of the CBZ-BT:PC70BM (1:2 wt.% ratio) blend 

films was investigated by atomic force microscopy (AFM) in order to unveil its 

possible influence on the PSC performance. As shown in Figure 10, blend films were 

relatively homogeneous with a root mean square (RMS) roughness value of 0.62 nm. 

Films exhibited small nanoscale phase separation with intermixed domains in the 

range of 50-100 nm, which is generally favorable for relatively effective charge 

generation as suggested by the fluorescence measurements.  

 

Fig. 10. 5x5 μm
2
 AFM topographic image of CBZ-BT:PC70BM blend film with a 1:2 

weight ratio. 

 

4. Conclusions 

In summary, a donor-acceptor carbazole-benzothiadiazole copolymer (CBZ-BT) was 

investigated in depth with regard to its optoelectronic properties and utilized as an 

electron donor in polymer solar cells in conjunction with PC70BM. The XPS 

characterization revealed the atomic ratio on the polymer surface while UPS 

characterization resulted in a solid-state ionization potential of 6.2 eV and a film 

workfunction of 3.8 eV. CBZ-BT photophysical characterization revealed a broad and 

structureless  fluorescence spectrum due to torsional disorder at the excited state, 

originating from intramolecular energy transfer between carbazole and 

benzothiadiazole. Besides, a transient spectral relaxation within few ps was observed 

due to conformational changes of the polymer chains and downhill relaxation of 

excitons. This spectral relaxation was faster in films. Time resolved anisotropy 

measurements revealed a faster depolarization in films due to increased disorder. The 

femtosecond time-resolved fluorescence studies of the CBZ-BT:PC70BM blend 

revealed an ultrafast photoinduced electron transfer taking place in less than 150 fs 

from the copolymer to PC70BM supporting the steady state fluorescence picture that 
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exhibited almost complete quenching upon its blending with PC70BM. Relatively 

high open circuit voltage (~0.85 V) but low power conversion efficiency (1.7 %) 

CBZ-BT:PC70BM (1:2 wt% ratio) polymer solar cells were demonstrated in a single 

layer device architecture. This study provides particular insights in the ultrafast 

excited state dynamics of a carbazole-benzothiadiazole based copolymer both in 

solution and film and unveils its potential for applications in solar energy harvesting. 

Further improvements in solar cell efficiency can be anticipated upon using higher 

molecular weight carbazole-benzothiadiazole copolymers and employing more 

advanced architectures.  
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