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We present an extended Tersoff potential for boron nitride (BN-ExTeP) for application in large scale atomistic
simulations. BN-ExTeP accurately describes the main low energy B, N, and BN structures and yields quantitatively
correct trends in the bonding as a function of coordination. The proposed extension of the bond order, added
to improve the dependence of bonding on the chemical environment, leads to an accurate description of point
defects in hexagonal BN (h-BN) and cubic BN (c-BN). We have implemented this potential in the molecular
dynamics LAMMPS code and used it to determine some basic properties of pristine 2D h-BN and the elastic
properties of defective h-BN as a function of defect density at zero temperature. Our results show that there is
a strong correlation between the size of the static corrugation induced by the defects and the weakening of the
in-plane elastic moduli.

DOI: 10.1103/PhysRevB.96.184108

I. INTRODUCTION

Following the discovery of graphene, many other 2D mate-
rials have been identified [1]. Of these, monolayer hexagonal
boron nitride (h-BN) is attracting increasing attention as a
prototype substrate for graphene thanks to its similar structure,
chemical inertness, and the insulating character [2,3]. The
large 5–6 eV band gap [4] makes h-BN transparent, whence
its nickname “white graphene,” and makes it suitable for
application in deep UV optoelectronic devices [5,6].

Besides h-BN, BN and the pure components B and N exist
in many competing phases. Different classical potentials have
been parametrized for B-N systems, including a number of
Tersoff potentials [7–10]. For h-BN, Kınacı et al. parametrized
a Tersoff potential to describe phonons and thermal transport
[9,10] while Matsunaga et al. parametrized a Tersoff potential
to study cubic boron carbonitrides [8]. Also several ReaxFF
potentials have been parametrized to describe liquids with
molecules including boron and nitrogen [11,12]. Of the
existing potentials for BN proposed thus far, however, none
are meant to describe the larger class of solid phases of B, N,
and BN, as well as various defects that typically occur in CVD
grown and irradiated materials [13–15].

Here we introduce BN-ExTeP, an extended Tersoff po-
tential for BN specifically aimed at describing correctly the
dependence on coordination and chemical environment of the
bonding occurring in B, N, and B-N systems. The normal
Tersoff part of the potential improves an earlier Tersoff
potential by Albe and Möller for BN [7,16]. For the here
presented potential, special attention is paid to achieving
an optimal description of 2D h-BN, including its thermal
stability, lattice parameter, and elastic properties. Regarding
its elastic properties, it solves the artifact of the earlier
potential [7,16] that yields a too large uniaxial modulus and
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a negative Poisson’s ratio, in disagreement with ab initio
calculations [17,18]. In addition, BN-ExTeP yields a lattice
parameter for h-BN in perfect agreement with the experimental
value, which makes it, in conjunction with a potential for
carbon, particularly suitable for application to graphene/
h-BN heterostructures requiring an accurate description of the
lattice mismatch between graphene and h-BN. To improve
the description of nonpristine structures, in particular defected
h-BN and c-BN, a correction to the bond order is introduced
that explicitly takes into account the chemical environments
of the atoms involved in the bond, as suggested in Ref. [16].
While the pure B parametrization in BN-ExTeP is practically
the same as in Ref. [16], the parametrization of the pure N
part has been modified to improve the binding energies of the
relatively stable pure N 2D honeycomb and diamond lattices
and the BN interactions have been reparametrized to improve
the description of h-BN and c-BN.

The complete BN-ExTeP has been implemented in
LAMMPS [19] and allows for large scale molecular dynamics
simulations of BN systems. Here, we use it to study the elastic
properties of defective h-BN at T = 0 K as a function of defect
density. For h-BN with randomly distributed defects we find
a weakening of the elastic constants with increasing defect
density that is much more pronounced for those defects that
induce large static corrugations of the layer.

In Sec. II we give a brief description of the potential, for
which we provide the numerical parametrization in Sec. III.
In Sec. III A we present the parametrization of the Tersoff
potential, optimized for the description of reference B, N,
and BN molecular and crystal structures not involving the
correction term. In Sec. III B, we then compare the structure
and energetics of many point defects in h-BN and c-BN and
of binary molecular structures to ab initio results to complete
the parametrization of the correction term. Our results from
large scale simulations of pristine and defective 2D h-BN will
be presented in Secs. IV and V, respectively. Conclusions and
perspectives are given in Sec. VI.
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II. DESCRIPTION OF THE POTENTIAL

BN-ExTeP extends the classical Tersoff potential [20] with
a correction to the bond order that allows us in particular
to discriminate bonding situations where the coordination
numbers are identical but chemical identities are not. For
completeness, the description below also includes the basic
form of the Tersoff potential [20].

The total binding energy of the system is given by

E = 1

2

∑
i,j

fC(rij )[VR(rij ) − BijVA(rij )]. (1)

The double sum here runs over all atoms i and j , and fC is a
smooth cutoff function:

fC(r) =

⎧⎪⎨
⎪⎩

1 r � R − D

1
2

[
1 − sin

(
π(r−R)

2D

)] |R − r| < D

0 r � R + D

. (2)

VR and VA are the repulsive and attractive potentials, respec-
tively,

VR(r) = D0

S − 1
exp [−β

√
2S(r − r0)], (3)

VA(r) = SD0

S − 1
exp [−β

√
2/S(r − r0)], (4)

so that the dimer bond energy, VR(r) − VA(r), has a minimum
at r = r0 equal to −D0. Bij is the total bond order,

Bij = 1
2 (bij + bji) + Fij , (5)

where bij is the usual Tersoff bond order and Fij is the proposed
correction.

The Tersoff bond order bij is a many-body term involving
the relative positions of nearest neighbors reading

bij = (
1 + γ nχn

ij

)−1/(2n)
, (6)

where

χij =
∑
k �=i,j

fC(rik)g(θijk) exp
(
λ3

3(rij − rik)3
)
, (7)

with θijk the angle between rij and rik and

g(θ ) = 1 + c2

d2
− c2

d2 + (h − cos θ )2
. (8)

The correction term reads

Fij = Fenv(Nij ,Nji)FIJ

(
NĪ

ij ,N
J̄
ji

)
, (9)

where Fenv is an envelope function that smoothly switches
off the correction term for the BN dimer and for high (total)
coordinations Nij and/or Nji , and where FIJ (NĪ

ij ,N
J̄
ji) is the

correction term proposed in Ref. [16], which depends on
the partial, reduced coordination numbers NĪ

ij and NJ̄
ji for

neighbors with a chemical identity Ī and J̄ other than the
identity I of atom i and J of atom j , respectively, with
I,J = B,N. The total, reduced coordination Nij , excluding
neighbor j , is given by:

Nij =
∑
k �=i,j

fC(rik), (10)

whereas the partial, reduced coordination NĪ
ij is given by:

NĪ
ij =

∑
k �=i,j

fC(rik)δĪ ,K, (11)

where δĪ ,K is one if the chemical identity K of atom k is not
equal to the chemical identity I of atom i and zero otherwise.
The envelope function reads:

Fenv(Nij ,Nji) = Fenv,0(Nij ,Nji)Fenv,4(Nij )Fenv,4(Nji) (12)

with:

Fenv,0(x,y) = 1 − (1 − x)2(1 − y)2 (13)

for x,y < 1 and Fenv,0(x,y) = 1 otherwise, and

Fenv,4(x) = (2x − 5)(4 − x)2 (14)

for 3 < x < 4, while Fenv,4(x) = 1 for x � 3 and Fenv,4(x) = 0
for x � 4. This envelope guarantees continuity up to first order
derivatives as required for molecular dynamics simulation.

The low energy structures in BN systems are low coor-
dinated (�4) and accordingly the correction term parameters
FIJ are fitted to low coordination configurations. The envelope
function in Eq. (9) is applied to avoid unphysical stabilization
of configurations with high coordination (>4) due to correction
terms. Without Fenv we found unphysical, relatively high
coordinated configurations appearing during melting of c-BN
or h-BN.

For noninteger arguments, FIJ is evaluated using a spline,
identical to that used for the conjugation term in LCBOP
[21], based on the values FIJ and the first order partial
derivatives of FIJ at the integer, grid points (NĪ

ij ,N
J̄
ji) for

0 � NĪ
ij � 4 and 0 � NJ̄

ji � 4. The values of FIJ for NĪ
ij = 4

and/or NJ̄
ji = 4 are set equal to FIJ (4,NJ̄

ji) = FIJ (3,NJ̄
ji) and

FIJ (NĪ
ij ,4) = FIJ (NĪ

ij ,3). Partial derivatives with respect to

NĪ
ij are set to zero at grid points with NJ̄

ji = 0, 3 and 4,

and partial derivatives with respect to NJ̄
ji are set to zero at

grid points with NĪ
ij = 0, 3, and 4. In the other cases, the

partial derivative at a given grid point is also set to zero
if the values of Fij at the two neighboring grid points are
both smaller or both larger than the value of Fij at the given
grid point. In the remaining cases, the partial derivatives
are computed by a centered, finite difference expression
based on the values at these neighboring grid points, e.g.,
∂Fij /∂NĪ

ij = (Fij (NĪ
ij + 1,NJ̄

ji) − Fij (NĪ
ij − 1,NJ̄

ji))/2 at the

grid point (NĪ
ij ,N

J̄
ji).

III. PARAMETRIZATION

A. Tersoff potential

We first parametrize the Tersoff part of BN-ExTeP by least
square fitting to reference values for B, N, and BN structures
with variable coordination environments. Most of the reference
values were obtained from ab initio calculations within density
functional theory (DFT) using the DMol code and reported in
Ref. [16]. Where available, these values were compared to
experimental data or other ab initio values from the literature.
For all defects in h-BN apart from the intercalation defects
(see Tables V and VI), we also performed DFT calculations
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TABLE I. Tersoff potential parameters for BN systems. The
parameters for BB were taken from Ref. [16], except for λ3. For
NN, part the parameters were adopted from Refs. [7,16], but n, γ ,
c, d , and h where refitted in this work. The BN part was completely
refitted in the present work.

BB NN BN

D0 (eV) 3.08 9.91 6.36
r0 (Å) 1.59 1.11 1.3253868267

β (Å
−1

) 1.84 1.92787 1.9931611199
S 1.065264 1.0769 1.0952902519
n 1.142247 0.665 0.6576543657
γ 0.01498959 0.019251 0.0027024851
c 26617.3 23.5 306.586555205
d 141.2 3.75 10.0
h −0.13 −0.4 −0.7218

λ3 (Å
−1

) 0 0 0
R (Å) 2.0 2.0 2.0
D (Å) 0.2 0.2 0.2

using the SIESTA code [22]. These DFT calculations were
done using the Perdew-Burke-Ernzerhof (PBE) parametriza-
tion of the generalized gradient approximation [23] for the
exchange-correlation functional. We used norm-conserving
Troullier-Martin pseudopotentials [24] and a numerical atomic
orbital with double-ζ plus polarization basis set to represent the
valence electrons with a real-space integration grid of 300 Ry.
Periodic boundary conditions were applied to a supercell of
43.23×44.94 Å, consisting of 720 atoms for pristine h-BN,
and a 4×4 k-point sampling was used.

The parametrization of the Tersoff part of BN-ExTeP is
given in Table I. The parameters for pure B, except for λ3, and
part for the parameters for pure N were taken from Refs. [16]. A
summary of the properties of pure B and N reference structures
and of the BN compound structures h-BN and c-BN is given
in Tables II and III, respectively.

Table II reveals that, for B, the most stable low temperature
structures are those with intermediate coordinations, like
the icosahedral cluster with fivefold coordinated atoms
and the related α-boron crystal structure containing sixfold
and sevenfold coordinated atoms. The latter structure
is a polymorph made of a close packing of chemically
interconnected icosahedra. The most stable crystalline phase
of B at ambient conditions is, however, the β-polymorph,
a much more complex structure which can be described
as an icosahedral central unit, icosahedrally surrounded by
other icosahedra, with a rhombohedral unit cell containing
105 atoms. Obviously, one cannot expect, nor is it the aim
here, to describe such structures with high accuracy with
a simple Tersoff potential. Therefore, for convenience only
the α phase was used as a reference in the fitting procedure,
which is enough for obtaining the correct quantitative trends
in the coordination dependence of the binding energy per
atom. We note that the α and β phase have rather similar
structures, both being made of icosahedral units, with the β

phase being more stable by only about 0.1 eV/atom [25]. The
underestimation of the lattice parameter of the FCC structure is
due to the choice of the cutoff range applied, which is suitable
for relatively stable structures but not for the FCC lattice.

TABLE II. Ground state equilibrium nearest neighbor distances
req,0 and binding energies per atom Eb for pure B (upper table)
and N (lower table) reference structures according to BN-ExTeP,
compared to references values (in parenthesis) mostly obtained from
ab initio calculations [16,26]. For α-boron, experimental data are
used [28,29]. Reference values in square brackets were not used in
the fitting procedure.

Boron structures req,0 (Å) Eb (eV/atom)

dimer 1.59 (1.59) 1.540 (1.540)
B3 (triangle) 1.63 (1.58) 2.770 (3.110)
B3 (linear) 1.62 [1.52] 1.900 [2.486]
B4 (rhombus) 1.64 [1.54] 3.250 [3.723]
B12 (icosahedron) 1.74 (1.72) 5.125 (5.250)
α-boron 1.80 ±0.03 5.650 (5.810)

(1.77 ±0.2)
FCC 1.94 (1.21) 5.332 (5.700)

Nitrogen structures req,0 (Å) Eb (eV/atom)

dimer 1.110 (1.11) 4.955 (4.955)
N3 (linear) 1.307 (1.21) 3.788 (3.653)
N3 (triangle) 1.645 2.179
honeycomb hexagonal 1.521 (1.51) 4.647 (4.560)
diamond 1.635 (1.79) 4.494 (4.240)
simple cubic 1.943 (2.00) 2.447 (3.480)
FCC 2.054 (1.39) 1.638 (3.060)

Unlike B, N prefers low coordination with the dimer as the
energetically most stable structure, as correctly reproduced
by the Tersoff potential. For N, also the energies of the low
coordinated honeycomb and diamond lattices are quite well
described, while the higher coordinated simple cubic and

TABLE III. Overview of ground state properties of h-BN and
c-BN, compared to those from ab initio calculations and experimental
data. Binding energies Eb are given in eV per BN chemical unit (c.u.).
The 2D shear modulus μ2D , Young’s modulus E2D , and Poisson’s
ratio ν2D were determined from B2D and C11,2D using Eq. (15). Elastic
constants were calculated including relaxation, except for C0

44, the
adiabatic shear elastic constant for c-BN.

h-BN BN-ExTeP ab initio Experiment

a (Å) 2.504 2.496 2.504 [30,31]
c⊥ (Å) 6.490 6.66 [30–32]
Eb (eV/c.u.) −13.38 −12.826 −13.322 [35]
B (GPa) 30.1, 26 [33] 36.7 [30],25.6 [32]
B2D (N/m) 164 164 [33], 280 [34]
C11,2D (N/m) 277 293 [34]
μ2D (N/m) 113 114 [34]
E2D (N/m) 267 278 [34]
ν2D (N/m) 0.186 0.225 [34], 0.2 [17]

c-BN

a (Å) 3.5575 3.593 3.615 [36,37]
Eb (eV/c.u.) −13.49 −12.94 −13.49 [35]
B (GPa) 402 395 369–400 [37,38]
C11 (GPa) 638 803 820 [38]
C44 (GPa) 475 480 [38]
C0

44 (GPa) 553 591
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FCC lattices are sufficiently higher in energy to make these
structures safely unstable. In the DMol ab initio calculations,
the N3 triangular cluster could not be geometrically optimized
due to instability, but in Ref. [26], this cluster was found to
be 1.37 eV/atom less stable than linear N3, which is roughly
reproduced by our potential.

Table III shows the comparison for the BN compound
structures. Almost all reference properties, including the
elastic moduli, are rather well reproduced by BN-ExTeP, with
c-BN correctly described as the most stable BN polymorph at
the given stoichiometry.

The parametrization was performed such that the (in-plane)
lattice parameter for h-BN exactly matches the experimental
value, a property which is desirable for studying heterostruc-
tures made of h-BN and graphene with the correct lattice
mismatch between the two materials, required, e.g., for an
accurate description of moiré pattern formation [27]. Note
that in LAMMPS, BN-ExTeP can be used in conjunction with
a Tersoff potential for carbon.

The lattice parameter for c-BN is about 1.6% too small,
which in general is not a problem. We note, however, that
for applications to c-BN requiring a more accurate lattice
parameter, the lattice parameter can be adjusted by a factor sa

without changing the binding energies by scaling the Tersoff
parameters β and r0 to β̃ = β/sa and r̃0 = sar0, respectively,
as can be shown analytically. Obviously, this scaling reduces
the interatomic distances in all BN structures by the same
factor, leading to a less accurate lattice parameter for h-BN,
which, however, is irrelevant for applications to c-BN. It also
changes the elastic moduli by a factor of the order of 1/s2

a ,
but as long as sa is close to one, as it is the case here, these
changes typically remain rather small.

The experimental bulk modulus of 3D h-BN is about one
order of magnitude smaller than that for c-BN due to the high
compressibility in the c⊥ direction related to the relatively
weak interactions between the h-BN layers. The bulk modulus
B according to BN-ExTeP vanishes as it does not describe
interlayer interactions. More relevant for us, however, are the
in-plane or 2D elastic moduli B2D and C11,2D . For a strictly 2D,
isotropic material these are related to the 2D shear modulus
μ2D , the 2D Young’s modulus E2D , and the in-plane Poisson’s
ratio ν2D by the relations:

μ2D = C11,2D − B2D, E2D = 4B2Dμ2D

B2D + μ2D

and

ν2D = B2D − μ2D

B2D + μ2D

, (15)

respectively. Using these relations, we find a Poisson’s ratio
ν2D � 0.19, which compares well to the ab initio value of
0.2 reported in Ref. [17]. In particular, the uniaxial elastic
modulus of C11 = 277 N/m for h-BN is in much better
agreement with the ab initio value than the too large value
of C11 = 396 N/m according to the earlier Tersoff potential
[7,16], that leads to a negative Poisson’s ratio equal to
ν = −0.17 using the relations in Eq. (15).

Not shown in Table III is that BN-ExTeP also gives
reasonable values for the lattice parameters and binding
energies of the rock-salt and BCC structures. According to ab
initio calculations [16] these unstable rock-salt and BCC BN

compounds are about 3.5 and 7.8 eV/c.u. (eV per BN chemical
unit) less stable than c-BN, respectively, while BN-ExTeP
yields values of 3.88 and 9.33 eV, respectively, for these energy
differences, the somewhat larger disagreement for the BCC BN
compound being due to the effect of the cutoff. The lattice
parameter of 3.535 Å for rock salt and 2.299 Å for the BCC

BN compound according to BN-ExTeP correspond well to the
DFT values of 3.474 Å and 2.32 Å, respectively.

The pure and compound systems considered in this section
do not involve any nonzero correction term FIJ . In fact, the
correction terms FBB(0,0) and FNN (0,0) involved in the pure
systems and the terms FBN (2,2) and FBN (3,3) involved in
h-BN and c-BN, respectively, are all taken equal to zero. All
other correction terms are adjusted to optimize the description
of defects in h-BN and c-BN and of small BN clusters, as
detailed in the next section.

B. Bond order correction

The correction term Fij is a natural, first order correction
to the bond order for binary systems, involving only nearest
neighbors and their chemical identities. This term considerably
improves the description of the formation energy and geometry
(bond distances) of a whole series of defects and a number of
small BN molecules. Clearly, this improvement comes at the
cost of additional parameters, but it hardly affects the efficiency
of the calculations, as it does not extend the environment
involved in computing the bond order, which remains restricted
to the nearest neighbors.

The correction term parameters are listed in Table IV. In
Table V we describe the defects in h-BN and c-BN that we
considered. For h-BN, these defects and selected bond lengths
are illustrated in Fig. 1. The Stone-Wales (SW) defect in h-BN
is the BN analog of the SW defect for graphene [39]. There are
two local minima for the SW defect in h-BN, with different
geometries around the defect as illustrated in the bottom panel
of Fig. 1. As for graphene [40], the most stable structure
is SW-1, a sinelike buckling around the defect. The antisite
(AS) defect is created by swapping the chemical identity of

TABLE IV. Values of FIJ . For integer arguments with NĪ
ij or

NJ̄
ji � 4, FIJ is zero.

NB̄
ij \NB̄

ji 0 1 2 3

0 0.0000 0.0054 0.0182 −0.0034
FBB 1 0.0054 0.0100 0.0062 0.0154

2 0.0182 0.0062 0.0154 −0.0390
3 −0.0034 0.0154 −0.0390 −0.1300

NN̄
ij \NN̄

ji 0 1 2 3

0 0.0000 −0.0282 −0.0018 −0.0004
FNN 1 −0.0282 0.0200 0.0180 0.0146

2 −0.0018 0.0180 0.0306 0.0060
3 −0.0004 0.0146 0.0060 0.0000

NB̄
ij \NN̄

ji 0 1 2 3

0 0.0170 0.0078 0.0000 −0.0860
FBN 1 −0.0090 0.0090 −0.0068 −0.0338

2 0.0000 −0.0198 0.0000 −0.0084
3 −0.0750 −0.0168 −0.0138 0.0000
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TABLE V. Considered defects in h-BN and c-BN with involved correction terms FIJ . Formation energies Ef in
eV as found with the classical potentials of Albe and Möller [7], Kınacı et al. [10], and from this work are compared
to DFT calculations with DMol from Ref. [16] and those calculated using SIESTA by us.

Ef (Classical Potentials) Ef (DFT)

h-BN FIJ involved [7] [10] BN-ExTeP [16] SIESTA

AS FBB (1,2), FNN (1,2), FBN (1,2), FBN (2,1) 7.3 9.3 8.1 8.1 8.52
SW-1 FBB (2,2), FNN (2,2), FBN (1,1), FBN (1,2), FBN (2,1) 9.18 6.44 7.22 7.20
SW-2 FBB (2,2), FNN (2,2), FBN (1,1), FBN (1,2), FBN (2,1) 9.12 6.74 7.43 7.34

B sub FBB (0,2), FBN (1,2) 5.0 6.8 5.7 5.7 6.50
N sub FNN (0,2), FBN (2,1) 5.8 7.1 9.1 9.1 8.98
B vac FBN (2,1) 4.7 4.7 10.4 10.4 10.55
N vac FBN (1,2) 5.6 5.6 7.3 7.3 6.25

Interc. B1 FBB (1,3), FBN (2,3) 3.4 3.6 7.3 7.3
Interc. B2 FBB (2,3), FBN (1,3), FBB (2,3) 4.3 5.6 8.0 –
Interc. N1 FNN (1,3), FBN (3,2) 3.5 3.3 6.6 –
Interc. N2 FNN (2,3), FBN (3,1), FBN (3,2) 3.2 0.5 7.3 7.3

c-BN
AS FBB (1,3), FNN (1,3), FBN (2,3),FBN (3,2) 7.0 10.2 9.1 9.1
B sub FBB (0,3), FBN (2,3) 2.1 5.5 9.1 9.1
N sub FNN (0,3), FBN (3,2) 5.8 9.3 10.2 10.2
B vac FBN (3,2) 3.4 2.6 9.2 9.2
N vac FBN (2,3) 2.5 3.5 7.3 7.3

two nearest neighbor atoms. The B (N) substitutional defects
are created replacing an individual N (B) atom by B (N).
The intercalation defects are created by putting an additional
atom between two layers of h-BN in AA stacking, where
N atoms of the first layer are above B in the second. The
intercalated atom is then chemically bound to both layers,
being either vertically intercalated between B and N (B1 or
N1), or diagonally between two atoms with chemical identities
different from itself (B2 or N2).

FIG. 1. Point defects in h-BN and distances considered in
Table VI. For the Stone-Wales defect side views of the antisymmetric
(SW-1) and symmetric (SW-2) realizations are shown in the bottom
panel.

The defect formation energies Ef of our neutral defects are
calculated as [16,41,42]:

Ef = ED − nBμBN
B − nNμBN

N , (16)

where ED is the total energy of the defected system, nB

and nN are the number of B and N atoms in the supercell,
respectively, and μBN

B and μBN
N their chemical potentials in

the BN compound phase. Following Ref. [16], Eq. (16) can be
rewritten to:

Ef = ED − 1
2 (nB + nN )μBN − 1

2 (nB − nN )(μB − μN ), (17)

where μBN = μBN
B + μBN

N = μB + μN + Hf is the chemi-
cal potential per BN pair in the compound bulk phase, μB and
μN are the chemical potentials of B and N in pure component
reference phases, and Hf is the formation enthalpy. In the
present case, μBN is just the ground state binding energy,
equal to −13.38 and −13.49 eV/c.u. for h-BN and c-BN, re-
spectively, according to BN-ExTeP (see Table III). Obviously,
for the calculation of the ab initio formation energies, the
respective ab initio ground state binding energies were used. It
can be shown that, in thermodynamic equilibrium, μB − μN

is approximately equal to the difference in the binding energy
per atom of the pure component reference phases. We have
chosen the reference phases to be solid α phase for boron
and diatomic N2 for nitrogen, with binding energies 5.81
and 4.92 eV/atom, respectively, yielding μB − μN = −0.89
eV/atom in thermodynamic equilibrium.

Each defect involves one or more correction term values for
integer arguments, specified in the second column of Table V,
which are adjusted to optimize the defect description. The
resulting defect formation energies for optimized geometries
in Table V are globally in very good agreement with those
from DFT calculations [16] and significantly improve the
formation energies with respect to previous potentials from
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TABLE VI. Interatomic distances for defects in h-BN, compared
to ab initio values calculated using the SIESTA code.

Structure dBB (Å) dNN (Å) dBN (Å)

AS 1.60 (1.61) 1.44 (1.44) 1.36 (1.36)
SW-1 1.60 (1.68) 1.41 (1.46) 1.37 (1.36)
SW-2 1.60 (1.68) 1.40 (1.46) 1.37 (1.35)
B sub 1.55 (1.63) 1.47 (1.45)
N sub 1.53 (1.49) 1.51 (1.44)
B vac 2.60 (2.58) 1.48 (1.40)
N vac 2.66 (2.27) 1.43 (1.47)

Refs. [7,10] listed in the same table. They are all in the right
order, with most of the defects in h-BN having formation
energies between 5 and 10 eV and the B substitutional defect
having the lowest formation energy. There is a small energy
difference between the two SW defects, assigning the correct
most stable configuration when compared to the ab initio
calculations. BB-ExTeP predicts higher stability of the B1 and
N1 intercalation defects compared to the B2 and N2 types,
respectively. For the B interaction this seems in agreement
with ab initio calculations but not for the N intercalation. We
note that the formation energy of the B2 and N1 intercalation
defects could not be determined in the DMol calculations as
they transformed into the more stable B1 and N2 structures,
respectively, during geometrical optimization.

Experimentally observed vacancy defects, created by an
electron beam, have been associated with only one of the two
sublattices [13], which was later identified as a predominance
of B monovacancies [43]. This is in contrast with its higher
formation energy (Table V). It should be noticed, however,
that although the formation energy provides a valuable tool
in the construction of a potential and the comparison of
theoretical methods, it is a difficult quantity to relate directly
to experiments as its value depends on the chosen reference
states, that may not reflect the experimental environment, and
does not consider kinetic effects nor the dynamical stability,
determined, e.g., by energies barriers. In the present case, the
abundance of B monovacancies may be due to the lighter mass
of B, making it more easy to excite B atoms to a state where
they have a velocity large enough for escape from the lattice.

Bond distances around a number of important defects in
h-BN are given in Table VI and compared to the values in
parenthesis from ab initio calculations using the SIESTA code.
Differences with ab initio values are relatively small and not
larger than 5% in all cases except for the N vacancy, which is
overall satisfactory.

Apart from the defects, also linear and triangular B2N and
BN2 clusters were used as references for the adjustment of a
number of correction terms Fij . These are listed in Table VII,
together with their binding energy per atom Eb and bond
distances after geometrical optimization, compared to the
DMol results. The table shows that the binding energies for
these small binary clusters are substantially smaller that those
in the stable compound bulk phases, implying that such clusters
are relatively unstable in a BN environment, which is correctly
reproduced by the classical potential. Therefore, trying to
reduce the somewhat larger disagreements with the DMol
values for the triangular clusters was not given a high priority.

TABLE VII. Linear and triangular three atom binary B-N clusters
considered for adjustment of the specified correction terms FIJ , their
binding per atom and associated bond distances, compared to the
DMol values [16] in parenthesis.

Structure Fij Eb (eV/atom) dIJ (Å)

lin. BBN FBB (1,0) 3.31 (3.32) dBB = 1.59 (1.55)
FBN (0,0) dBN = 1.30 (1.31)

lin. BNB FBN (0,1) 4.09 (4.10) dBN = 1.34 (1.32)
tr. B2N FBB (1,1) 3.42 (3.93) dBB = 1.60 (1.68)

FBN (0,1) dBN = 1.62 (1.35)
lin. BNN FNN (1,0) 3.52 (3.52) dNN = 1.45 (1.19)

FBN (0,0) dBN = 1.30 (1.33)
lin. NBN FBN (1,0) 3.37 (3.37) dBN = 1.40 (1.36)
tr. BN2 FNN (1,1) 2.44 (3.56) dNN = 1.74 (1.34)

FBN (1,0) dBN = 1.46 (1.43)

We note that the h-BN nanoribbon edge formation energies
are also reasonably well reproduced without being considered
during the parametrization. We find formation energies of 9.0
and 12.2 eV/nm for the armchair and zigzag edges of h-BN,
respectively, compared to DFT-PBE values of 7.6 and
11.2 eV/nm [44].

IV. APPLICATION TO PRISTINE h-BN

To introduce the study of the elastic moduli of defective
h-BN presented in the next section, we first comment on some
basic properties of pristine h-BN as obtained by molecular
dynamics (MD) simulations with BN-ExTeP. Some of these
properties were also investigated in a previous study [45,46]
based on an earlier BN Tersoff potential [7].

For this and the following section we performed a series
of classical molecular dynamics simulations at constant
temperature and constant-pressure (NPT). The equations of
motion including thermostat and barostat [47] are integrated
with a timestep of 1 fs. For both the Nosé-Hoover thermostat
and barostat, we used a coupling constant (damping parameter)
of 1 ps. The barostat is only applied to the in-plane dimensions
of the membrane. We consider a sheet of h-BN consisting of
37 888 atoms in a periodic cell of Lx×Ly = 32.4×32.6 nm2

(74×128 orthorhombic unit cells). The x and y directions
here correspond to zigzag and armchair axes, respectively.
The perpendicular cell size (Lz = 4 nm) is large enough to
avoid interaction between periodic images of the sheet.

We first examine the temperature dependence of the 2D
lattice parameter. For this, we performed 48 independent MD
simulations at temperatures up to 4000 K. Each of these
simulations ran for 200 ps of which the last 100 ps were
used to obtain average lattice constants. The result is shown in
the top panel of Fig. 2. The decrease of the lattice parameter
is a consequence of thermal rippling. Unlike the situation for
graphene, however, for which a minimum in a corresponding
to a compression of ∼0.2% was found at 900 K [48] from
simulations based on the carbon potential LCBOPII [49], here
a does not have a minimum but decreases monotonously up
to a temperature close to or beyond the melting temperature,
where a compression of about 1% is reached. This behavior
also deviates from the results for h-BN in Ref. [45] by
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FIG. 2. (top) Average in-plane lattice parameter aBN =
(a/a0)rNB,0 and average B-N nearest neighbor distance rNB as a
function of temperature, with rNB,0 the nearest neighbor distance
at T = 0 K and a0 = 2.504 Å the ground state lattice parameter.
The dashed line is a linear fit up to 100 K, a = a0(1 + αT )
with α = −1.181×10−5 K−1. A good fit over the whole range
(solid line) is found with the form a = a0(1 + α1T + (α2T )ξ ), with
α1 = 5.16×10−4 K−1, α2 = 5.204×10−4, and ξ = 0.995. (bottom)
Normal-normal [G(q)] and height-height [q2H (q)] correlation func-
tions at room temperature T = 300 K. The harmonic regime ∝q−2

(dashed line) yields a bending rigidity κ = 0.85 eV. For q → 0 we
find a power law with exponent −(2 − η) with η ∼ 0.66.

simulations based on the earlier BN potential by Albe [7]
and in Ref. [50] based on the potential of Kinaci [10]. In
these previous studies, minima in a were found at 1500 K and
2000 K, respectively, corresponding to a compression of about
0.5% in both cases. A negative thermal expansion coefficient
is a common property of all membranes in the quasiharmonic
approximation [51]; it follows from negative (and divergent
at small wave vectors) microscopic Grüneisen parameters for
the acoustic flexural mode [52] and has also been measured
experimentally for graphene [53]. The change of its sign at high
enough temperatures, which is also predicted for graphene
[48], is an anharmonic effect beyond the quasiharmonic ap-
proximation and beyond the macroscopic phenomenological
theory of membranes, namely it is determined by phonon-
phonon interactions over the whole Brillouin zone [54]. The
temperature at which this change in sign appears, however,
can be higher than the melting temperature, as seems to be the
case for h-BN according to BN-ExTeP.

In contrast to the 2D lattice parameter, which decreases,
the B-N nearest neighbor distance monotonously increases
with temperature, as also shown in Fig. 2. This expected,
approximately linear increase was also noticed for graphene
in Ref. [55].

We also considered the structure of the thermal rippling
at T = 300 K. For this we did a separate MD simulation of

1.25 ns, of which an initial part was used for thermalization and
the remaining part for averaging. From these simulations we
computed the Fourier transform of the normal-normal correla-
tion function, G(q) = 〈|nq |2〉 = N−1〈| ∑N

i n̂i exp (iqri,0)|2〉
and height-height correlation function H (q) = 〈|hq |2〉 =
N−1〈| ∑N

i hi exp (iqri,0)|2〉 with n̂i the unit vector normal
to the surface at site i, hi the height at site i, q the wave
vector in Fourier space, and {ri,0} the ground state atomic
positions. These were calculated as done for graphene in
Ref. [56] and are shown in the bottom panel of Fig. 2. It
holds that G(q) = q2H (q). In the harmonic approximation,

i.e., for large q (roughly from 0.3 to 1 Å
−1

in the present case),
we have H (q) = ρkBT /(κq4) and G(q) = ρkBT /(κq2), with

ρ the 2D density in atoms/Å
2

and κ the bending rigidity. With
this we find κ = 0.85 eV compared to 0.96 eV from ab initio
calculations [57] and 0.86–1 eV as calculated using the
potential by Kınacı et al. [10] in Ref. [58]. According to these
results, freestanding h-BN is about as rigid as freestanding
graphene, for which a bending rigidity of κ = 1.1 eV was
found at T = 300 K [59] using the LCBOPII interatomic
potential for carbon [49], the latter value being slightly smaller
than κ = 1.2 eV obtained experimentally via the phonon
spectrum of graphite [60].

In the long wavelength limit, due to strong anharmonic
coupling between in-plane modes and out-of-plane flexural
modes, height fluctuations are suppressed and the correlation
function behaves as G(q) =∝ q2−η, with η a nontrivial critical
exponent. From our calculated G(q) we find η ∼ 0.66, com-
pared to 0.85 found for graphene [56]. While this difference
may appear to be significant, it should be noted that the value of
η obtained from simulations can depend on simulation settings
and tends to converge very slowly. We estimate the error in
our extracted exponent to be approximately of the order of this
difference, so that the supposed universality of this behavior
is neither contradicted nor confirmed.

We investigated the elastic behavior of pristine h-BN under
uniaxial strain by running simulations at a temperature T

near 0 K. The results are summarized in Fig. 3 and allow
us to recalculate the elastic modulus and Poisson’s ratio
independently and verify the consistency of Eq. (15) in this
way. Note that the E2D and ν in Table III were calculated
from B2D and C11 using Eq. (15). The top-left figure shows
the applied, fixed Lx and free Ly cell size dimensions. The
sample used in this simulation is initially compressed to 99.5%
of its equilibrium value along the x direction. After 2 ns
equilibration, the sample is then gradually extended to 100.5%
during 10 ns MD in steps of 0.1%. The cell size in the y

direction is kept free and is found to decrease, indicating a
positive Poisson’s ratio equal to 0.19 in agreement with the
value in Table III.

In the bottom-left panel of Fig. 3, the stress component
in the x direction, σxx , as a function of simulation time is
shown. On the right-hand side, time averages of the energy
and stress as a function of the fixed strain are shown. For
compressive strain, σxx remains very small as a result of
induced static corrugation. The same can be seen from the
energy increase at negative strain (top-right panel), which is
evidently not quadratic, as for positive (tensile) strain, but
displays a much smaller, near-constant increase in average
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FIG. 3. Summary of the results from simulations of pristine h-BN
under uniaxial applied strain εxx in the x direction, varied in steps
from 0.95 to 1.05 as described in the text, at a temperature near 0 K
with size fluctuations in the y direction. The top left panel shows
how Lx is varied in steps to induce the strain and the monitored Ly

during the simulation. The bottom left panel shows the monitored xx

component of the stress tensor σxx . The right panels show the average
energy per atom (top) and the average σxx as a function of the applied
strain εxx . The dashed line in the right top panel corresponds to a
E2D = 267 N/m.

potential energy illustrative of strong anharmonicity. The
simulation data for positive strain part (εxx > 0) are very
well fitted by the quadratic curve (dashed line) yielding a
the 2D Young’s modulus of E2D = 267 N/m, consistent with
Table III.

V. APPLICATION TO DEFECTIVE h-BN

To study the effect of defects on the elastic properties of
h-BN, we consider six defect types. These are the Stone-Wales
(SW) and antisite (AS) defects, vacancies (B and N) and
substitutional defects (B and N). Here we notice that the
results presented in this section have been obtained from a
slightly different parametrization of our potential [61]. This
does not change qualitatively the results and has a negligible
quantitative effect as we verified.

We use the same sample size as considered for pristine
h-BN in the preceding section. For each defect type we
then consider seven defect densities up to 0.7 nm−2 corre-
sponding to 38, 76, 114, 152, 228, 304, and 760 defects
and for each of these densities we consider between five
and eight different randomly generated defect distributions.
For each of these samples we then first perform a thermal
optimization. To subsequently determine the elastic moduli,
we used the same procedure as described earlier for pristine
h-BN.

Our thermal optimization procedure is done in the NPT
ensemble at P = 0 and consists of a 200 ps heating from
100 to 1000 K, thermalization at 1000 K for 2 ns, cooling
down to 10 K in 300 ps, followed by a conjugate gradient
minimization. The final structures gives us the equilibrium
lattice parameters and the defect formation energies including
defect-defect interactions.

The results are shown in Fig. 4. The panels in the first
row show the relative cell sizes in the x direction for the
optimized structures. All defects considered here result in a

FIG. 4. From top to bottom, rows of panels show the static strain Lx/L
0
x , average defect formation energies Ef , relative elastic moduli

E2D/E2D,prist, and inverse corrugation 1/σz, with σz the average height fluctuation of the annealed samples, as a function of the defect
concentration. Multiple symbols are results for different random realizations. Defect types are as indicated in the graph. In the plots of the Ef ,
horizontal lines indicate the isolated defect formation energy for reference.

184108-8



EXTENDED TERSOFF POTENTIAL FOR BORON NITRIDE: . . . PHYSICAL REVIEW B 96, 184108 (2017)

FIG. 5. Illustration of selected structures at T = 0 K. The AS and SW defect densities (middle and right panel) are 0.036 nm−2, the lowest
defect densities considered here.

decrease of the cell size with respect to pristine h-BN. SW
defects and B vacancies show the most obvious decrease,
being roughly linear as a function of the defect density.
This can be understood as a result of static corrugation.
Contrary to thermal rippling, static corrugation does not
disappear at low temperatures because it is the result of
local curvature induced by the defects. These out-of-plane
distortions lead to a reduction of the in-plane lattice constant.
As an example, the optimized structure of pristine h-BN is
compared to those of h-BN with AS and SW defects in Fig. 5.
The pristine lattice is entirely flat in the low temperature
limit. Antisite defects induce small localized distortions while
Stone-Wales defects lead to much stronger and longer-ranged
distortions. As a result, the samples with SW defects are
indeed strongly corrugated and their associated cell sizes are
significantly reduced. Substitutional defects present very lit-
tle corrugation and correspondingly have nearly unchanged
lattice constants.

The second row of Fig. 4 shows the corresponding defect
formation energies (in eV per defect). Note that, while all
are drawn on the same scale, the absolute values of formation
energies depend on the conventions used for Eqs. (16) and (17),
related to the choice of the pure component reference systems.
The SW defects and B vacancies, as well as the AS defects,
show a strong linear decrease in formation energy as a function
of defect density. This indicates that defects that induce strong
corrugation highly prefer being in close proximity over being
far apart, a behavior also observed for graphene [62,63]. On
the contrary, N vacancies and substitutional defects appear
to interact only weakly and thus do not significantly affect
formation energies. Only at elevated defect densities a small
energy gain can be noticed for the vacancy configurations,
which is mostly the result of reconstructions during the
annealing procedure.

The third row of Fig. 4 shows the calculated Young’s moduli
relative to the value for pristine h-BN. In all cases E2D is
significantly affected by the defects, albeit in qualitatively
different ways. SW defects and B vacancies dramatically
decrease the Young’s modulus, even at low concentrations.
Also this can be understood from the corrugation of the sample.
When the corrugated sample is stretched, the energy required
to flatten the system is much smaller than if chemical bonds
were to be stretched directly as in the case of (flat) pristine
h-BN. The AS and substitutional vacancies lead to a much
more gradual and approximately linear decrease in elastic
moduli. Finally, N vacancies show again a different behavior.
At low densities their elastic moduli are nearly unaffected, but

as the concentration increases, defect reconstructions start to
occur and the elastic moduli suddenly drop similar to what
was observed for SW defects and B vacancies despite being
accompanied by a rather small change in average cell size. For
vacancies in graphene, the Young’s modulus has been observed
to increase at concentrations below ∼0.1 nm−1 (0.2%) [64].
Such an increase in E2D can be the result of pre-straining
created during the formation of vacancies, which suppresses
anharmonic effects and by this the impact of anharmonicity
on the effective elastic modulus [65] assuming a clamped
boundary of the system. Our samples are not pre-strained
because our simulations are at zero pressure and anharmonic
effects due to thermal height fluctuations do not play a role at
T = 0 K.

To illustrate the strong correlation between the behavior of
the elastic moduli and the static corrugation more explicitly,
we have calculated the average height fluctuation, σ 2

z = 〈(z −
〈z〉)2〉, which is shown in the last row of Fig. 4. Indeed, we find
that the values for σz vary similarly with defect concentration
as the elastic moduli, consistent with the foregoing discussion.

VI. CONCLUSIONS AND PERSPECTIVES

We have developed BN-ExTeP, an extended Tersoff poten-
tial for B, N, and BN describing a wide range of structures
and being particularly accurate for the description of defects
in h-BN and c-BN. The potential can be used efficiently
to study the statistical mechanics of large (defected) h-BN
sheets, knowing that large system size is very important
for 2D systems. BN-ExTeP can also be a valuable tool for
large-scale simulations involving chemical reactions and phase
transformations, such as the melting and growth of h-BN or c-
BN, as it correctly describes the bonding trends in BN systems.

Having demonstrated that the ExTeP scheme proposed here
for BN systems can provide a significant improvement in the
accuracy of bonding as a function of chemical environment,
we believe that the here proposed correction term is a
good candidate, not only to correct other Tersoff potential
parametrizations for BN but for other binary systems as well.
Moreover, this approach has the important quality of hardly
affecting the efficiency of the computations with respect to the
original Tersoff potential scheme.

We have implemented BN-ExTeP in LAMMPS and used
this classical potential to study the effect of defects on
the elastic properties of h-BN. We find that the calculated
weakening of the elastic moduli parallels the defect-induced
growth of static corrugation.
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