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Abstract—Nowadays, virtualization is present in almost all
cloud infrastructures. In virtualized cloud, virtual machines
(VMs) are the basis for allocating resources. A VM is launched
with a fixed allocated computing capacity that should be strictly
provided by the hosting system scheduler. Unfortunately, this
allocated capacity is not always respected, due to mechanisms
provided by the virtual machine monitoring system (also known
as hypervisor). For instance, we observe that a significant
amount of CPU is consumed by the underlying system compo-
nents. This consumed CPU time is not only difficult to monitor,
but also is not charged to VM capacities. Consequently, we have
VMs using more computing capacities than the allocated val-
ues. Such a situation can lead to performance unpredictability
for cloud clients, and resources waste for the cloud provider.
In this paper, we present the design and evaluation of a
mechanism which solves this issue. The proposed mechanism
consists of estimating the CPU time consumed by the system
component on behalf of individual VM. Subsequently, this
estimated CPU time is charged to VM. We have implemented
a prototype of the mechanism in Xen system. The prototype
has been validated with extensive evaluations using reference
benchmarks.

Keywords-Cloud computing; Virtual machines; resources;
computing capacities

I. INTRODUCTION

Cloud Computing enables remote on-demand access to a

set of computing resources through infrastructures, so-called

Infrastructure as a Service (IaaS). The latter is the most

popular cloud model because it offers a high flexibility to

cloud users. In order to provide isolation, IaaS clouds are

often virtualized such that resource acquiring is performed

through virtual machines (VMs). A VM is launched with

a fixed allocated computing capacity that should be strictly

provided by the hosting system scheduler. The respect of

the allocated capacity has two main motivations: (1) For

the customer, performance isolation and predictability [7],

[15], i.e. a VM performance should not be influenced by

other VMs running on the same physical machine. (2) For

the provider, resource management and cost reduction, i.e.

a VM should not be allowed to consume resources that are

not charged to the customer. Unfortunately, the allocated

capacities to VMs are not always respected [1], [10], due

to the activities of some hypervisor system components

(mainly network and disk drivers) [21], [24]. Surprisingly,

the CPU time consumed by the system components is not

charged to VMs. For instance, we observe that a significant

amount of CPU is consumed by the underlying system

components. This consumed CPU time is not only difficult to

monitor, but also is not charged to VM capacities. Therefore,

we have VMs using more computing capacities than the

allocated values. Such a situation can lead to performance

unpredictability for cloud clients, and resources waste for

the cloud provider. We have highlighted this issue in a

previous work [24]. In this paper, we complete our previous

analysis [24] by proposing a system extension which deter-

mines the CPU time consumed by the system components on

behalf of the individual VM in order to charge this time to

each VM. Therefore, we significantly reduce performance

disturbance coming from the competition on the hosting

system components. Note that most researches [12], [13]

in this domain have investigated performance disturbance at

a micro-architectural level (e.g. processor caches). Our ex-

tension is complementary to them since it addresses another

level of contention. A prototype has been implemented in

the Xen system and extensive evaluations have been made

with various workloads (including real data center traces).

The evaluations demonstrate that:

• without our extension, performance isolation and re-

source management can be significantly impacted

• our extension can enforce performance isolation for the

customer and prevent resource leeks for the provider

• intrusivity of our implementation is negligible, near

zero

The rest of the article is structured as follows. Section II

introduces the necessary background for the paper. Sec-

tion III presents the motivations for this work. Section IV

overviews our contributions. The implementation is depicted

in Section IV-C. An evaluation is reported in Section V. The

latter is followed by a review of related work in Section VI,

we present our conclusions and perspectives in Section VII.

II. BACKGROUND

The contributions described in this paper have been

implemented in the Xen system (the most popular open

source virtualization system, used by Amazon EC2). This

section presents an overview of virtualization technologies

in Xen. This presentation only covers virtualization aspects

which are relevant to our study: I/O virtualization, and CPU

allocation and accounting.



A. I/O virtualization in Xen

In the Xen para-virtualized system, the real driver of

each I/O device resides within a particular VM named

”driver domain” (DD). The DD conducts I/O operations

on behalf of VMs which run a fake driver called frontend

(FE), as illustrated in Fig. 1. The frontend communicates

with the real driver via a backend (BE) module (within

the DD) which allows multiplexing the real device. This

I/O virtualization architecture is used by the majority of

virtualization systems and is known as the ”split-driver

model”. It enhances the reliability of the physical machine

(PM) by isolating faults which occur within a driver. It

functions as follows.

The real driver in the DD can access the hard-

ware but interrupts are handled by the hypervisor.

The communication between the DD and the hy-

pervisor, and between the DD and a domU are

based on event channels (EC1 and EC2 in Fig. 1).

Figure 1: The split-driver

model for I/O virtualizign

An I/O request is-

sued by a guest OS

(domU) creates an event

on EC1. The data are

transmitted to the BE in

the DD through a ring

buffer (based on mem-

ory pages shared be-

tween the domU and the

DD). The BE is then

responsible for invoking

the real driver.

An I/O request re-

ceived by the hardware

(as an interrupt) gener-

ates an event on EC2.

From this event, the DD

generates a virtual interrupt which is handled by the real

driver. The kernel in the DD is configured so that the BE is

the forwarding destination for any I/O request.

B. CPU allocation and accounting

In the Xen system, the Credit scheduler is the best fit

for cloud platforms where a client books for an amount

of computing capacity which should be guaranteed by the

provider without wasting resources. Therefore, our contri-

butions only consider this scheduler. The latter works as

follows. A VM v is configured at the start time with a credit

c which should be ensured by the scheduler. The scheduler

defines remainCredit, a scheduling variable, initialized with

c. Each time a v’s virtual processor (vCPU) is scheduled

on a processor, (1) the scheduler translates into a credit

value (lets say burntCredit) the time spent by v on that

processor. (2) Subsequently, the scheduler computes a new

value for remainCredit by subtracting burntCredit from it.

When remainCredit reaches a lower threshold, the VM is

no longer allowed to access a processor. Periodically, the

scheduler increases the value of remainCredit for each VM

according to its initial credit c to give it a chance to become

schedulable.

More formally, on a PM p, if v has n vCPUs

(noted vCPU1 to vCPUn), burntCredit(vCPUi) and

pmProcessT ime(p, v) provide respectively the aggregated

processing time used by vCPUi and the time elapsed since

the start-up of v, then the Credit scheduler goal it to satisfy

the following equation at each scheduling time:

c =

∑n

i=1
burntCredit(vCPUi)

pmProcessT ime(p, v)
(1)

From the above description we can see that the processing

time used by the DD to operate I/O requests on behalf of a

VM is not charged to the VM by the scheduler. This is the

source of several problems in the cloud.

III. MOTIVATIONS

A. Problem statement

According to the split-driver model, we have seen that I/O

requests are handled by both the hypervisor and the DD on

behalf of VMs. Therefore, they use their own processing

time (hereafter referred to as ”system time”) to perform

operations on behalf of VMs. Current schedulers (including

Credit) do not consider this system time when accounting

a VM’s processing time. This processing time is distributed

as follows:

• T1: within the hypervisor for handling hardware inter-

rupts.

• T2: within the DD’s kernel for handling virtual inter-

rupts and transferring I/O requests between the real

driver and the backend.

• T3: within the backend for multiplexing and deliv-

ering/receiving I/O requests to/from the frontend. It

includes the processing time used at the hypervisor

level for shared pages grant transfer (initiated with

hypercalls).

More formally, the Credit scheduler does not take into

account T1+T2+T3 in equation 1. T1+T2+T3 is significant

when VMs perform intensive network or disk I/Os, which

is the case for many cloud applications.

For illustration, we performed some experiments in our

private cluster. It consists of HP machines with Intel Core

i7-3770 CPUs and 8 Gbytes of memory. The PMs are linked

to each other with a gigabyte switch. We used Xen version

4.2.0. The dom0 is used as the DD (with a credit of 25). We

experimented with two benchmarks: (1) a web application

based on wordpress for network evaluation, and (2) linux dd

command for writing data to a portion of a VM disk. The

VM we used is configured with a single vCPU (pinned to

a dedicated processor, different from the DD’s processor).
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Figure 2: DD processing time used on behalf of VMs

The credit of the VM is set to 30 when running the network

benchmark and 15 for the disk benchmark. Fig. 2 (left)

plots the results of these experiments. We can see that an

important CPU load (28% for network and 12% for disk)

is used by the DD to perform I/O requests on behalf of

the VM. The VM aggregated load (sum of its CPU load

and the DD load) is significantly higher (CPU load over

the horizontal dashed line) than the expected one (the VM

credit). Fig. 2 (left/top-right-corner) shows the evolution of

the DD load when the VM initiated network traffic varies,

and Fig. 2 (right) shows its evolution when the speed of

the disk device changes. These experiments confirm that the

CPU time consummed in the DD is significant and may also

vary significantly.

B. Consequences

The fact that, in today’s schedulers, the CPU time con-

sumed by system components is not charged to VMs can

be problematic for cloud clients (performance predictability)

and cloud provider (resource and money waste). If the DD’s

computing capacity is limited, the performance isolation is

compromized as VM performance can be influenced by other

VMs which shared the DD resources. Otherwise, if the DD’s

computing capacity is unlimited, the resource management

(and especially VM consolidation) is affected. These two

cases are considered in the following subsections.

Performance unpredictability: We consider here that the

DD’s computing capacity is limited. In a cloud, when a

client books an amount of resource for his VM, he expects

a predictible and reproductible performance level for his

applications. As we have seen, the aggregated amount of

resources effectively used by a VM depends on some shared

components (the DD and the hypervisor) of the virtualization

system. Knowing that the amount of resource available for

the DD and the hypervisor is shared among tenant VMs, the

client application performance is unpredictable.

Resource and money waste: Giving an infinite resource to

the DD without accounting and charging its processing time

to client VMs is like giving a blank cheque to clients. This

is a shortfall in terms of money for the provider. In addition,

without accounting T1 + T2 + T3, the scheduler accelerates

the VM de-consolidation (moving a VM from an overloaded

PM to an underloaded PM) rate, which results in the use of

more resources than needed.

IV. CONTRIBUTIONS

In this paper, we propose a solution which overcomes the

problem identified in the previous section. This solution,

implemented at the scheduler level (in the virtualization

system), aims at satisfying the following equation, instead

of equation 1:

c =

∑n

i=1
burntCredit(vCPUi) + T1 + T2 + T3

pmProcessT ime(p, v)
(2)

Although the solution is relatively easy to label, its imple-

mentation should face the following challenges:

• Accuracy. How to accurately account per VM system

time knowing that both the hypervisor and the DD are

shared among several tenants?

• Overhead. The processing time needed to run the

solution should be negligible.

• Intrusion. The solution should require as few modifica-

tion as possible within the client VM kernel.

A. General approach

We propose an implementation which takes into account

all the challenges listed above. This implementation mainly

relies on calibration. It is summarized as follows. First of

all, the provider measures for each PM type the system time

(noted t=T1 + T2 + T3) needed to handle each I/O request

type (see section IV-B). This step is carried out once and

the measurements are made available to the scheduler (see

below). The DD is modified in order to count per VM and

per I/O request type, the number of I/O requests (noted

nbreq) it has handled. This modification is located in the

backend, which is the ideal place to track all I/O requests.

Subsequently, the DD periodically sends the collected infor-

mation to the scheduler. This is realized using an existing

hypercall (gnttab batch copy), which is invoked by the

backend when dealing with grant tables). Using an existing

hypercall avoids the introduction of any overhead. When

the scheduler receives the collected information, it computes

(based on t, evaluated during the calibration phase) the CPU

time used by the DD on behalf of each VM: nbreq × t. This

system time is then charged to the VM. This is done by

balancing the system time among all VM’s vCPUs (to avoid

the penalization of a single vCPU). The next sections give

more details about the calibration and the implementation in

the Xen Credit scheduler.

B. Calibration

The calibration phase consists in evaluating t = T1+T2+
T3, the CPU time needed to handle each I/O request type.

To this end, we place sensors both at the entry and the exit

of each component. We decided to ignore T1 since it is very

slight (showed by [3]). Evaluations in section V confirm that



ignoring T1 is acceptable. Therefore t ≈ T2 + T3 = TDD.

We implemented a set of micro-benchmark1 applications to

accurately calibrate T2 and T3. The next sections present the

rigorous and exhaustive investigations we carried out. For

each I/O device type, we consider all factors which could

impact the system time. The most important factors are:

• the virtualization approach. For each I/O device, Xen

provides several ways to configure how its real driver

interacts with the backend.

• the I/O request type (e.g read/write, send/receive). I/O

requests do not follow the same path according to their

type.

• the request size. I/O requests have different size.

1) Network calibration: We implemented in C a

sender/receiver application based on UDP to calibrate the

cost of handling a network operation in the DD. The sender

always sends the same frame to the receiver. Both the sender

and the receiver are within the same LAN.

Virtualization configuration: Xen provides 3 possible

network configurations for the DD. These are bridging,

routing and NATing. Bridging is the most used configuration.

The path (between the real driver and the backend) taken

by frames through the Linux network stack differs for each

mode. Routing and NATing use a very similar path while it is

different for bridging. As illustrated in Fig. 3 (leftmost), the

Routing requires more CPU time (e.g. for frame header anal-

ysis, packets fragmentation/defragmentation) than Bridging

(which does not go beyond the second level of the ISO

model). Bridging is used in the rest of the article, unless

otherwise specified.

The I/O request type: Packet transmission (when a VM

sends a packet) and packet reception (when a VM receives

a packet) do not follow the same path in the backend [3].

Therefore, the processing time needed to handle a network

packet within the DD depends on its direction. As illustrated

in Fig. 3, transmission is less expensive than reception. This

difference is located in the backend which performs notably

one more hypercall when a packet is received. A worrying

observation is that even if a VM does not host a network

application, it could be concerned by a load generated within

the DD. In fact, since the DD is not aware of the applications

within a VM, it always handles incoming requests regardless

if the VMs are expecting I/O activities or not. This can be

used by malicious users to saturate the DD [4].

Packet size: As shown in the four rightmost curves of

Fig. 3, the cost of handling a network packet in the DD

varies with its size (even if it is within the MTU). This

variation comes from the real driver which includes data

copies. By considering packet size, our calibration is also

effective with other network technologies such as jumbo.

1Note that, once both the hypervisor and the DD are patched (for
including sensors), a calibration round does not take a lot of time (about 5
minutes).

2) Disk calibration: We used the Linux dd command to

calibrate disk operations.

Virtualization configuration: Xen provides different

ways to configure how a VM disk is managed in the

DD. These are tap, qdisk, and phy. The latter is the most

used configuration. The configuration mode influences the

processing time used by the DD. tap as well as qdisk requires

much more processing time than phy. We use phy in the rest

of the article.

The I/O request type: Disk operations are read and

write. Unlike the network, they are always initiated by the

VM. According to the Linux and the backend source code,

their processing follows the same path and they require the

same processing time. Therefore, our implementation does

not distinguish the disk operation type.

Packet size: A disk request size is upper bounded by

the memory page size (e.g. 4KB). A request which ar-

rives at the backend is fragmented into several bio data

structures, the processing unit in the Linux kernel. Any

bio is of the same size, configured at compilation time.

Thus, our calibration is performed at the bio granularity.
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Figure 4: Disk calibration

Therefore, we evaluate

on the one hand the

time used to build a

bio (noted Tbio compute)

from a disk request. On

the other hand, we eval-

uate the time needed

to submit a bio (noted

Tbio handling). In order

to avoid disk speed ef-

fects (shown in Section III-A), our calibration takes place

when the bio is placed within the real driver buffer. Fig. 4

shows the calibration results for our experimental environ-

ment.

C. Implementation

This section presents the implementation of our solution

in both the DD’s kernel (version 3.13.11.7) and the Xen hy-

pervisor (version 4.2.0). This implementation is not intrusive

for client VMs since it only requires the modification of the

backend and the hypervisor. Regarding the former, new data

structures have been introduced for storing information on

the number of handled I/O requests. Benefiting from the

existence of the gnttab batch copy hypercall performed

at the end of each I/O request, the backend sends the

content of its data structures to the hypervisor. This is done

periodically after a configured number of handled requests.

Regarding the hypervisor, we have modified the VM data

structure (struct domain) so that it contains the CPU time

used by the DD on behalf of a VM: netdebt and diskdebt.

These variables give the debts that the VM must repay. We

have also added a linked list of VM debts which buffers

incoming information from the DD (see below). The new
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Figure 3: Network calibration

Credit scheduler is implemented in schedule.c. From the

calibration results, it knows the cost of performing any I/O

request type from different size2 (in the case of the network)

in different situations (routing, NATing, and bridging for

the network; qdisk, tap, and backend for the disk). The

new scheduler works as follows. The information sent by

the backend is buffered in the linked list presented above.

When the scheduler wakes-up, it parses the linked list and

for each VM, it distributes its debts (by subtraction) to all its

vCPUs. This is done before invoking the scheduling function

which chooses the eligible vCPU. Note that distributing a

VM’s debts could require many scheduling round since Xen

imposes a lower threshold for vCPU credit. We have also

provided a new version of procps [6] so that cloud clients

can know within their VM the amount of load used by the

DD on behalf of their VMs.

V. EVALUATIONS

This section presents the evaluation results of our solution.

We evaluate the following aspects: (1) the overhead of the

solution, (2) its efficiency regarding performance predictabil-

ity, (3) its efficiency regarding resource waste minimization,

and (4) its application to other hypervisors.

A. Experimental environment

The experimental environment is the same as in Sec-

tion III-A. The DD’s computing capacity is configured to

30% of the processor (credit 30). VMs are configured with

a single vCPU (pinned to a dedicated processor, different

from the one used by the DD).

B. Overhead and scalability

As its description suggests, our solution introduces a

negligible overhead (near zero). It could have been oth-

erwise if for example we had introduced a new hy-

percall for informing the hypervisor level (about the

2The cost of not calibrated packet sizes is obtained by interpolation.

number of I/O requests handled by the DD). We

avoided this approach by using an existing hypercall.
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Fig. 5 presents the re-

sults of the experiments

we have performed to

validate our assertions.

We run a witness VM

(noted vwitness) host-

ing an application (y-

cruncher [17]) which is

both CPU and memory

bound. vwitness is con-

figured with a single vCPU pinned to the same processor

as the DD (having also a single vCPU). Both the DD

and vwitness have access to the entire processor capacity.

The PM also hosts a set of client VMs (called injectors)

whose number varies during the experiments (to increase

the traffics within the DD). Each client VM runs the same

web application based on wordpress. Experiments were

carried out in two contexts. The first context is based on

native systems. It is the baseline. The second context uses

our solution in which the mechanism of charging debts to

VMs is disabled (in order to keep injectors with the same

behaviours as in the baseline context). Fig. 5 shows that

our solution does not introduce overhead since the vwitness

performance is the same in the two contexts.

C. Accuracy

1) Micro-benchmark evaluation: This section presents

the evaluation results of the accuracy of our solution for

both network and disk workloads using micro-benchmark.

We experimented two benchmarks: (1) a web application

based on wordpress for network evaluation, and (2) linux dd

command for writing data to a portion of a VM disk. The

VM credit is set to 30 when running the network benchmark

and 15 for the disk benchmark. The experiment is realized

in two contexts: with our solution and with the native Xen

system. We show the ability of our approach to ensure that



the aggregated CPU consumed by a client VM remains

within its booked credit, which is not the case with the

native system. This also allows to guarantee performance

predictability. The leftmost curve in Fig. 6 presents the

results of these experiments. We can see that using our

solution, the aggregated CPU load of the client VM is about

the value of its credit (30 or 15). The margin of error

is negligible. The three rightmost curves in Fig. 6 focus

on the network case. They present results for performance

predictability. The second curve highlights the issue of

performance unpredictability in the Xen system when two

VMs share the DD (the throughput of the indicator VM goes

from 1200req/sec when the VM is alone to 800req/sec when

it is colocated). The third curve shows the results of the same

experiment when our solution is used. We can see that the

VM has the same performance, about 800req/sec. The latter

represents the throughput the VM should provide regarding

its booked credit. Indeed, our implementation avoids the

saturation of the DD since its allocated credit was enough

for handling VMs traffics when their aggregated CPU load

stay within their booked credit. The rightmost curve presents

the evaluation of our solution when several VMs performing

network requests are colocated. We can observe that the

indicator VM performance is always the same regardless

the number of colocated VMs.

2) Complex benchmark evaluation: This evaluation

demonstrates the effectiveness of our solution on a set of re-

alistic complex workload provided by SPECvirt sc2010 [29]

(SPECvirt for short). The latter is a reference benchmark

which is widely used by cloud providers for evaluating

their platform. It implements the vast majority applica-

tion types which run in the cloud. It is composed of

three benchmarks: SPECweb2005 (web application), SPEC-

jAppserver2004 (JEE application), and SPECmail2008 (mail

application). Each benchmark defines its performance indi-

cator: average response time for both SPECweb2005 and

SPECmail2008, and JIOPS (Java Operation Per Seconds)

for SPECjAppserver2004. We executed each benchmark

within a dedicated VM having a booked credit of 30.

We have experimented two colocation scenarios: (1) each

benchmark running alone atop the physical machine, and

(2) all benchmarks running concurrently. Fig. 7 shows

the results (performance at the top and CPU load at the

bottom) of these experiments. Unlike SPECweb2005 and

SPECmail2008, SPECjAppserver2004 generates a negligible

load within the DD (green bars in the first two bottom

curves are significantly more higher than those in the bot-

tom rightmost curve). This is because SPECjAppserver2004

does not perform a lot of IO requests in comparison with

SPECweb2005 and SPECmail2008. Therefore, the native

implementation of Xen (as well as our solution) provides al-

most the same performance for SPECjAppserver2004 when

it runs either alone or together with other benchmarks (all

bars in the top rightmost curve have almost the same height).

 1  2  3  4  5  6  7  8  9  10

High frequency

 1  2  3  4  5  6  7  8  9  10

Low frequency

Runining

starving

 0
 10
 20
 30
 40
 50
 60

 0  50  100  150  200  250  300  350  400

%
C

P
U

Time(msec)

Native execution

 0
 10
 20
 30
 40
 50
 60

 0  50  100  150  200  250  300  350  400

%
C

P
U

Time(msec)

Rate=1

 0
 10
 20
 30
 40
 50
 60

 0  50  100  150  200  250  300  350  400

%
C

P
U

Time(msec)

Rate=35k

 0
 10
 20
 30
 40
 50
 60

 0  50  100  150  200  250  300  350  400

%
C

P
U

Time(msec)

Rate=70k

Figure 8: Reporting rate impact

In contrast, Xen does not ensure performance predictability

neither for SPECweb2005 (the second and the fourth bars

in the top leftmost curve does not have the same height)

nor for SPECmail2008 (the second and the fourth bars

in the top middle curve doest not have the same high).

With a negligible margin of error, our solution guarantees

performance predictability (e.g. the first and the third bars in

the top leftmost curve have the same high). This is achieved

by enforcing each benchmark to only consume its booked

capacity (both the first and the third bars in the bottom

curves are close to 30% CPU).

D. DD to hypervisor: reporting rate

The DD regularly informs the hypervisor level after a

(configurable) number of I/O requests. The choice of this

number is important for interactivity. If this number is too

high, repaying debts on vCPUs burnt credits will require

several scheduling round since Xen credit scheduler imposes

a low level threshold for burnt credits. It can impact the

interactivity of VMs with latency sensitive applications (I/O

intensive workloads), alternating between long phases of

activity and starving (debts charging) as illustrated in Fig. 8.

We evaluated three arbitrary rates (1, 35000, and 70000)

and compared the fluctuation of the CPU when using a

native systems (unmodified Xen). We can see that a small

value such as 1 is ideal, especially as it does not incur any

overhead. Note that regardless this phenomenon, the VM

does receive its entire credit.

E. Resource and money saving

To evaluate the benefits that our solution brings in terms

of resource saving, we performed an experiment using real

traces of two data centers named respectively UNIV1 and

UNIV2 [8]. These traces contain network traffic statistics

of the data centers during a period of time. A machine is

composed of several network devices. Thus, the same PM

can be involved in several networking operations at the same

time. We used these traces to simulate network traffics of
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Figure 9: Resource and money saving

two cloud platforms hosting several VMs as follows. We

consider that a PM has the same characteristics as a p1 in

our private cluster. Each IP address found within the traces

is seen as a VM of type m3.medium from Amazon EC2

nomenclature. Thus, we have up to 6035 VMs for UNIV1

and 5461 for UNIV2 in the entire traces, each PM providing

a hosting capacity of up to 8 VMs (a PM has 8 processors).

From these assumptions and using our calibration results, we

have simulated the amount of resources saved (respectively

wasted) by our solution (respectively by the native imple-

mentation) in the simulated clouds. Fig. 9 presents the results

of these simulations. Fig. 9 (a) and (c) respectively present

the intensity of network traffics in UNIV1 and UNIV2. The

latter contains the most important traffic. From this traffic

information, we computed (using calibration results) the

total amount of CPU load they induced in the DD. Lets say

tDD represents this number at a given time. Therefore, the

amount of resources (in terms of PM) saved by our solution

is given by the following formula: tDD

800
(the maximum CPU

load of a PM is 800%). Fig. 9 (b) and (d) respectively

present the resource saving in UNIV1 (an average of about 2

PM/hour) and UNIV2 (an average of about 6 PM/hour). Still

on the basis of tDD, we can evaluate the benefits in terms

of money. Without our solution, tDD can be seen as what



we have called the ”blank cheque” given to clients. If we

convert tDD into a number of m3.medium VM instances, the

”blank cheque” can be evaluated by the following formula:
tDD

100
(a m3.medium VM is allocated a unique processor).

Knowing that a m3.medium VM instance is $0.070 hourly

in Amazon at the time of writing, the operating loss for our

simulation period is amounted to about $114 for UNIV1

and $249 for UNIV2. The extrapolation of these results in a

full scale cloud (thousands of machines hosting millions of

VMs) would show very significant benefit. Without a precise

accounting of system time, the provider has to integrate these

costs in the global operating budget of the data center.

F. Other hypervisors

We discuss in this section the possibility of applying

our work to other hypervisors. Although the split-driver

based architecture is not used by all hypervisors, they are

subject to have the problem raised in this paper. In fact,

all components outside the VM where I/O requests transit

consume CPU time on behalf of the VM. Microsoft Hyper-

V hypervisor [25] uses the same split-driver model as Xen.

Therefore our work can easily be applied to it. In KVM [26]

(Kernel-based Virtual Machine), a well identified Linux

kernel module handles all VMs I/O operations. This module

is similar to the backend in Xen. Thus, it can host the

implementation of our solution. OpenVZ [27] design is

similar to KVM. In Xen HVM mode, each VM is linked

with a Qemu device emulator, lying in the dom0. This brings

us back to the KVM design. About VMware ESXi [28], a

device emulator which resides inside the hypervisor handles

all VMs I/O operations. Our solution can be implemented

in that place.

VI. RELATED WORK

The main motivation in this paper is performance unpre-

dictability and resource waste in the cloud. Several works

have investigated I/O virtualization issue [20], [19], [11],

[16], [18]. Nonetheless, several studies [7], [15] have high-

lighted performance unpredictability in the cloud because

of the VMs competition on shared resources. Works in

this field can be classified in two categories. The first

category consists of studies that proposed solutions at a

micro architectural level (e.g. cache contention effects).

This approach consists in placing VMs intelligently on

machines in order to avoid compete workloads atop the

same machine [12]. Studies [10], [9], [14], [5] of the second

category have addressed the problem at the software level.

In this category, they advocate for bandwidth allocation to

VMs. Each VM is allocated a minimum bandwidth, which

is guaranteed. [5] goes in the same vein by limiting a VM

bandwidth proportionally to its booked CPU capacity. As

we said in our previous work [24], all these studies do

not accurately guarantee performance predictability, even

less CPU time charged on clients VMs as we do in this
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paper. Concerning the second category, the approach could

be efficient if a given bandwidth always leads to the same

CPU time in the DD. As we have shown, this is not true since

several factors intervene. For instance, Fig. 10 presents the

DD CPU load when a VM uses its entire network bandwidth

(48MB/s) for sending/receiving packets of different sizes.

We can see a significant difference, up to twice the load for

smaller packets. Our solution tackles all these issues at a

scheduler level.

[21] is the only study close to what we propose. They

propose both ShareGuard (a bandwidth delimiter system)

and SEDF-DC (a scheduler which takes into account CPU

time used by the DD on behalf of VMs) to improve perfor-

mance predictability. As we said in our previous work [24],

[21] has the following weaknesses. (1)Their study focuses on

network devices, therefore ignores disk operations. (2) The

proposed SEDF-DC scheduler can only be applied to mono

processor machine. (3) ShareGuard is intrusive because, its

drops network packets for VMs whose CPU load within the

DD is above the configured threshold. (4) SEDF-DC and

ShareGuard use XenMon which requires to be constantly

activated, thus consuming a non negligible CPU time.

VII. CONCLUSION

This paper has proposed a complementary solution to two

relevant problems in the cloud: performance unpredictabil-

ity and resource waste. We have addressed them using a

new light solution. Roughly, instead of investigating micro-

architecture components (for performance unpredictability)

or proposing yet-another consolidation algorithm, we have

proposed an orthogonal solution based on an efficient charg-

ing of CPU time used by the system components to VM.

The article describes our solution, including a prototype. The

latter has been evaluated with various workloads (including

real data center traces). It has demonstrated its ability to ac-

curately overcome the initial problems without an overhead.
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