N

N

Stepwise formal modeling and verification of
Self-Adaptive systems with Event-B. The automatic
rover protection case study
Neeraj Kumar Singh, Yamine Ait-Ameur, Marc Pantel, Arnaud Dieumegard,

Eric Jenn

» To cite this version:

Neeraj Kumar Singh, Yamine Ait-Ameur, Marc Pantel, Arnaud Dieumegard, Eric Jenn. Stepwise for-
mal modeling and verification of Self-Adaptive systems with Event-B. The automatic rover protection
case study. 21th International Conference on Engineering of Complex Computer Systems (ICECCS
2016), Nov 2016, Dubai, United Arab Emirates. pp.1-10, 10.1109/ICECCS.2016.015 . hal-01782961

HAL Id: hal-01782961
https://hal.science/hal-01782961

Submitted on 2 May 2018

HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est

archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

destinée au dépot et a la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche francais ou étrangers, des laboratoires
publics ou privés.

https://hal.science/hal-01782961
https://hal.archives-ouvertes.fr

OATAO

Open Archive Toulouse Archive Ouverte

Open Archive TOULOUSE Archive Ouverte (OATAO)

OATAO is an open access repository that collects the work of Toulouse researchers and
makes it freely available over the web where possible.

This is an author-deposited version published in : http://oatao.univ-toulouse.fr/
Eprints ID : 18235

To link to this article: DOI: 10.1109/ICECCS.2016.015
URL : http://dx.doi.org/10.1109/ICECCS.2016.015

To cite this version : Singh, Neeraj Kumar and Ait-Ameur, Yamine and Pantel,
Marc and Dieumegard, Arnaud and Jenn, Eric Stepwise formal modeling and
verification of Self-Adaptive systems with Event-B. The automatic rover
protection case study. (2017) In: ICECCS 2016 (21th International Conference
on Engineering of Complex Computer Systems), 6 November 2016 - 8
November 2016 (Dubai, United Arab Emirates).

Any correspondence concerning this service should be sent to the repository
administrator: staff-oatao@listes-diff.inp-toulouse.fr

http://oatao.univ-toulouse.fr/
http://dx.doi.org/10.1109/ICECCS.2016.015
mailto:staff-oatao@listes-diff.inp-toulouse.fr

Stepwise Formal Modeling and Verification of
Selt-Adaptive systems with Event-B.
The Automatic Rover Protection case study

Neeraj Kumar Singh,Yamine Ait-Ameur and Marc Pantel

INPT-ENSEEIHT / IRIT, University of Toulouse, France
Email: {nsingh, yamine, marc.pantel } @enseeiht.fr

Abstract—For a long time, formal methods have been effec-
tively applied to design and develop safety-critical systems to
ensure safety and the correctness of desired functional behaviors
through formal reasoning. The development of high confidence
self-adaptive autonomous systems, such as Automatic Rover
Protection(ARP), is one of the challenging problems in the area
of verified software that needs formal reasoning and proof-based
development. In this paper, we propose a methodology that
reveals the issues involved in the formal modeling and verification
of self-adaptive autonomous systems using correct by construction
approach. This work also provides a set of guidelines for tacking
the different issues to avoid collision by preserving the local
and global properties of an autonomous system. We cater for
the specification of functional requirements, timing requirements,
spatial and temporal behavior, and safety properties. We present
a refinement strategy, modeling patterns to capture the essence
of a self-adaptive autonomous system, and a substantial example
based approach on an industrial case study: TwIRTee. For
developing the formal models of autonomous system, we use
the Event-B modeling language and associated Rodin tools to
check and verify the correctness of required system behavior
and internal consistency under the given safety properties.

Index Terms—Automatic Rover Protection (ARP), Event-B,
refinement, formal methods, verification, validation.

I. INTRODUCTION

Embedded systems are pervasive in the electronic systems,
such as medical device, avionics, transportation, consumer
electronics, communication systems, that assist to our daily
lives. Therefore, there is an increasing interest for developing
safe and dependable embedded systems to provide system
reliability, safety, performance and autonomy. An autonomous
self-adaptive software system runs in intricate environment
with frequent and unexpected changes, where such system
always modifies its functional behavior in order to adapt
new changes within the system [1]. Such systems are highly
complex and tightly integrated with executional environment.
There are several approaches to develop such systems, but
none of them is sufficient. There is a crucial need for new
methods to support the development of self adaptive critical
systems to guarantee the functional correctness of the devel-
oped systems. The availability of new methods and tools could
significantly save time and cost for developing such systems.

Traditional techniques, such as testing and simulation be-
come old fashioned approach that are time consuming and

Arnaud Dieumegard and Eric Jenn
Institute of Technology Antoine de Saint Exupéry, France
Email: {arnaud.dieumegard, eric.jenn} @irt-saintexupery.com

expensive to deploy in the development of embedded systems
and to meet the public demands with required qualities. There
is a crucial need to use better techniques to meet the desired
qualities by saving cost and time for developing and certifying
the embedded systems. From many years, formal methods
have been applied successfully to design and develop the
embedded systems. In particular, they have been used to check
the system requirements related to the functional behavior
of a given system. For instance, it has been used in the
development of the critical systems like medical, avionics,
distributed system and automotive [2], [3], [4], [5], [6].

Refinement is a key ingredient for handling the develop-
ment of large complex systems. It supports the modeling
of the whole system incrementally. Each incremental step
adds details to existing functionalities while preserving the
already established safety properties. Moreover, incremental
development simplifies system complexity and preserves the
required behavior of the system in the abstract model as well
as in the correctly refined models.

In this paper, we propose a methodology that reveals the
issues involved in the formal modeling and verification of self-
adaptive autonomous systems using correct by construction
approach. Moreover, we report our experience for developing
the Automatic Rover Protection (ARP), and provide a set of
guidelines for tackling the different issues to avoid collision
by preserving the local and global properties of a self-adaptive
autonomous system. In this work, we use the Event-B [7]
modeling language supported by the Rodin IDE [8], with its
rich set of tools. In addition, we also use ProB [9] model
checker to analyze and validate the developed models.

The remainder of this paper is organized as follows. Sec-
tion II presents related work. Section III presents preliminary
information for ARP and the Event-B modeling language.
The ARP system requirements are presented in Section IV.
Section V explores an incremental proof-based formal devel-
opment of the ARP. Brief discussion is provided in Section VI.
Section VI concludes the paper along with future work.

II. RELATED WORK

An autonomous self-adaptive software system modifies its
functional behavior in order to adapt new changes within the
system or its executional environment [1]. In fact, the system

requirements of such systems guarantee to adapt new changes
and to have a safe behavior in case of adverse scenarios. Cheng
et al. [1], [10] proposed a research road map for software
engineering of self-adaptive systems that has covered four im-
portant areas, such as requirements, modeling, engineering and
assurances in the development of autonomous self-adaptive
systems. The formal development of self-adaptive systems
requires the integration of several formal techniques and meth-
ods borrowed from autonomic computing, distributed systems,
hybrid and self-x systems and real-time systems. Such an
integration remains a challenge for formal system design. An
overview on autonomic computing presented in [11], which
describes computing paradigm, system applications, associated
research issues and challenges.

An autonomous self-adaptive software system modifies its
functional behavior in order to adapt new changes within
the system or its executional environment [1]. Most of these
systems are strongly connected to their operating environ-
ment. Such systems need either to adapt to new changes
to ensure the functional correctness or to react according to
changing environment. System reconfiguration or substitution
is a key element to implement such kinds of systems that
is proposed by several researchers. In [12], m-calculus and
process algebra are used for system modeling, including sys-
tem reconfiguration, by exploiting behavioral matching based
on bi-simulation. An Event-B approach was also proposed
in [13]. An extended transaction model is developed to en-
sure behavior consistency during reconfiguration of distributed
systems [14]. The B-method is used for validating dynamic
re-configuration of the component-based distributed systems
using proofs techniques for consistency checking and temporal
requirements [15]. Dynamic reconfiguration allows a system to
stay in a stable state using self-configuration and self-healing
techniques. Tarasyuk et al. [16] proposed a formal approach
for developing dynamic reconfigurable system in Event-B
based on probabilistic verification technique to guarantee that
system will discover possible reconfiguration strategy to meet
service requirements despite failures of its vital components.
Model checking of timed automata has been used by [17] to
model and study the robustness of self-adaptive decentralized
systems. Applying formal methods to self-x systems originates
from the needs of understanding how these systems behave
and how they meet their specifications. A self-x system relies
on emergent behaviors, resulting from interactions between
components of the system [18]. Traditionally, the correctness
of self-x and autonomous systems is validated through the
simulation and testing [19]. However, simulation and testing
are not sufficient to cover the whole set of possible states of
a system. Andriamiarina et al. [?] proposed to use correct by
construction approach for developing the self-x systems. Smith
et al. [18] have applied the stepwise refinement using Z to
study a case of self-reconfiguration, where a set of autonomous
robotic agents is able to assemble and to reach a global shape.

Self-adaptative systems allow to optimize their performance
under changing environment, and the systems heal themselves
when any components fail. Feedback control loops have been

identified as crucial elements in realizing the self-adaptation
of software system. Kephart et al. [20] presented an approach
to organise a control loop in self-adaptive systems using four
components: Monitor, Analyze, Plan, and Execute. Weyns et
al. [21] proposed a simple notation for describing multiple
interacting MAPE loops and a set of patterns, which can
provide a generic solution for recurring design problems.

In [22], [23], the development of a hybrid system is pro-
posed using the correct by construction approach, where first,
it specifies the discrete model and then refines each event by
introducing the continuous elements. It includes the use of a
“now” variable, a “click” event that jumps in time to the next
instant where an event can be triggered and simulated real
numbers. Banach et al. [24] proposed Hybrid Event-B that is
an extension of Event-B, which contains pliant events to model
continuous behavior by using differential equations during
system modeling. It should be noted that existing work [22],
[23], [24] do not address the problem of autonomy and systems
adaptation. However, in our work, we show refinement based
modeling approach to handle autonomous systems, which
allow to adapt new changes in the execution environments.
It important to know that in this work, our system always
performs the possible operations in order to preserve the global
safe behavior.

The previous work reported above do not cover the whole
characteristics of self-adaptive hybrid systems. Some of them
address adaptability and autonomy in discrete cases (e.g. web
services) and other address the hybrid case (e.g. smart grids)
but do not cover the adaptability properties. None of the
studied approach integrates the whole characteristics in formal
developments of self-adaptive hybrid systems.

III. PRELIMINARIES

A. Requirements for formal modeling of self-adaptive hybrid
systems

Self-adaptive hybrid systems integrate several interacting
agents being either software, hardware or hybrid components.
They shall fulfill requirements issued from both self-adaptive
systems and hybrid systems. We have identified the following
topics shall be addressed while developing such systems.

- Adaptability. Agents composing the system shall adapt
their behaviors to the changes and/or commands issued from
the environment. They may be reconfigured at runtime (by
restoring their current state) or at static time (by rebooting
them and restoring the initial state).

- Centralized/decentralized control. Agents may have an
autonomous behavior in case of a decentralized control i.e. the
observation of the local state of the agent and its environment
is enough to control and to ensure the safety of the agent, or
be controlled by a central entity in case of centralized control
i.e. the agent requires the knowledge of the global state of the
system and its environment and reacts to commands of the
central controller.

- Controllability. Each agent is equipped with a controller,
reacting to commands, that maintains the agent in a safety

envelope. When this agent is hybrid system, control theory is
used in order to define this controller.

- Domain modeling. The definition of controllers, requires
to model the behavior of the agent. In the particular case of
a hybrid agent, the physics of the system (e.g. Kinematics,
mechanics, energy, etc.) shall be modeled. Domain specific
models need to be defined.

- Formal modeling. To support the formal development of
self-adaptive hybrid systems, a formal modeling framework
supporting modeling both hybrid systems and autonomous
systems. Particularly, modeling controllers which rely on
continuous theories shall be enabled by the selected formal
modeling framework. Moreover, scalability of the method is a
key-point to consider.

In the remainder of this paper, we present a stepwise formal
development of a self-adaptive hybrid system relying of the
Event-B method. We show that the requirements introduced
above are handled by this method.

B. The modeling Framework

Event-B [7] is a formal modeling notation, in which the
event-driven approach is borrowed from the B-method [25].
Event-B supports the correct by construction approach to
design an abstract model and a series of refined models for
developing any large and complex system.

1) Event-B models: Contexts and Machines: The Event-B
language has two main components, context and machine (see
table I), to characterise the systems. A context describes the
static structure of a system using carrier sets s, constants c,
axioms A(s, ¢) and theorems T.(s, ¢), and a machine describes
the dynamic structure of a system using variables v, invariants
I(s,c,v), theorems Ty, (s, c,v), variants V (s, c,v) and events
evt. Table I shows a formal organization of a model, in
which various clauses (i.e. VARIABLES, EVENTS) are used
to introduce the required modeling components for specifying
the given system requirements. For instance, the clause VARI-
ABLES represents the state and the clause EVENTS represents
the transitions (defined by a Before-After predicate (BA)) of a
system. A list of events can be used to model possible system
behavior to modify the state variables by providing appropriate
guards in a machine. A model also contains INVARIANTS
and THEOREMS clauses to represent its relevant properties to
check the correctness of the formalized behavior. A VARIANT
clause can be used to introduce convergence properties in a
machine. Moreover, the terms like refines, extends, and sees
are mainly used to describe the relation between components
of Event-B models.

a) Refinement of Event-B models: The refinement, intro-
duced by the REFINES clause (see TABLE I), decomposes a
model (thus a transition system) into another transition system
containing more design decisions thus moving from an abstract
level to a less abstract one. The refinement allows us to
model a system gradually by introducing safety properties at
various refinement levels. New variables and new events may
be introduced in a new refinement level. These refinements
preserve the relation between the refining model and its

CONTEXT cixt_id_2
EXTENDS ctxt_id_1
SETS s
CONSTANTS ¢
AXIOMS A(s,c)
THEOREMS T (s, c)
END

MACHINE machine_id_2
REFINES machine_id_1
SEES ctxt_id_2
VARIABLES v
INVARIANTS I(s,c,v)
THEOREMS T, (s, ¢, v)
VARIANT V (s, ¢, v)

V(s,c,v)

Event evt = any x
where G(s,c, v, x)
then v : |BA(s,c,v,z,v")
end

END
TABLE T
MODEL STRUCTURE

Theorems A(s,c) = Te(s,c)

A(s,c) NI(s,c,v) =T (s,c,v)

A(s,c) N I(s,c,v) AG(s,c,v,2)ABA(s,c,v,x,v")
=1I(s,c,v")

A(s,c) N(s,c,v)AG(s,c,v,x)
=3Jv'.BA(s,c,v,z,v")

A(s,c) NI(s,c,v) ANG(s,c,v,z)\ BA(s,c,v,z,v")
=V (s,c,v') < V(s,c,v)

TABLE I
PROOF OBLIGATIONS

Invariant
preservation
Event
feasibility
Variant
progress

corresponding refined concrete model, while introducing new
events and variables to specify more concrete behavior of the
system. The defined abstract and concrete state variables are
linked by introducing the gluing invariants.

b) Checking Event-B correctness: Proof obligations: To
verify the correctness of a machine and of refinement, we need
to discharge the proof obligations generated for a model and
for its refinements. The main proof obligations associated to
an Event-B model are listed in Table II, in which the prime
notation is used to denote the value of a variable after an
event is triggered. These PO require to demonstrate that the
theorems hold, each event preserves the invariant (inductive),
each event can be triggered (feasibility) and if a variant is
declared, it shall decrease.

Regarding refinement, two more relevant proof obligations
need to be discharged. First, the simulation PO to show that the
new modified action in the refined event is not contradictory
to the abstract action and the concrete event simulates the
corresponding abstract event. Second, in the refined events,
we can strengthen the abstract guards to specify more concrete
conditions.

More details on proof obligations can be found in [7].

c) The Rodin platform: The Rodin [26], [27] Platform
provides rich tool support for model development using the
Event-B language. It includes project management, model de-
velopment, automatic PO generation, proof assistance, model
checking, animation and automatic code generation. Once
an Event-B model is modelled and syntactically checked
in the Rodin Platform, then a set of proof obligations is
generated with the help of the Rodin tools. The integrated
Rodin tool attempts to prove automatically the generated proof
obligations. To discharge these remaining proof obligations,
we require human interaction to assist prover by simplifying
the complex expressions and predicates.

d) The Theory Plug-in.: A recent development of the
Event-B language allows to extend it with theories [?] sim-
ilar to algebraic specifications. In the Rodin Platform, this
development is provided by the Theory plug-in [?]. We are
interested to formalize and analyze the system substitution
mechanism related to hybrid systems, in which we need to
use the REAL datatype to define states variables. Therefore,
we rely on the theory Real, written by Abrial and Butler'. It
provides a dense mathematical REAL datatype with arithmetic
operators, an axiomatic semantics and proof rules.

IV. A CASE STUDY: AUTOMATIC ROVER PROTECTION
A. Informal Description

The basic informal system requirements for ARP is pro-
vided by Institut de Recherche Technologique of Toulouse
(IRT Saint-Exupéry) in the project of INGEQUIP. In fact, we
use this case study to full-fill their goal related to formal
modeling to describe the system requirement precisely for
identifying any inconsistency. Automatic Rover Protection
(ARP) is a function for collision avoidance for TwIiRTee (a
three wheel rover). ARP is an autonomous system that is a
collection of small rovers and these rovers are supervised by
a unique supervision station. In general, each rover moves
autonomously on a predefined tracks according to the given
safety constraints by applying required speed and brake. The
main objective of ARP is to provide safe operations among
autonomous rovers using a set of constraints to prevent from
collision. The unique supervision station supervises regularly
each and every tasks of each rover, including position and
speed. Moreover, it also maintains a global information of
overall system that can be used by any other rovers, and every
rover has partial view of the state of the other rovers. In
addition, this supervision station can also override any task
that can be performed by any rover locally. For example, it
can perform stop or brake event on any rover in case of any
emergency or any technical difficultly.

B. Requirements and Assumptions

This section provides informal ARP requirements, including
required definitions and assumptions to understand the main
peculiarity of the system.

1) Definitions:

o DEF-D1: Warning Area. Area on which a rover takes

an emergency action in presence of any other rover.

o DEF-D2: Caution Area. The smallest area on which a

rover can stop without reaching at the area boundary.

o DEF-D3: Info Area. Area on which a rover can see other

rovers without taking any action.

2) Requirements:

o SAF-R1: Separate rovers in the time and space
domains. All active rovers shall separate in both time
and space domains. If any two rovers are not separated
then it is known as a conflict situation;

Uhttp://wiki.event-b.org/index.php/Theory_Plug-in\#Standard_Library

— SAF-RI1.1: Separate rovers in the time domain.
The ARP shall detect the temporal conflict situation
and react instantly whenever any two active rovers
become temporarily too close.

— SAF-R1.2: Separate rovers in the space domain.
The ARP shall detect the spatial conflict situation
and react instantly whenever any two active rovers
become spatially too close.

FUN-R2: Signal conflict. An active rover shall detect any
conflict situation at most within 100 ms, and the detected
conflict must be valid until it disappears.

FUN-R3: Provide position data. Every rover shall
broadcast its position, identifier and the required bounded
warning area to all other rovers, including supervisor.
FUN-R4: Rover priority. Rover priority shall be com-
puted by the given function f that is a bijective function
from the identifiers to the integers.

REQ-RS5: Avoid conflicts. In case of a detected conflict
situation, a rover shall (i) determine the resolution action,
and (ii) apply the resolution action.

— FUN-R5.1: Determine the resolution action. The
conflict resolution action shall always be taken to-
wards the satisfaction of SAF-R1.1 and SAF-R1.2.

— FUN-R5.2: Apply “STOP” conflict resolution ac-
tion. If the conflict resolution action is “STOP” then
the rover shall apply maximum breaking force until
it stops.

— FUN-R5.3: Apply “BRAKE” conflict resolution
action. Two cases shall be possible when “BRAKE”
resolution action is triggered on any active rover:

1) If an active rover has not the priority over the
other rovers then the breaking power shall be
applied to this rover to ensure that it leaves the
warning areas of the other active rovers.

2) If an active rover has the priority over the other
rovers then it does nothing.

o FUN-R6: Supervisor-initiated action. A rover performs

any collision avoidance action requested by the supervi-
sor: “STOP” and “BRAKE”. If a “BRAKE” action is ini-
tiated by the supervisor, a supervisor defined deceleration
is applied while the “BRAKE” action is active.
FUN-R7: Resolution of conflicting actions. If two
actions shall be requested concurrently, i.e. two requests,
emitted locally or remotely must be received simultane-
ously by the rover, or one action must be requested while
another is ongoing then,

1) “STOP” action is taken over “BRAKE” action.

2) else the supervisor initiated action must be taken

over the autonomously taken action.

FUN-RS8: Rover data when leaving the set of “known
rovers”. When a rover leaves the set of “known rovers”
then its last position must be accessible to all other rovers.
FUN-R9: Recovery from a “STOP” action. When a
“STOP” action shall be performed, the rover must wait
for a supervisor action to resume the mission.

3) Environment Assumptions:

« ENV-E1: Breaking capability. A rover shall be able to
use maximum force to stop the rover without slipping
according to the newton principle.

o ENV-E2: Bounded speed. A rover shall not exceed the
maximal speed of the edge on which it shall move. It
must be ensured by the control function of the rover.

o HYP-E3: “Off-track” rover management. When a
rover becomes “off-track”, it performs the STOP action.

o« HYP-E4: “Active rovers” set management. All the
active rovers must be controlled by the supervisor. For ex-
ample, adding/removing active rovers must be performed
by the supervisor. This information must be broadcasted
instantly to all other active rovers.

o ENV-ES. Active rovers always move on horizontal plane.

C. Refinement Strategy

In our development, we consider that each rover is self-
adaptive and autonomous behaves according to changing en-
vironment. It can also be controlled by the supervisor in case
of emergency situation. We use a correct by construction
approach to design the whole ARP system, in which the
first abstract model describes controller operating modes using
mode automata to model the possible changing states/modes of
each rover. The first refinement introduces space segregation
and position of the rovers. In particular, this refinement models
a set of spatial ranges and positions for each rover abstractly,
including the required safety properties, such as warning area
is a subset of caution area, and caution area is a subset of
info area. The next four refinement levels are used to model
ARP controller using physical properties (i.e.such as mass,
brake, speed), domain modeling, dynamic controller and clock.
These refinements provide possible dynamic behavior of the
rovers, in which it cover complex calculations of physical
equations of required spatial range according to the given
speed, mass and brake of a rover in order to stop safely within
the given time interval. The last two refinements are used to
model conflict detection and conflict resolution of rovers, in
which time domain separation and space domain separation are
used to detect conflicts among the rovers and priority order is
defined for conflict resolution.

The next sections give more details on each refinement step.
For each refinement, we describe the considered requirements
and required safety properties.

V. FORMAL DEVELOPMENT OF ARP

We describe stepwise formal development of ARP in ab-
stract model and a sequence of refined models based on
informal requirements defined in section I'V-B.

A. Abstract Model: Controller Operating Modes

An abstract model of ARP specifies only possible changing
modes/states of rovers. Fig. 1 depicts possible operating modes
of rovers, in which total six modes are considered (see HYP-
R4, REQ-R6, REQ-R7, REQ-R9) . These six modes are Start,
Move, Stop, Brake, Remove and Conflict. In order to start the

*

Stop.

D

Fig. 1. Operating modes of Rovers

formalization process, we need to define some static properties
of the system using Event-B context. The first context declares
a set of rovers that is defined by R.

Abstract model of ARP only contains operating modes and
possible transition among the modes. To model the dynamic
behavior, we declare a list of variables using invariants (inv1-
inv4). These variable are: r a set of active rovers; mr a set of
moving rovers; rr a set of removed rovers; ir a set of initial
rovers that join the set of active rovers; cr a set of conflict
rovers; sr a set of stopped rovers; and br a set of braking
rovers. In order to define safe behavior, we also define a set
of invariants and theorems. The first safety property (inv8)
states that the total number of rovers from different sets must
be equivalent to the set of active rovers. The second safety
property (inv9) states that no active rover belongs to more
than one set at any time.

EVENT Adding_Rover

invl:r CRAmr CRArrCR ANY x

inv2:ir CRAcr CR WHERE
inv3:sr C RAbr C R grdl :z € R\ r
nmv8:irUmrUrrUsrUbrUcr=r THEN

nv9:irNmrNrrNsrNbrNer =9 actl : ir :=ir U {z}
act2 : r:=r U {z}

END

At this stage, the system describes only discrete func-
tional behavior for changing among various modes without
considering any specific requirements. We introduce twelve
new events for specifying the mode changing activities
in terms of changing states covering the given states of
the active rovers. These events include a guard related to
the current mode of a rover, and the action changes the
modes of the rover. Specially, we show three main events
Adding_Rover, Move_to_Move and RandomConflict, which
are used to show the mode operation of adding rover,
moving rover and to introduce conflict situation randomly.

An event Adding_Rover allows to add a new
of active rovers (). The guard of this event shows that x is a

EVENT RandomConflict
ANY x
EVENT Move_to_Move WHERIE i
ANY x gl’g;-xév\cr
grd2 : x & rr
R THEN
erdl : z € mr
THEN actl : er :=cr U {z}
actl : skip act2 : mr := mr \ {z}
END act3 ir = ir \ {x}
actd sr := sr \ {z}
act5 br := br \ {z}
END

rover in the set

member of R and it does not belong to the set of active rovers
r. The actions of this event show that this new rover z is added
to the set of active rovers r and the set of initial rovers ir.
Another event Move_to_Move is formalized in similar fashion.
The guard of this event states that a rover x belongs to the
set of moving rovers mr and the actions are empty defined
as skip. To model the conflict behavior at abstract level, we
define an event RandomConflict. The guards of this event state
that a rover x belongs to the set of active rovers, but it does not
belong to the set of removed rovers. The actions of this event
state that the rover z is added to the set of conflict rovers and
it is removed from the other remaining sets.The other events
are formalized in a similar way according to Fig. 1.

Remark: In the following sections, we summarize each
refinement steps of ARP development, in which from first
refinement to sixth refinement only cover Move_to_Move
development, and the last refinement cover the development
of RandomConflict. For the sake of simplicity, we omit the
detailed formalization and proof details. Our complete formal
development of this ARP available on website?.

B. First Refinement: Space Segregation and Position

This refinement introduces the different types of zone areas
(info area, caution area, warning area and no area) abstractly
for each rover to detect any collision (see DEF-D1, DEF-D2
and DEF-D3, REQ-R3, REQ-R8). A new constant ZoneSet
is defined in a new context for specifying the desired zone
requirements for managing the various activities, such as
moving, braking, conflicting, removing and stopping, of the
rovers according to the rover’s speed and rover’s position. We
also introduce the parameterized set VALU E representing the
values of the numbers (being either integers or real values.
VALUET™ the restriction of VALUE to the positive numbers.

axml : ZoneSet C VALUE

A set of variables is declared to define different types of
zone definitions using relations for each rover. These variables
(invl - inv2) are: ia, ca, wa and na to define info, caution,
warning and no areas respectively. A new variable Pos defines
as a function to map rovers r to ZoneSet in inv3.

invl :ia € r <> ZoneSet A ca € v <+ ZoneSet

inv2 : wa € 7 <> ZoneSet A na € r <> ZoneSet

inv3 : Pos € r — ZoneSet

invd :Vz-x € r Az ¢ rr = Pos(z) € ran({z} < wa)

invb :Vez-x € r Ax ¢ rr = ran({z} <wa) C ran({z} < ca)
inve : Vz-x € r Ax ¢ rr = ran({z} < ca) C ran({z} < ia)

A list of safety properties is introduced using invariants to
guarantee the safe behavior of the described system. The first
safety property (inv4) states that the position of every active
rover (except removed rovers) always belongs to the warning
area wa. The last two safety properties (invariants ¢nvb and
inv6) state that for each active rover (except removed rovers)

Zhttp://singh.perso.enseeiht.fr/Conference/ICECCS2016/ARPModels.zip

the warning area wa is a subset of caution area ca, and the
caution area ca is a subset of info area ia, respectively.

In this refinement, we introduce several new guards and
actions to specify the desired behavior of rovers according
to the current position and various zone definitions for ev-
ery rover. There are twelve events in total where eleven
events refine those of the abstract model. Such as, an event
Move_to_Move also refines the abstract event Move_to_Move
by adding several new guards and actions. This refined event
contains several state variables, defined in grd2 - grd4, related
to different zones and position. The next guard (grdb) states
that there is no rover in the warning area wa and caution area
ca of rover x. The last guard states that the declared warning
area wa_zs is a subset of the declared caution area ca_zs and
the declared caution area ca_zs is a subset of the declared
info area ia_zs. A set of new actions(actl-act4 is introduced.
These actions update the global set of info area ia, caution
area ca, warning area wa and no area na with new info area
ia_zS, new caution area ca_zs, new warning area wa_zs and
new no area na_zs for the rover x, respectively. Finally, the
last action (act5) updates the position set Pos with the current
new position for the rover z.

EVENT Move_to_Move refines Move_to_Move

ANY x, ia_zs, wa_zs, ca_zs, na_zs, new_pos

WHERE
grdl : @ € mr
grd2 : ta_zs C ZoneSet N ca_zs C ZoneSet
grd3 : wa_zs C ZoneSet A na_zs C ZoneSet
grdd : new_pos € wa_zs
grd5: Vy-y € r Ay # © = Pos(y) ¢ (wa_zs U ca_zs)
erd6 : wa_zs C ca_zs A ca_zs C ia_zs

THEN

actl @ ia 1= ia < {i — j|j € ta_zs Ai = x}

a2 : ca := ca & {i — j|j € ca_zs Ni =z}

a3 : wa = wa < {i— j|j € wa_zs Ni =z}
actd : na := na < {i — j|j € na_zs ANi =z}

act5 : Pos := Pos <& {i +— jli = x A j = new_pos}

END

Similarly, another event Adding_Rover refines the abstract
event Adding_Rover by adding new guards and new actions.
The refined event Adding_Rover has the same guard as the
Move_to_Move event. Similarly, a set of new actions(act3-
act6) associate to the new rover info ia_zs, caution ca_zs,
warning wa_zs and no na_zs areas for the new added rover
z into the global set of info area ¢a, caution area ca, warning
area wa and no area na, respectively. act9 adds the current
new position of the rover x into the position set Pos.

EVENT Adding_Rover
ANY x, ia_zs, wa_zs, ca_zs, na_zs, new_pos
WHERE

THEN
actl : ir :
act2 : 7 :

ia U {i— jlj € ta_zs Ai=a}

ac3 : ia

actd : ca = ca U {i — j|j € ca_zs Ni =z}
acts : wa = wa U {i — j|j € wa_zs ANi = x}
act6 : na :=na U {i — j|j € na_zs Ni = x}
act7 : Pos := Pos U {x +— new_pos}

END

Remark: Due to limited space and similar kind of refine-
ment, we omit the described other refining events.

C. Second Refinement: Physical Quantises of ARP
a) Domain modeling: This refinement introduces the
physical properties of the rovers, such as mass and speed, used

2Used symbols in Event-B model: Domain restriction (<1); Range (ran);
Overriding ().

to calculate the required braking force to stop safely any rover
(see REQ-R3). We define a set of rover IDs that is defined by
IdSet. In addition, we declare two constants Id and mass in
axioms (axml and axm?2). These constants are used to define
unique identification and mass for each rover. The last axiom
(azm3) is a static property to show that every rover has a
unique id.

axml : Id € R — IdSet
azm2: mass € R— VALUE™T
azm3 :Vrl,r2.r1 € RAr2 € RATl #r2=1d(rl) # Id(r2)

b) Handling physical information: In this refinement, we
introduce a variable speed (invl). It is defined as a total
function to specify the speed for each rover. A set of safety
properties state that the current speed of the set of stopped
rovers (sr) must be equal 0 in inv2; the current speed of the
set of braking rovers (br) must be greater then or equal to 0 in
inv3, the current speed of the set of initial rovers (i) must be
equal to 0 in ¢nwv3; and the current speed of the set of moving
rovers (mr) must be greater than 0 in inv5, respectively.

invl : speed € r - VALUE
inv2:Va-x € sr = speed(x) =0
inv3 : Va-x € br = speed(z) > 0
invd : Va-x € ir = speed(z) = 0
invb : Vz-x € mr = speed(z) > 0

In this refinement, we introduce an extra guard (grd7) and
an extra action (act6) in the refined event Move_to_Move. The
new introduced guard is used to declare a new variable v of
integer type and to ensure that the current speed of the rover
x is greater than O and the new selected value of the speed v
is also higher than 0. The new added action (act6) is used to
update the value of speed with new selected speed variable v.

EVENT Move_to_Move Refines Move_to_Move
ANY x, ia_zs, wa_zs, ca_zs, na_zs, new_pos, v
WHERE

erd7 : v € Z A speed(z) >0Av >0
THEN

act6 speed(z) ;= v
END

D. Third Refinement: Dynamic Controller

Here, the calculation for braking force to stop safely a
moving rover is introduced. The abstract definition of area
zones are also refined (calculated) according to the applied
maximum braking force, current speed and actual mass for
each rover (see HYP-R1).

Domain modeling (continued): To define the static prop-
erties, the context defining the physics of rovers is enriched.
Five new constants (min_brake, max_brake, brake_power,
brake and ca_const) are declared. The first two constants
(axml and axm?2) define the possible values for minimum
brake and maximum brake, respectively. The next constant
(azm3) is used to define the braking power by providing
minimum and maximum ranges. The next constant brake is
defined as a function to model the brake function for each
rover. In axmb, we define a constant ca_const as strictly
positive that can be used in the model to describe the concrete

caution area for each rover. The next two axioms (axm6 and
axmT) are used to define system properties, particularly for
brake. These axioms state that the maximum braking power
for every rover should not be 0 and for every rover there must
exist a maximum braking power. A set of axioms (axm8-
arml3) defines a set of functions for calculating info area,
caution area and warning area using mass (m), velocity (v)
and brake (b) of a rover.

Remark: The defined axioms correspond to the theory
of kinematics and mechanics. This can be seen as an explicit
model to formalize domain knowledge [28].

axml :
axrm?2 :
axm3 :
axm4 :
axmb :

min_br € VALUE N min_br > 0
max_br € VALUE AN max_br > min_br
brake_power = min_br .. max_br
brake € R — {brake_power}
ca_const € VALUE'
azmb : Vr-r € R = max(brake(r)) # 0
azmT7 :3b-b € VALUE A (Vr-r € R = max(brake(r)) = b)
azm8 :ia_fun € N x VALUET x VALUE — VALUE™
azm9 :Vm,v,b-m € VALUET Av € VALUET Abe VALUE
A=b = 0= ia_fun(m — v = b) = ((2*m*v*v)/b)
azml0 : ca_fun € VALUET x VALUEY x VALUE — VALUE™
azmll : Ym,v,b-m € VALUEY Av € VALUET Ab € VALUEA
—-b=0= ca_fun(m— v —b) =
(((mxv*v)/2xb)+ ca_const)
azml2 : wa_fun € VALUEY x VALUEY x VALUE — VALUE"
azml3 :¥Ym,v,b-m € VALUET ANv € VALUET Ab€ VALUE
A=b = 0= wa_fun(m +— v — b) = ((m * v *v)/b)

The obtained refinement: It does not declare any new
variable, it introduces two safety properties to guarantee the
correctness of different areas (info area, caution area, warning
area and no area) after refining their abstract definition. These
safety properties (znvl and inv2) state that for each rover, the
warning area wa is a subset of the caution area ca, and the
caution area ca is a subset of the info area ia.

invl:Ve-x € r Az ¢ rr = ran({z} Qwa) C ran({z} < ca)
nv2:Ve-x €r Az ¢ rr=ran({z} <ca) C ran({z} <ia)

In this refinement, we strengthen the abstract guards by
providing more precise information for each defined areas
related to info area, caution area and warning area. The
strengthening guards grd2, grd3 and grd4, present an actual
calculation for different areas according to the mass, current
speed and maximum braking power of any rover x.

EVENT Move_to_Move Refines Move_to_Move
ANY x, ia_zs, wa_zs, ca_zs, na_zs, new_pos, v
WHERE

grd2 : ia_zs C ZoneSet A (mass(x) — v — max(brake(x)))
€ dom(ia_fun) A ia_zs = new_pos .. (new_pos+
ia_fun(mass(z) — v — maz(brake(z))))

grd3 : ca_zs C ZoneSet A (mass(xz) — v — maz(brake(z)))
€ dom(ca_fun) A ca_zs = new_pos .. (new_pos+
ca_fun(mass(z) — v — mazx(brake(x))))

grd4 : wa_zs C ZoneSet A (mass(z) — v — maz(brake(z)))
€ dom(wa_fun) A wa_zs = new_pos .. (new_pos+
wa_fun(mass(z) — v — maz(brake(x))))

THEN

END

E. Fourth Refinement: Space and Time Domains Separation

This important refinement introduces the time domain sepa-
ration and space domain separation for each rover in the ARP

framework to avoid any collision and to resolve any conflicts
(see REQ-R1, REQ-RS). If any two rovers are not separated
then it is known as a conflict situation. The time domain
separation states that the ARP shall detect the temporal conflict
situation and to react instantly whenever any two active rovers
become temporarily too close (see REQ-R1.1), and the space
domain separation states that the ARP shall detect the spatial
conflict situation and to react instantly whenever any two
active rovers become spatially too close (see REQ-R1.2).

To model these requirements we declare a list of con-
stants: sds_C, sds_W, sds_I to define space domain sepa-
ration and tds_C, tdc_W, tds_I to define time domain sep-
aration for caution, warning and info areas respectively.
Moreover, two additional properties are defined in form of
constraints. The first property (axm?2) states that the space
domain separation for caution area must be less than the
space domain separation for warning area and the space
domain separation for warning area must be less than the
space domain separation for info area. The second prop-
erty (axm4) states is similar for time domain separation.

Time domain modeling: Tt should be noted that in this
model we consider discrete time steps. A total of five constants
are declared. The first four constants are: OBS_mm, OBS_mb,
OBS_mm and OBS_csb for time observation during move
to move, move to brake, move to stop and conflict to stop
or brake respectively. The next constant timestep and the
associated property states that it will be minimum of the time
observations (OBS_mm, OBS_mb, OBS_ms and OBS_csb).
The last constant 7ime defines a set of positive values.

Handling time: A variable now is declared to represent
the current clock counter in invl, which progresses by the
defined constant timestep at every clock tick. In addition, we
declare a new variable Position in inv2 that is the refinement
of the abstract variable Pos.Position is defined as a total
function that maps the set of active rovers (except removed
rovers) to the pair (time, zone set). Similarly, the next variable
speed_at refines the abstract variable speed. Again, it is a total
function. It maps the set of active rovers to (time, speed) pair.

azml: OBS_mm € VALUE" A OBS_mb € VALUE ™A
azm2: OBS_ms € VALUE"Y AN OBS_csb € VALUE™
axm3 : timestep € VALUETA
timestep = min({OBS_mm, OBS_ms, OBS_mb, OBS_csb})

axml : sds_C € VALUE A sds_W € VALUE
Nsds_I € VALUE _ -
axm?2 : sds_C < sds_W A sds_W < sds_I ZZZ; fj g “/{;’2555
axm3 : tds_C € VALUE A
axmd : tds_C < tds_W ...

axmd : Time = VALUE™T

In this refinement, we introduce two variables space domain
(sd) in tnvl and time domain (td) in inv2. They are used to
store the values from time and space domains.

In every events we introduce space domain and time domain
separations to assign the current value of it according to the
warning area, caution area and info area for each rover. In
fact, these separations identify any occurred conflict to avoid
any collision and to take the required action for safe operations
among the rovers.

All the events except RandomConflict are refined in this
refinement level by adding two actions related to time do-
main and space domain separations. For example, in event
Move_to_Move, we add two new actions (act7 and act8).
These actions are defined non-deterministically. They assign a
new value of space domain sd that must belong to the space
domain of caution, warning or info areas (similarly a new
value of time domain td is assigned).

EVENT Move_to_Move Refines Move_to_Move
ANY x, ia_zs, wa_zs, ca_zs, na_zs, new_pos, vV
WHERE ...

THEN

act7 : sd :€ {sds_C, sds_W, sds_I'}
act8 : td :€ {tds_C, tds_W,tds_I}
END

FE. Fifth Refinement: Clock Introduction

According to the refinement strategy defined in section
IV-C, this important refinement introduces a clock to specify
the temporal behaviors for modeling the ARP framework. At
this level, it is possible to refine the abstract speed and position
of the rovers by defining their values inline with time progress.

To refine the abstract variables, a gluing invariant is intro-
duced to link (glue) abstract and concrete variables. The first
gluing invariant inv4 rewrites the abstract variable Pos to the
concrete variable Position, which states that for all active
rovers (except removed rovers) the pair of current time and
current position are equivalent to the abstract position.

now € Time

inv2 : Position € r \ rr — Time X ZoneSet

inv3 : speed_at € r — Time x VALUE™T

invd : Va-x € r \ 77 = now — Pos(xz) = Position(x)
invb : Vo -z € r = now — speed(z) = speed_at(x)

wnvl :

Similarly, the gluing invariant inv5 rewrites the abstract vari-
able speed to the concrete variable speed_at. It states that for
all active rovers the pair of the current time and the current
speed are equivalent to the abstract speed.

EVENT Move_to_Move Refines Move_to_Move
ANY x, ia_zs, wa_zs, ca_zs, na_zs, new_pos, v, po, sp
WHERE

grd8 : po € v\ rr — Time X ZoneSet

grd9 : po= ({i — (j — k)|i =z ANi € dom(Position)A
j = now + timestep A k = new_pos} U {t — (j — k)|i €
r\ {z} A i € dom(Position) A j = now + timestepA
k = prj2(Position(i))})

ard10 : sp € r — Time x VALUE™T

grdll : sp= ({i— (j — k)|i = x A i € dom(speed_at)A
Jj = now + timestep Nk =v} U {i— (j — k)i €
r\ {z} A i € dom(speed_at) A\ j = now + timestepA
k = prj2(speed_at(i))})

THEN

act5 : Position, speed_at := po, sp

act7 : sd :€ {sds_C, sds_W, sds_I'}

act8 : td :€ {tds_C,tds_W,tds_I}

act9 : now := now + timestep
END

Due to introduction of new variables for rewriting the old
abstract variables, every event that uses the abstract variables
is refined by an event that uses the new variables. For the

case of the Move_to_Move event, two new local parametric
variables position po and speed sp are used. po is defined
as a total function that maps the set of active rovers (except
removed rovers) to the pair of (time, zone) set in grd8. The
next additional guard grd9 states that the position set po must
be equivalent to the set of pairs of time and position of active
rovers (except removed rovers), in which the current position
of the rover x is updated to a new position (new_pos) of
the rover z. The other active rovers (except removed rovers)
keep their own positions at current time (time is increased
by a single time step). sp is declared as a total function that
maps the set of active rovers to the pair of time and speed.
The last additional guard grdll states that the speed set po
must be equivalent to the set of pairs of times and speed of
active rovers, in which the current speed of the rover z is
updated to a new speed v. The other active rovers should
have their own speeds at the current time.The other guards
of this event are similar to the abstract event. Action actb
is modified according to the new defined variables Position
and speed_at. It updates the positions and speed of the active
rover z. An extra action (act9) increases current time now by
the time step timestep.

G. Sixth Refinement: Conflict Detection

The remaining two refinements correspond to the last step
of the refinement strategy defined in section IV-C. A random
conflict is triggered. It may occurr, when an active rover
becomes temporally or spatially too close (in terms of space
and time separation as defined in previous refinement of
section V-E) to another known rover (REQ-R2, REQ-RS).
axml : S_Distance € (T'ime X ZoneSet) x (Time X ZoneSet)

—VALUE™"
azm?2 : S_Time € (Time X PointsSet) x (Time X PointsSet)

—VALUE™"
axm3 : PointAt € R — Time X PointsSet

Three constants S Distance, S_Time and PointAt are intro-
duced (axml - axzm3). The set PointsSet gathers all points on
the segments defined in the embedded cartography. The first
two total functions (S_Distance and S_Time) calculate spatial
separation and temporal separation and the last one PointAt
calculates an actual position of the active rovers.

This refinement does not introduce any new variable. Solely
the abstract event RandomConflict is refined by two new
similar events RandomConflict_TimeDomain and Random-
Conflict_SpaceDomain for time and space separation violation.
RandomConflict_TimeDomain introduces a new guard (grd2)
to assert that current active rover x is temporarily too close
to another known active rover and the required time interval
between the closed rovers is less than the required interval of
time domain separation (td).

H. Seventh Refinement: Conflict Resolution

This is the last refinement that introduces rover’s priority
that allows to active rovers to perform any action in conflict
situation (see REQ-R4, REQ-R2, REQ-RS5). For instance, if
two rovers are in conflict situation and first rover has higher
priority than second rover then the second rover performs the
brake or stop action.

Priority policy: We introduce two constants Priority
and HigherPri (axioms axml and axm?2). The constant
Priority is a total function that maps each rover to its priority.
HigherPri is also a total function to choose in a pair of
rovers, the one with higher priority. In addition, azm3, axm4
and axmb define the policy associated to the rovers priorities.

axml : Priority € IdSet — N

axm?2 : HigherPri € RX R — R

axm3 :Vrl,r2.rl € RAr2 € RArl # r2 A (Priority(Id(rl)) >
Priority(I1d(r2)) < Higher Pri(rl — r2) = rl)
vrl,r2-r1 € RAT2 € RATl # r2 A (Priority(Id(rl)) <
Priority(Id(r2)) < HigherPri(rl — r2) = r2)
vrl,r2-rl € RAT2 € RATl # r2 A (Priority(Id(rl)) =
Priority(1d(r2)) & (Higher Pri(rl — r2) = rl)V
(HigherPri(rl — r2) = r2))

axm4 :

armb :

Refined conflict events: We only refine two events Con-
flict_to_Brake and Conflict_to_Stop. In both events, we intro-
duce an extra guard (grd12) that states the rover x has lower
priority in case of conflict with any other known active rover.
The guard grd12 is added in the event Conflict_to_Brake.

EVENT Conflict_to_Brake Refines Conflict_to_Brake
ANY x, ia_zs, wa_zs, ca_zs, na_zs, new_pos, v, po, sp
WHERE

grd12 Vi-i € er At # x = Priority(Id(x)) < Priority(Id(t))
THEN

END

1. Model Validation and Analysis

Event-B supports consistency checking and refinement
checking. The associated proof obligations (POs) are those of
table II. We have conducted our stepwise development using
both model checking and proof. Model checking with ProB [9]
has been used to validate the behavioral requirements of the
developed models. Validation refers to gaining confidence
that the developed models are consistent with requirements.
ProB supports automated consistency checking and constraint-
based checking. The use of ProB helped us to identify the
desired behavior and to guarantee the deadlock freedom of
ARP models for different scenarios. As a second step, we
have used proof based techniques to definitely prove the
correctness of our development. Table III shows the proof
statistics of the development in the Rodin IDE. To guarantee
the correctness of the system behavior, we incrementally
introduce the safety properties in the stepwise refinements. The
development resulted in 723 (100%) POs, in which 444 (62%)

EVENT RandomConflict_TimeDomain Refines RandomConflict
ANY x
WHERE
gidl :x €r\erAx &rr
grd2 : 3i-i € v\ rr A S_Time(PointAt(xz) — PointAt(i)) < td
THEN
actl : cr,mr,ir, sr,br := cr U {z}, mr \ {z},ir \ {z}, sr \ {z},br \ {z}
END

are proved automatically, and the remaining 279 (38%) are
proved interactively using the Rodin prover and SMT solvers.

VI. CONCLUSION

Automatic Rover Protection (ARP) is a a self-adaptive
system implementing a function for collision avoidance for

Model Total number | Automatic | Interactive
of POs Proof Proof
Abstract Model 242 153(64%) 89(36%)
First Refinement 108 50(47%) 58(53%)
Second Refinement 70 70(100%) 0(0%)
Third Refinement 111 62(56%) 49(44%)
Fourth Refinement 22 22(100%) 0(0%)
Fifth Refinement 163 82(51%) 81(49%)
Sixth Refinement 2 0(0%) 2(100%)
Seventh Refinement 5 5(100%) 0(0%)
Total 723 444(62%) 279(38%)
TABLE TIT

PROOF STATISTICS

TwlRTee. The prime goal is to provide safe operations among
rovers.

This paper presented a formal development of the ARP self-
adaptive system using a correct-by-construction approach and
incremental refinement. We described the static and dynamic
system properties in form of system requirements using formal
notations in the abstract and refined models (8 models in
total). As far as we know, this is the first formal model of
the ARP to analyze that the functional behavior complies
with its safety requirements. We used the Event-B modeling
language, together with its associated tools, to develop the
proof-based formal model using a refinement technique. Our
incremental development reflects not only the many facets of
the problem, but also that there is a learning process involved
in understanding the problem and its possible solutions. The
complete Event-B development is available on our website>.

Our ultimate goal is to develop a system controller based
on our models by refining the current models with correct dis-
cretization of continuous behaviors. In particular, the objective
is to identify, using control theory, the correct time steps in the
developed ARP controller. In addition, we plan to integrate the
developed formal models of ARP with physical environment
(e.g. cartography) to model the closed-loop system for ver-
ifying the desired behavior under relevant safety properties,
and be able to guarantee the correctness of the functional
behavior of the ARP in chaotic environment. We also intend
to implement ARP framework for a hardware platform by
generating source code using EB2ALL.

REFERENCES

[1] Cheng et al., “Software engineering for self-adaptive systems: A re-
search roadmap,” in Software Engineering for Self-Adaptive Systems, ser.
LNCS, B. H. Cheng, R. Lemos, H. Giese, P. Inverardi, and J. Magee,
Eds. Springer Berlin Heidelberg, 2009, vol. 5525, pp. 1-26.

[2] N. K. Singh, Using Event-B for Critical Device Software Systems.
Springer-Verlag GmbH, 2013.

[3] M. B. Andriamiarina, D. Méry, and N. K. Singh, “Revisiting snapshot
algorithms by refinement-based techniques,” Comput. Sci. Inf. Syst.,
vol. 11, no. 1, pp. 251-270, 2014.

[4] Y. Chen, M. Lawford, H. Wang, and A. Wassyng, “Insulin pump soft-
ware certification,” in Foundations of Health Information Engineering
and Systems, ser. LNCS, J. Gibbons and W. MacCaull, Eds. Springer
Berlin Heidelberg, 2014, vol. 8315, pp. 87-106.

[5] M. Satpathy, S. Ramesh, C. F. Snook, N. K. Singh, and M. J. Butler,
“A mixed approach to rigorous development of control designs,” in
2013 IEEE International Symposium on Computer-Aided Control System
Design, CACSD 2013, Hyderabad, India, 2013, pp. 7-12.

3http://singh.perso.enseeiht.fr/Conference/ICECCS2016/ARPModels.zip

[6]

[7]
[8]
[9]
[10]

(11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

(19]

[20]

(21]

[22]

[23]

[24]

[25]
[26]

[27]

[28]

I. Lee, G. J. Pappas, R. Cleaveland, J. Hatcliff, B. H. Krogh, P. Lee,
H. Rubin, and L. Sha, “High-confidence medical device software and
systems,” Computer, vol. 39, no. 4, pp. 33-38, 2006.

J. Abrial, Modeling in Event-B - System and Software Engineering.
Cambridge University Press, 2010.

Project RODIN, “Rigorous open development environment for complex
systems,” http://rodin-b-sharp.sourceforge.net/, 2004.

M. Leuschel and M. Butler, ProB: A Model Checker for B, ser. LNCS.
Springer, 2003, pp. 855-874.

Lemos et al., “Software engineering for self-adaptive systems: A second
research roadmap,” in Software Engineering for Self-Adaptive Systems
II, ser. LNCS, R. Lemos, H. Giese, H. A. Mller, and M. Shaw, Eds.
Springer Berlin Heidelberg, 2013, vol. 7475, pp. 1-32.

M. Parashar and S. Hariri, “Autonomic computing: An overview,” in
Unconventional Programming Paradigms, ser. Lecture Notes in Com-
puter Science, J.-P. Bantre, P. Fradet, J.-L. Giavitto, and O. Michel, Eds.
Springer Berlin Heidelberg, 2005, vol. 3566, pp. 257-269.

A. Bhattacharyya, “Formal modelling and analysis of dynamic reconfig-
uration of dependable systems,” Ph.D. dissertation, Newcastle University
School of Computing Science, January 2013.

G. Babin, Y. Ait-Ameur, and M. Pantel, “A generic model for sys-
tem substitution,” in Trustworthy Cyber Physical Systems Engineering,
A. Romanovsky and F. Ishikawa, Eds. CRC Press Taylor & Francis
Group, 2016.

N. De Palma, P. Laumay, and L. Bellissard, “Ensuring dynamic recon-
figuration consistency,” in In 6th International Workshop on Component-
Oriented Programming (WCOP 2001), 2001, pp. 18-24.

A. Lanoix, J. Dormoy, and O. Kouchnarenko, “Combining proof and
model-checking to validate reconfigurable architectures,” Electronic
Notes in Theoretical Computer Science, vol. 279, no. 2, pp. 43 — 57,
2011, proceedings of the 8th International FESCA.

I. Pereverzeva, E. Troubitsyna, and L. Laibinis, “A refinement-based ap-
proach to developing critical multi-agent systems,” International Journal
of Critical Computer-Based Systems, vol. 4, no. 1, pp. 69-91, Jan 2013.
M. U. Iftikhar and D. Weyns, “A case study on formal verification of
self-adaptive behaviors in a decentralized system,” vol. 91, 2012, pp.
45-62.

G. Smith and J. W. Sanders, “Formal development of self-organising
systems,” in Proceedings of the 6th International Conference on Au-
tonomic and Trusted Computing, ser. ATC ’09. Berlin, Heidelberg:
Springer-Verlag, 2009, pp. 90-104.

M. Puviani, G. D. M. Serugendo, R. Frei, and G. Cabri, “A method
fragments approach to methodologies for engineering self-organizing
systems,” ACM Trans. Auton. Adapt. Syst., vol. 7, no. 3, pp. 33:1-33:25,
Oct. 2012.

J. O. Kephart and D. M. Chess, “The vision of autonomic computing,”
Computer, vol. 36, no. 1, pp. 41-50, Jan. 2003.

D. Weyns, B. Schmerl, V. Grassi, S. Malek, R. Mirandola, C. Prehofer,
J. Wuttke, J. Andersson, H. Giese, and K. M. Goschka, “On patterns
for decentralized control in self-adaptive systems.” LNCS, 2013, vol.
7475, pp. 76-107.

W. Su, J.-R. Abrial, and H. Zhu, “Formalizing hybrid systems with
Event-B and the Rodin platform,” Science of Computer Programming,
vol. 94, Part 2, pp. 164 — 202, 2014.

M. Butler, J.-R. Abrial, and R. Banach, From Action Systems to
Distributed Systems: The Refinement Approach. Taylor & Francis, 2016,
ch. Modelling and Refining Hybrid Systems in Event-B and Rodin.

R. Banach, M. Butler, S. Qin, N. Verma, and H. Zhu, “Core Hybrid
Event-B I: Single Hybrid Event-B machines,” Science of Computer
Programming, 2015.

J.-R. Abrial, The B-book: Assigning Programs to Meanings. New York,
NY, USA: Cambridge University Press, 1996.

M. Jastram, Rodin User’s Handbook, oct 2013. [Online]. Available:
http://handbook.event-b.org

J.-R. Abrial, M. Butler, S. Hallerstede, T. S. Hoang, F. Mehta, and
L. Voisin, “Rodin: an open toolset for modelling and reasoning in Event-
B, International Journal on Software Tools for Technology Transfer,
vol. 12, no. 6, pp. 447-466, 2010.

Y. Ait Ameur and D. Méry, “Making explicit domain knowledge in
formal system development,” Science of Computer Programming, vol.
121, pp. 100 — 127, Mar. 2016.

