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Analogical Classifiers: A Theoretical Perspective

Nicolas Hug1 and Henri Prade1,2 and Gilles Richard1,3 and Mathieu Serrurier1

Abstract. In recent works, analogy-based classifiers have been

proved quite successful. They exhibit good accuracy rates when com-

pared with standard classification methods. Nevertheless, a theoret-

ical study of their predictive power has not been done so far. One

of the main barriers has been the lack of functional definition: ana-

logical learners have only algorithmic definitions. The aim of our

paper is to complement the empirical studies with a theoretical per-

spective. Using a simplified framework, we first provide a concise

functional definition of the output of an analogical learner. Two ver-

sions of the definition are considered, a strict and a relaxed one. As

far as we know, this is the first definition of this kind for analog-

ical learner. Then, taking inspiration from results in k-NN studies,

we examine some analytic properties such as convergence and VC-

dimension, which are among the basic markers in terms of machine

learning expressiveness. We then look at what could be expected in

terms of theoretical accuracy from such a learner, in a Boolean set-

ting. We examine learning curves for artificial domains, providing

experimental results that illustrate our formulas, and empirically val-

idate our functional definition of analogical classifiers.

1 Introduction

Analogical reasoning is widely recognized as a powerful ability of

human intelligence. It can lead to conclusions for new situations by

establishing links between apparently unrelated domains. One well

known example is the Bohr’s model of atom where electrons circle

around the kernel, which is analogically linked to the model of plan-

ets running around the sun. It is not surprising that this kind of rea-

soning has generated a lot of attention from the artificial intelligence

community. We can cite for instance [12, 13, 16, 30, 17] where the

power of analogical reasoning is emphasized. The interested reader

may find in [27] a survey of current trends. More recently, using anal-

ogy as a basis for the automatic solving of IQ tests [8, 29] or for

machine learning tasks [15, 33] got more attention. In the case of

classification, analogical classifiers are mainly based on a particular

variant of analogy, namely analogical proportions and they have been

proved successful [4, 28, 6], at least from an empirical viewpoint.

But analogy, as an essential ingredient of Artificial Intelligence,

has also attracted theoretical investigations. In [10], a thorough in-

vestigation of analogical reasoning from a first order logic viewpoint

has been done, leading to clearly specify safe conditions of usage

of the analogical jump. More recently, in [14], an higher order logic

framework has been developed, providing another logical theory for

analogical reasoning in artificial intelligence and cognitive science.

Instead of being described as an inference rule, the analogy-making

process is described in terms of generalisation and anti-unification.
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On top of this work, a full implementation has been done leading to

the so-called Heuristic-Driven Theory Projection (HDTP).

From another viewpoint, we have to mention the work of [18]

which is an attempt to consider analogy-making as a particular case

of machine learning where very few data are available. In the limit

case, only one pair (a, f(a)) (a is the source) is available and one

has to guess f(b) for another element b, the target. This work de-

scribes a model which minimizes the computational cost of produc-

ing (b, f(b)) from (a, f(a)). This computational cost can be esti-

mated via Kolmogorov complexity [7], a measure which is well-

known to be hard to compute (but can be estimated via compression).

Finally, we can also recall the work of [2] where the particular case

of analogical proportion is investigated in lattices and other algebraic

structures, leading to elegant theoretical results and implementations.

Nevertheless, all these theoretical investigations are not directed to

provide an analytical view of analogy-based learners. In that sense,

they are not really helpful if we want to characterize the behaviour

of an analogical classifier for instance. One of the reasons could be

that, unlike the k-NN rule, the analogical learning rule is not eas-

ily amenable to a functional definition. In fact, each implemented

algorithm provides a clean description of how to compute but we

definitely miss a clean description of what do we actually compute.

Since such a definition, even a simplified one, is paramount to in-

vestigate theoretical properties, we suggest here a concise functional

definition and we prove that it fits with the main implementations of

analogical classifiers.

Our paper is organized as follows. In Section 2, we recall the fun-

damentals about analogical proportions as a particular case of anal-

ogy. Then, in Section 3, we explain how such proportions under-

lie analogical classifiers and the principle of their implementations.

Then we provide a unified functional view establishing the formal

framework allowing to investigate their mathematical properties. In

Section 4, we examine some general properties such as convergence

and VC-dimension of analogical learners, considering only minimal

constraints on the underlying domain. In Section 5, we investigate,

from a probabilistic viewpoint, the expected accuracy of an analogi-

cal learner in the Boolean case. We empirically validate our formulas

in Section 6 with a complete batch of experiments. We provide our

final remarks in Section 7, linking the known results about analogi-

cal classifiers with their mathematical properties, noting some limi-

tations of our study and suggesting directions for future research.

2 Analogical proportions

Given a set X , an analogical proportion4 over X is a quaternary re-

lation A over X satisfying 3 axioms [11, 20]:

1. ∀a, b, A(a, b, a, b)

4For the remaining of this paper, the term analogy always means analog-
ical proportion.



2. ∀a, b, c, d, A(a, b, c, d) =⇒ A(c, d, a, b) (symmetry)

3. ∀a, b, c, d, A(a, b, c, d) =⇒ A(a, c, b, d) (central permutation)

A(a, b, c, d) is often denoted with infix notation a : b :: c : d when

there is no ambiguity over the relation A and its domain X . When

dealing with natural language words, the third axiom may be debat-

able [3]. There are a lot of ways to define an analogical relation over

a set X , depending on the available structure and operators.

When X = R, some of the most well known examples are the

arithmetic proportion a : b :: c : d iff a − b = c − d, and the

geometrical proportion a : b :: c : d iff a
b
= c

d
iff a ∗ d = b ∗ c.

When X = B = {0, 1}, the previous definitions still work and

have a logical translation as [23, 26]:

a : b :: c : d iff (a ∧ d ≡ b ∧ c) ∧ (a ∨ d ≡ b ∨ c)

In fact, as soon as we have a proportion A over a set X , it is

straightforward to build a proportion Am over Xm with:

∀a, b, c, d ∈ Xm, Am(a, b, c, d) ⇐⇒ ∀i ∈ [1,m], A(ai, bi, ci, di).

Still, Am will often be denoted A when there is no ambiguity. In

[22, 31, 21], examples are given where X is equipped with some

algebraic structure (words over an alphabet, lattices, sets, Boolean

vectors, matrices, etc.).

2.1 Analogical equation

When an analogical proportion is defined on a set X , given 3 ele-

ments a, b, c of X and a variable x, a relation a : b :: c : x turns into

an equation that we may write a : b :: c : x = 1 where we have to

find an element x ∈ X such that the proportion holds. Depending of

the set X , the proportion A and a, b, c, one may encounter one of the

three situations: the equation is not solvable, has a unique solution,

or has multiple solutions. When there is at most one solution, we say

that A is univocal. For instance:

• When X = 2U (i.e. X is the powerset of a given universe) and

a : b :: c : x is defined as:

(a ∪ x = b ∪ c) and (a ∩ x = b ∩ c),

the equation is solvable iff b ∩ c ⊆ a ⊆ b ∪ c and the unique

solution is then x = ((b ∪ c) \ a) ∪ (b ∩ c).
• With X = R

m and a : b :: c : x iff a − b = c − x, the equation

has always a solution x = c − a + b. When m = 2 and a, b, c, x
are considered as points in R

2, it simply means that starting from 3

points, we can always find a fourth one to build up a parallelogram

as shown in Figure 1 [26]. In fact, from three non aligned points

a, b, c, one can build two other parallelograms which correspond

to the following equations: b : a :: c : x′ and c : a :: b : x′′.

• With X = B
m, the previous definition can still be used since

B
m ⊆ R

m. But Bm is not closed for addition and subtraction, so

the equation does not always have a solution in B
m. For instance,

the equation (0, 0) : (0, 1) :: (1, 0) : x has a unique solution

(1, 1) whereas the equation (0, 1) : (0, 0) :: (1, 0) : x has no

solution in B
2 (since in B, 1 : 0 :: 0 : x has no solution), despite

the fact that there exists a solution x = (1,−1) in R
2. Another

way to put it is to say the 4th summit of the parallelogram, which

always exists in R
m, does not necessarily belong to B

m.

In the following section, we investigate how the equation solving

process can be used as the underlying principle to infer unknown

information.

b

c

x

a

x
′

x
′′

Figure 1. Three parallelograms issued from a, b, c.

2.2 Inference principle

It is recognised that analogical reasoning provides plausible conclu-

sions only [10]. The analogical inference principle can be stated as

[31] (where -a = (a1, a2, · · · an)):

∀j ∈ J ⊂ [1, n], aj : bj :: cj : dj
∀i ∈ [1, n] \ J, ai : bi :: ci : di

(analogical inference)

In words, this inference principle states that given four vectors

-a,-b,-c, -d, if a proportion holds on a sufficient number of components

(the J components), then it should also hold for the remaining ones.

This principle leads to a prediction rule in the following context:

• 4 vectors -a,-b,-c, -d are given where -d is partially known: only the

components of -d with indexes in J are known.

• Using analogical inference, we can predict the missing compo-

nents of -d by solving (w.r.t. di) the set of equations (in the case

they are solvable):

∀i ∈ [1, n] \ J, ai : bi :: ci : di.

In the case where the items are such that their last component is just

a label, applying this principle to a new element -d whose label is un-

known leads to predict a candidate label for -d. This prediction tech-

nique has been successfully applied to classification problems in both

Boolean [4, 6] and numerical settings [28].

In the next section, we describe the diverse ways this inference

rule is implemented for classification purposes. This leads us to a

unified functional definition of analogical classification.

3 Analogical classification

In the context of classification, items are represented as elements of a

universe X having a (unique) label belonging to Y . For any x ∈ X , ẋ
denotes the ground truth label associated to x. The goal of a classifier

is, given a sample set S (i.e. a set of elements x ∈ X for which ẋ is

known), to correctly predict the label of other elements x that do not

belong to the sample set. We call x̂ the predicted label of x: this is

the output of the classifier.

3.1 Conservative classifier

Let us first consider what we call a conservative classifier. Such a

classifier is called conservative because it is not able to output a pre-

diction for any x in X , but only for a subset of X . We need to define

two crucial concepts: the analogical extension of a sample set S, and

the analogical root of an element x.



Let A be an analogy relation over X and B an analogy relation

over Y , the set of labels. The notion of analogical equation allows us

to define the so-called analogical extension of S denoted as:

AY
E(S) = {x ∈ X|∃(a, b, c) ∈ S3, a : b :: c : x and

∃y ∈ Y, ȧ : ḃ :: ċ : y}.

An intuitive interpretation of AY
E(S) is to see it as the set of all

x ∈ X that are solutions of the analogical equations which can be

built over the sample set S, provided that the equation related to the

associated labels is also solvable. We have the following properties:

1. S ⊆ AY
E(S), since x : x :: x : x always holds ;

2. AY
E(∅) = ∅, AY

E(X) = X ;

3. S1 ⊆ S2 =⇒ AY
E(S1) ⊆ AY

E(S2).

The dual concept of the analogical extension is the so-called ana-

logical root of a given element x ∈ X , denoted RY
S (x):

RY
S (x) = {(a, b, c) ∈ S3|a : b :: c : x and ∃y ∈ Y, ȧ : ḃ :: ċ : y}

RY
S (x) is the set of 3-tuples in S which are analogically linked to x

and which provide a prediction for the label. It is clear that RY
S (x)

may contain more than one 3-tuple: for example in Rm, x may be

the summit of more than one parallelogram.

For any element x of AY
E(S), we define the analogical label of x

as:

x =

{

ẋ if x ∈ S

Mode{y|ȧ : ḃ :: ċ : y ∀(a, b, c) ∈ RY
S (x)} if x /∈ S

where Mode(Σ) returns the most frequent element of the multiset Σ.

In case of a tie, the returned element is chosen at random between

the most frequent elements.

The analogical label will be used to estimate the label of every

element. Obviously, in the first case, we do not want to change the

label of the elements of S. For elements in AY
E(S)\S (i.e. the second

case), the analogical label is the most frequent label out of all the

labels inferred from the solution of the analogical equations that one

can build from RY
S (x). It is quite clear that, for these elements, we

do not necessarily have x = ẋ. To summarize, for a given element

x ∈ X , we may potentially associate 3 labels:

• its true label ẋ ;

• in the case where x ∈ AY
E(S), its analogical label x ;

• its predicted label x̂.

Conservative classifiers set the prediction of an element x ∈ AY
E(S)

as x̂ as follows:

if x ∈ AY
E(S), x̂ = x else x̂ is undefined

This kind of classifier cannot predict a label for an element which is

not in AY
E(S). In Algorithm 1, we provide the corresponding algo-

rithm.

Let us note that AY
E(S) is never explicitly computed. Instead, we

look for every 3-tuple in S and check if they belong to RY
S (x).

Clearly, this is a supervised learning setting, where sample instances

are stored for future use, without any generalization process. Conser-

vative classifiers are Instance Based Learners as described in [1].

Such a conservative learner cannot generalize to any new input and

is restricted to elements in AY
E(S). This is not the case for instance-

based learner like k-NN. This is why other options have been imple-

mented to overcome this problem and to extend in some sense the

generalization ability of analogical learner, as we will see in the next

section.

Algorithm 1 Conservative classifier

Input: A sample set S and an element x ∈ X for which ẋ is

unknown.

Output: x̂, an estimation of ẋ
Init: C = ∅ // multiset of candidate labels

for all (a, b, c) ∈ S3 such that a : b :: c : x do

if ∃y ∈ Y such that ȧ : ḃ :: ċ : y then

// we are sure (a, b, c) ∈ RY
S (x)

compute the solution y of ȧ : ḃ : ċ : y
C = C ∪ y

end if

end for

x̂ = x = Mode(C) // undefined if C = ∅

3.2 Extended classifier

To relax the previous option, we need to be able to predict a label for

elements outside AY
E(S) i.e. elements which do not constitute a per-

fect analogy with elements in S. To this end, we can try to measure

to what extent such elements are far from building a perfect analogy

with those in S. The concept of analogical dissimilarity, first defined

in [4], will be useful to quantify in some sense how far a relation

a : b :: c : d is from being a valid analogy. We keep the initial no-

tation AD(a, b, c, d) to denote the analogical dissimilarity between

4 elements. Some minimal properties have to be satisfied by such a

dissimilarity AD : X4 −→ R
+ to fit with the intuition:

• ∀a, b, c, d, AD(a, b, c, d) = 0 iff a : b :: c : d
• ∀a, b, c, d, AD(a, b, c, d) = AD(c, d, a, b) = AD(a, c, b, d)
• ∀a, b, c, d, e, f, AD(a, b, e, f) ≤ AD(a, b, c, d)+AD(c, d, e, f)

As the definition of an analogy strongly relies on the structure and

operators available on X , we have the same situation for AD: there

are a lot of possibilities. For instance:

• When X = R
m and a : b :: c : d iff a − b = c − d,

AD(a, b, c, d) = ||(a − b) − (c − d)||p is an analogical dis-

similarity for any p, where ||.||p denotes the standard p norm in

R
m.

• When X = B and a : b :: c : d iff (a∧b ≡ c∧d)∧(a∨b) ≡ (c∨
d), one can define an analogical dissimilarity AD(a, b, c, d) as the

number of values that have to be switched to get a proper analogy.

For instance, AD(0, 1, 0, 0) = 1 and AD(0, 1, 1, 0) = 2. The

codomain of AD is just {0, 1, 2}. When extended to X = B
m

with

AD(a, b, c, d) =
m
∑

i=1

AD(ai, bi, ci, di),

we get an analogical dissimilarity whose co-domain is [0, 2m]. In

fact, this definition is just the restriction to B
m of the one coming

from R
m, when considering that Bm ⊆ R

m and using the L1

norm, i.e. AD(a, b, c, d) = ||(a− b)− (c− d)||1.

As a measure of how poorly an analogical proportion holds, the

analogical dissimilarity will help to define more flexible classifiers.

The main underlying idea is to consider approximate analogies which

are not valid stricto sensu, but not too far to be valid. In [4], af-

ter defining analogical dissimilarity, the authors build an extended

classifier allowing classification of elements that do not belong to

AY
E(S). Algorithm 2 gives a description of their classifier.

This algorithm is similar to the conservative one but, instead of

looking for pure analogies, we allow for some analogies not to be

perfect when we need to. In their implementation [4], the authors



Algorithm 2 Extended classifier

Input: A sample set S, an element x ∈ X for which ẋ is unknown,

a constant k.

Output: x̂, an estimation of ẋ
Init: C = ∅ // multiset of candidate labels

for all (a, b, c) ∈ S3 such that ∃y ∈ Y with ȧ : ḃ :: ċ : y do

compute AD(a, b, c, x) and store it

end for

for all k least values of AD(a, b, c, x) do

compute the solution y of ȧ : ḃ : ċ : y
C = C ∪ y

end for

x̂ = Mode(C)

actually look for all the 3-tuples that have the same analogical dis-

similarity as the kth one: this allows them to fit with the previous

conservative approach. For the sake of simplicity, we have chosen to

ignore this small detail in our explanation.

In [4], the authors evaluated this classifier on a Boolean setting

B
m over 8 benchmarks from the UCI repository. This approach led

to remarkable results in terms of accuracy, when compared to off-

the-shelf standard classifiers.

Nonetheless, this algorithm does not allow us to grasp its inherent

working behaviour and it is difficult to extract theoretical properties.

The aim of the next subsection is to give a functional translation of

this algorithmic description.

3.3 Analogical classifier: a functional definition

As we have seen in the previous section, in the case of a Boolean

setting, AD(a, b, c, d) = ||(a− b)− (c− d)||1. A simple rewriting

leads to:

AD(a, b, c, d) = ||d− (c− a+ b)||1 = ||d− d′||1,

where d′ = c−a+b. Actually, d′ is nothing but the 4th vertex of the

parallelogram abcd′ so this means that AD(a, b, c, d) simply is the

L1 distance from d to this 4th vertex. Note that as Bm is not closed

for addition, d′ might not belong to B
m but to R

m: this happens when

one of the terms AD(ai, bi, ci, di) is equal to 2, as further discussed

later.

As we have seen, for a given x ∈ X , algorithm 2 tries to minimise

AD(a, b, c, x) over all the 3-tuples (a, b, c) ∈ S3. In the light of

what has just been explained, we see that this is equivalent to finding

the closest vertex d′ = c− a+ b from x for any (a, b, c) ∈ S3.

Denoting δ the L1 distance, AD(a, b, c, d) = δ(a − b, c − d) =
δ(d, d′), it is then natural to consider what we call the nearest ana-

logical neighbour (or nan) of x from a sample S as the element of

AY
E(S) defined as:

∀x ∈ X, ∀S ⊆ X, 1-nan(x, S)
def

= argmin
d′∈AY

E
(S)

δ(x, d′)

When there is more than one nan, one can either proceed to a ma-

jority vote procedure among all their analogical labels, or randomly

select one of these. This last option is the one we chose in our imple-

mentation.

Property 1 We have the following equality:

1-nan(x, S) = 1-nn(x,AY
E(S)).

The analogical classification rule simply is:

x̂ = 1-nan(x, S).

In words, the predicted label of an element x is the analogical la-

bel of its nearest neighbour in AY
E(S). In some sense, an analogical

classifier behaves as a NN classifier but on an extended sample set.

Obviously if x belongs to AY
E(S) then x is its own nearest analogi-

cal neighbour: 1-nan(x, S) = x iff x ∈ AY
E(S). Therefore, it is easy

to see that this rule is a generalisation of the conservative approach.

Instead of using only one nearest analogical neighbour, we can con-

sider the set of the k nearest analogical neighbours, and implement a

majority vote as it is done in [21].

The above definition leads to understand the process of analogical

classification as follows:

1. First, extend the sample set S to its analogical extension AY
E(S).

AY
E(S) can be viewed as an extended sample set that has class

noise: the label associated with elements in AY
E(S) \ S is their

analogical label (as defined in 3.1), which may not be correct.

2. Then just apply a classical k-NN strategy over this extended sam-

ple set.

Figure 2 gives an illustration of the classification process: the la-

bel of x ∈ X is unknown, and we set it to that of d′ ∈ AY
E(S) (a

circle), which is its nearest analogical neighbour. To show that the

analogical label of d′ has itself been inferred, it is depicted as trans-

parent instead of plain black. Let us note that topologically speaking,

Figure 2. A graphical view of AY
E (S) and the classification process.

Figure 2 is not representative of a real case: even if we always have

S ⊆ AY
E(S) ⊆ X , this does not mean that these sets are embedded

into one another as shown in the drawing. Actually, elements of S
(and thus of AY

E(S)) are usually scattered over the whole universe.

As far as we know, this is the first time a functional definition of

analogy-based classifiers is given. This definition clearly fits with the

known algorithms but obviously, some implementation details can-

not be exactly caught up by such a high level description. It is indeed

possible to find a few edge cases where this functional definition may

not output the same result as algorithm 2: this is the case for example

when the nan of x is not unique. It is also the case when the closest

vertex d′ does not belong to Bm. However, as we will see in Section

6 these cases are not likely to occur and both approaches produce

very similar results, thus empirically validating this functional defi-

nition.

Since we now have a clear functional definition of analogical clas-

sifiers, we are in position to examine some general properties such

as convergence and VC-dimension of analogical learners. This is the

purpose of the next section.



4 Some properties in the real case

Let us consider the case where X = R
m, δ any distance issued from

a norm, AD(a, b, c, d) = δ(a − b, c − d) and x ∈ X . In any case,

just because S ⊆ AE(S), we have the following inequality:

δ(x, 1-nan(x, S)) ≤ δ(x, 1-nn(x, S))

4.1 Study of convergence

Now, let us consider x(i) an i.i.d. sequence of random variables in

R
m, where R

m is equipped with a probability measure denoted P .

As the set Sn = {x(i), i ∈ [1, n]} is random, then 1-nan(x, Sn)
can also be considered as a random element of X . We then are in

the exactly same context as the work of Cover & Hart ([9]), and we

obtain the same result:

Property 2 plimn→∞(1-nan(x, Sn)) = x almost surely,

where plim is the probability limit operator.

Proof: Exactly the same proof as in [9] could be applied. But it is

simpler to remember that δ(x, 1-nan(x, Sn)) ≤ δ(x, 1-nn(x, Sn)).
Then, for a given x, the convergence in probability of

δ(x, 1-nn(x, Sn)) to 0 implies the convergence in probability

of δ(x, 1-nan(x, Sn)) to 0 which exactly means what needs to be

proven. The subset of X where plimn→∞(1-nan(x, Sn)) 7= x is

included into the subset of X where plimn→∞(1-nn(x, S)) 7= x:

Cover & Hart lemma tells us that this set has probability 0. Thus the

final result. �

Let us note the following points:

1. The lemma of Cover and Hart is more general than the one above.

They have proven the result for any separable metric space, with-

out any additional information. In fact, we cannot follow these

lines here just because there is no known way to define an ana-

logical dissimilarity on a metric space, without the help of other

structure or operator (see [21] for a detailed discussion on this is-

sue).

2. This result does not say anything regarding the prediction accu-

racy of 1-nan prediction rule as it is rather different than the 1-nn

rule. Such consideration will be investigated in Section 5.

3. We have to be careful about the interpretation of this property in

terms of machine learning. Indeed, a stronger property is proved

in [9]: for an integrable function f over Rm w.r.t. the probabil-

ity measure P , the expectation of f(1-nn(x, Sn)) − f(x) con-

verges to 0 when n goes to infinity. This means that asymptoti-

cally, the nearest neighbour of x has the same properties as x, and

then the same label. Such a property has not yet been proven for

1-nan(x, Sn).
4. Finally, it is clear that when n goes to infinity, the behavior of an

analogical classifier tends to that of a nearest neighbours classifier.

Indeed, when Sn is very big, the nearest analogical neighbour of

an element x simply is its nearest neighbour, in most cases. More-

over, when the nan and the nn are too close, paying the price of

the noise related to the nan may not be worth it. This supports

the common acknowledgement that analogical reasoning is mostly

useful when very few data are available. In this later case extend-

ing a small sample set with its analogical extension may be partic-

ularly beneficial.

4.2 VC-dimension

The notion of VC-dimension was originally defined by Vapnik

and Chervonenkis [32], and introduced into learnability theory by

Blumer et al. [5]. Roughly speaking, the VC-dimension of a class

of learners is a numerical measure of their discrimination power. It

appears that this number is strongly linked to the confidence inter-

val between the empirical risk (i.e. the error a learner makes on the

sample set) and the true risk (the error a learner makes on the whole

universe X). As such, the VC-dimension of a class of learners is an

essential element of their theoretical study. We consider a universe

X (usually a Cartesian product to represent the data) and a family

H = {hi ⊆ X|i ∈ I} of subsets of X . The elements of H will be

referred as hypothesis or models. Given a subset A of X , we can con-

sider the new family of subsets tr(H, A) = {hi ∩ A ⊆ X|i ∈ I}:

this family is called the trace of H over A. This is obviously a sub-

set of the power set of A, 2A i.e. tr(H, A) ⊆ 2A. We say that H
shatters A iff tr(H, A) = 2A. V C-dim(H) is then the size of the

largest finite subset which can be shattered by H:

Definition 1 V C-dim(H) =
⊔

{|A|
∣

∣H shatters A},

where
⊔

is the least upper bound operator. In the case where ∀n ∈
N, ∃A ⊂ X, |A| = n such that H shatters A, we simply say that:

V C-dim(H) = ∞.

As a binary classifier c over X defines a subset of X with c−1(1) =
{x ∈ X|c(x) = 1}, we can associate to a class C of classifiers a

family of subsets {c−1(1)|c ∈ C} and then the V C-dimension of a

set of classifiers is as below:

Definition 2 V C-dim(C) = V C-dim({c−1(1)|c ∈ C})

For instance with X = R
n and with C the family of the k-NN classi-

fiers: CNN = {k-NN classifiers, k ∈ N
∗}, then V C-dim(CNN) = ∞.

Let us now consider the family of analogical binary classifiers ACk

whose classification rule is as below (where a majority vote is imple-

mented):

ACk(x, S) = k-nan(x, S)

In fact, an immediate result comes, derived from the core definition

of an analogical proportion:

Property 3 V C-dim(ACk) = ∞

Proof: Given any x, the analogical proportion x : x :: x : x always

holds so that 1-nan(x, S) = x then the label x̂ allocated to x by AC1

is just x, which by definition equals ẋ. It means any set of items can

be exactly labelled, thus the infinite V C-dim. �

Regarding Property 3, the ACk class behaves exactly as the k-NN

class. Let us note that this is a very general result, which does not

rely on any definition of distance. This is directly coming from a

core property of analogical proportions.

5 Accuracy analysis in the Boolean case

In this section, we study the accuracy of an analogical classifier, and

more particularly that of the 1-nan classifier (NaN). To do so, we re-

strict our view to a Boolean setting: elements to be classified belong

to X = B
m and the label space is Y = B.

As explained in Section 3.3, for a given x ∈ X and a sample set

S ⊂ X , we have:

x̂ = 1-nan(x, S) = 1-nn(x,AY
E(S)), (1)



where AY
E(S) is the analogical extension of S, that we will simply

denote by AE in what follows for notational brevity. We also denote

A∗
E

def

= AE \ S as the set of elements that belong AE but not to S.

We now equip the set X with a probability distribution denoted P .

The accuracy of the NaNS classifier5 over all the elements of X is

defined as:

Acc(NaNS , X)
def

= P (x̂ = ẋ
∣

∣ x ∈ X)

By observing that for any x, its 1-nan either belongs to S or to A∗
E ,

the above equation can be split into two distinct parts as follows:

P
(

x̂ = ẋ
∣

∣ x ∈ X
)

= P
(

1-nan(x, S) = ẋ
)

= P
(

[1-nan(x, S) = ẋ] ∧ [1-nan(x, S) ∈ S]
)

+

P
(

[1-nan(x, S) = ẋ] ∧ [1-nan(x, S) ∈ A∗
E ]
)

= P
(

[1-nn(x,AE) = ẋ] ∧ [1-nn(x,AE) ∈ S]
)

+

P
(

[1-nn(x,AE) = ẋ] ∧ [1-nn(x,AE) ∈ A∗
E ]
)

= P
(

[1-nn(x,AE) = ẋ]
∣

∣ [1-nn(x,AE) ∈ S]
)

×

P ([1-nn(x,AE) ∈ S]) +

P
(

[1-nn(x,AE) = ẋ]
∣

∣ [1-nn(x,AE) ∈ A∗
E ]
)

×

P ([1-nn(x,AE) ∈ A∗
E ])

Let us denote α
def

= P (1-nn(x,AE) ∈ S)6. The formula becomes:

Acc(NaNS , X) =

P
(

[1-nn(x,AE) = ẋ]
∣

∣ [1-nn(x,AE) ∈ S]
)

∗ α +

P
(

[1-nn(x,AE) = ẋ]
∣

∣ [1-nn(x,AE) ∈ A∗
E ]
)

∗ (1− α).

Let us focus on the first term (discarding the factor α):

P
(

[1-nn(x,AE) = ẋ]
∣

∣ [1-nn(x,AE) ∈ S]
)

It is easy to see that the event [1-nn(x,AE) ∈ S] is equivalent to

the event [1-nn(x,AE) = 1-nn(x, S)]. As a result, we can transform

the first term to get a better grasp of its meaning:

P
(

[1-nn(x,AE) = ẋ]
∣

∣ [1-nn(x,AE) ∈ S]
)

= P
(

[1-nn(x,AE) = ẋ]
∣

∣ [1-nn(x,AE) = 1-nn(x, S)]
)

= P
(

[1-nn(x, S) = ẋ]
∣

∣ [1-nn(x,AE) ∈ S]
)

.

In this form, the first term is just the accuracy of the NNS algo-

rithm over the elements that have their nearest analogical neighbour

in S. As for the second term, the same process can be applied by ob-

serving that the event [1-nn(x,AE) ∈ A∗
E ] is equivalent to the event

[1-nn(x,AE) = 1-nn(x,A∗
E)]. This leads to

P
(

[1-nn(x,AE) = ẋ]
∣

∣ [1-nn(x,AE) ∈ A∗
E ]
)

= P
(

[1-nn(x,A∗
E) = ẋ]

∣

∣ [1-nn(x,AE) ∈ A∗
E ]
)

.

5The S subscript is here to specify that the training set of the NaN algo-
rithm is S. The same notation is used for the nearest neighbour algorithm:
NNΣ is the NN algorithm trained on the set Σ.

6Obviously, we also have α = P (1-nan(x, S) ∈ S).

This second term is then the accuracy of the NNA∗

E
algorithm over

the elements that have their nearest analogical neighbour in A∗
E .

In the light of these interpretations, one can rewrite the accuracy

formula in a concise form, using a few more definitions:

• A
def

= {x ∈ X, 1-nan(x, S) ∈ S}: the elements that have their nan

in S.

• B
def

= {x ∈ X, 1-nan(x, S) ∈ A∗
E}: the elements that have their

nan in A∗
E .

Naturally, A ∪ B = X and A ∩ B = ∅. Also, α = P (x ∈ A)
and 1 − α = P (x ∈ B). Therefore, the accuracy of NaNS over X
can be understood as the weighted sum of the accuracy of NN over

A and B, using a different sample set each time (respectively S and

A∗
E):

Acc(NaNS , X) = Acc(NNS , A) · α +

Acc(NNA∗

E
, B) · (1− α). (2)

The value Acc(NNS , A) is the accuracy of NNS over all the ele-

ments in A. A theoretical study of this accuracy has been done in

[19] when the size of A is known. Regarding Acc(NNA∗

E
, B), this

is the accuracy of 1-nn when the sample set is noisy, and has been

studied in [24]. This last formula leads to the consistent facts:

1. The smaller A∗
E (i.e. analogical reasoning does not bring much

more labels), the closer α is to 1, the closer A is to X and the

more the accuracy of NaNS tends towards the accuracy of NNS

over X .

2. In return, if AE is much bigger than S, α is then small, B is close

to X and the accuracy of NaNS greatly depends on the quality of

AE , which can be measured by the value ω defined as:

ω ! P (x = ẋ
∣

∣ x ∈ A∗
E).

Note that the value 1 − ω corresponds to the class noise of AE .

As we will see in the next section, this situation where AE is big

with respect to S is actually extremely likely to occur.

6 Experiments and empirical validation

In order to get an empirical validation of our formulas, we have de-

veloped a set of experiments that we describe in the next subsection.

6.1 Validation protocol

Working with Boolean vectors, we have computed the accuracies of

the NaN and NN algorithms over X = B
m for different values of

m (namely 8 and 10). The ground truth label of elements of X is

defined by different Boolean functions f in such a way that the ∀x =
(x1, · · · , xm), ẋ = f(x). The different functions we have worked

with are:

• f(x) = xm: in that case, we can consider the m − 1 first param-

eters are a kind of noise since they have no influence on the final

label ;

• f(x) = 1 iff at least l components are equal to 1 (this kind of

function is usually called l-of-m). We chose to set l to m
2

;

• f(x) = x1 ⊕ x2 (xor): we here have m− 2 useless attributes ;

• f(x) = 1 iff
∑

xi = 2: all the attributes are relevant in that case ;

• f(x) = 1 iff
∑

xi = m − 1: an extreme case of the previous

one ;



• f(x) = 1 iff x1 · xm = 1: only the first and the last elements are

relevant.

Regarding the size of the training set, to be sure to fit with the size

of the universe, we have investigated various sizes between 3 and

100. When dealing with a training set of size 100, the cubic com-

plexity of the analogical classifier leads to explore a set of approxi-

mately 1003 elements: as a consequence, we limit our investigation

to a maximum of 100 elements in the training set in order to get re-

alistic execution time.

All the accuracy (and other metrics) computations are averaged

over a set of 100 experiments. The interested reader may find the

Python source code that has generated all our plots and detailed re-

sults on Github7. For lack of space, we only provide a few examples

which are representative of the global behavior. Please note that our

implementation of the NaN algorithm is not that of algorithm 2, but

is instead that of the functional definition of the analogical classifier

developed in Section 3.3: we first construct the analogical extension

set of S, and then proceed to a nearest neighbour strategy over this

noisy extended training set. We have estimated probabilities by fre-

quencies, thus implicitly assuming a uniform distribution on X .

In addition to these Boolean functions, we have also run the NaN

algorithm over the Monk datasets over the UCI repository8. They

are datasets of 432 binarized elements, among which exactly 169 of

them have been used for training.

6.2 Experiments

Figure 3 shows the accuracies (left column) of the NaN and NN over

six different Boolean settings with values of |S| varying from 3 to

100. In the right column, we have plotted three different values that

will help us analyse and validate the behaviour of the NaN algorithm:

• the theoretical accuracy as defined by equation (2) in Section 5.

The probability α = P (x ∈ A) has been estimated by the fre-

quency:
|A|
|X|

;

• the quality of AY
E(S), measured by ω as defined in Section 5

which is estimated by the frequency:
|{x∈A∗

E

∣

∣ x=ẋ}|

|A∗

E
|

;

• finally, the quantity γ =
|AY

E
(S)|

|X|
: the size of the analogical exten-

sion set with respect to that of the whole universe.

Table 1 shows the same metrics for the Monk datasets and also

report the results of the Analogical Proportion Classifier (APC) from

[21], which corresponds to algorithm 2 with k = 100.

Table 1. Accuracies of the NaN, APC and NN algorithms over the Monk

datasets

NaN APC NN ω γ

Monk 1 .961 .98 .787 .961 1
Monk 2 .998 1 .738 .996 1
Monk 3 .963 .96 .829 .963 1

6.3 Comments and discussion

The experiments shown in figure 3 allow us to draw interesting con-

clusions about the behaviour of the NaN algorithm. We can observe

one of the two cases:

7https://github.com/Niourf/nan study
8https://archive.ics.uci.edu/ml/datasets/MONK’s+Problems

Figure 3. Accuracies of the NaN and NN algorithms over different Boolean

settings and training set sizes, with corresponding values of ω, γ, and theo-

retical accuracy. The x axis corresponds to the size of the training set.

• either the analogical labels are always correctly predicted9(ω = 1,

i.e. there is no class noise) as it is the case for f1, f(x) = xm and

(almost) for the Monk datasets ;

• or there is some class noise in AY
E(S) (ω 7= 1). In this case, we

always observe that the NaN algorithm is outperformed by NN for

small values of |S|, but eventually takes advantage once analogi-

cal prediction becomes more important than the nearest neighbour

one, as we are going to see.

The theoretical accuracy seems to fit perfectly with the empirical

accuracy of the NaN algorithm, thus validating our theoretical study

that led to equation (2)10.

An interesting observation is that the value of ω always converges

to that of the theoretical accuracy (and therefore to the actual accu-

racy) of NaN. This can be easily explained by paying attention to the

value of γ, the proportion of elements of X that belong to AY
E(S).

We see that in any setting, γ converges to 1 as |S| grows. This means

that when |S| is big enough (but not necessarily that big with re-

9Note that for small values of |S|, it seems that ω "= 1. This is due to
the fact that for such small values, it is sometimes impossible to construct

AY
E (S), thus leading to a value of ω = 0 (which will be averaged afterwards

over the 100 experiments).
10The maximal difference we observed between the theoretical accuracy

and its actual value is of about 10−10.



spect to X), the analogical extension of S covers the whole universe

X11: every element x is then its own nearest analogical neighbour

and x̂ = x. It is therefore straightforward to see that in this case,

ω = P (x = ẋ
∣

∣ x ∈ A∗
E) = P (x̂ = ẋ

∣

∣ x ∈ A∗
E)

= Acc(NaNS , A
∗
E)

When γ = 1, the only elements x we want to classify belong to A∗
E

(otherwise they would be in S), so this last term exactly corresponds

to the accuracy of the classifier. Another way to see it is to observe

that the first term of equation (2) Acc(NNS , A) · α is null because

α = 0. Only the second term Acc(NNA∗

E
, B) · (1 − α) is of im-

portance, and its value corresponds to ω. This observation allows us

to state that estimating the value of ω is paramount to have a precise

idea of the accuracy of an analogical classifier. We will provide in

the next subsection a method to accurately estimate this quantity ω
with the only help of the training set S.

Regarding the Monk datasets (Table 1), we note that the functional

NaN approach (almost) achieves the same results as the somewhat

more complex algorithm described in Section 3.2, and that here again

the analogical extension set covers the whole universe: this means

that a conservative approach would have been sufficient! Actually,

this raises the following question: why would we want to look for

more than one analogical neighbour when every element of the uni-

verse is already in AY
E(S), and therefore analogically linked to those

in S? Our experiments tend to show that this becomes superfluous,

provided that the training set is big enough.

6.4 Estimation of the prediction accuracy

We have seen in the previous subsection that the value ω is that of the

actual accuracy of an analogical classifier when S is big enough. This

leads to the following question: how can we get a precise estimation

of this value ω ? Answering this would allow us to have a very precise

idea of the accuracy we can expect from our classifier.

The method we propose for estimating ω only relies on the train-

ing set S and is very simple: it consists of applying the conservative

algorithm to all the elements of S, and compute the fraction of these

elements that have been correctly classified. A small yet important

modification to the algorithm needs to be added: we only want to

construct analogical proportions of the form a : b :: c : x where a, b,

c and x are all distinct elements. Indeed, the proportions x : x :: x : x
and x′ : x :: x′ : x are always true, and the solution label related

to these proportions would bias the final majority vote procedure in

a significant way towards the real label ẋ.

We have applied this estimation protocol to all of the Boolean set-

tings we have considered, and it has shown to be very accurate. Fig-

ure 4 illustrates a few of these settings (already considered in Figure

3). We can see that the estimation ω̂ converges to ω when S is big

enough. For small values of S, this estimation is indeed imprecise as

it is difficult to find a lot a 3-tuples such that an analogical proportion

holds for every element.

7 Conclusion

In this paper, we have provided a functional definition of analogical

learners. Starting from this definition, we are in a position to prove an

analytic convergence result, similar to that of the nearest neighbour

algorithm. Obviously, this is not enough to conclude regarding the

11Obviously, the bigger the dimension m, the slower the convergence oc-
curs.

Figure 4. Values of ω and its estimation ω̂ for f1, f2 and f3 in B
10.

predictive ability of analogy-based classifiers. We have also shown

that their VC-dimension is infinite. It should not come as a surprise,

as a very particular case of analogical rule (when the analogical pro-

portion is trivial) is the k-NN rule.

In terms of accuracy in a Boolean setting, we have found a strong

link between the accuracy of the NaNS algorithm and that of the

NNS algorithm. At a first glance, we can consider the NaN algorithm

as a NN strategy on an extended and noisy sample set: the analogical

extension of S. In the end, we have seen that this extended sample set

covers the entire universe provided that S is big enough, simplifying

and bringing back the accuracy of the classifier to the value ω which

corresponds to the quality of the analogical extension. We have also

provided a method to accurately estimate the value of ω that only re-

lies on elements of the S, thus allowing beforehand to have a precise

idea of the accuracy of any analogical classifier in a Boolean setting.

Some important points remain to be investigated, such as:

• What can we expect in terms of speed convergence from an ana-

logical learner? In other words, what is the minimum size needed

from a sample set to get a fixed accuracy threshold?

• If a clever learning strategy can (at least partially) overcome the

problem of infinite VC-dimension, can we overcome the issue of

the cubic complexity of analogical learners?

• Leaving the field of classification, can we provide a clear strat-

egy for transfer learning with analogy? Indeed, the central goal

of transfer learning is to identify and exploit analogies between

source and target domains [25].

These points definitely constitute interesting challenges for future

works. Nevertheless, we have to remember that analogical reason-

ing brings its whole power in the case where few data are available.

If a lot of data are available, it is very likely that we have elements

similar to the one at hand and, in that case, a k-NN style reasoning is

natural. In the opposite case, when we only have a few relevant cases

at hand, applying analogical proportion-based predictions appears to

be a meaningful option.
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