
HAL Id: hal-01782589
https://hal.science/hal-01782589

Submitted on 2 May 2018

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Mitigating Performance Unpredictability in
Heterogeneous Clouds

Boris Teabe, Alain Tchana, Daniel Hagimont

To cite this version:
Boris Teabe, Alain Tchana, Daniel Hagimont. Mitigating Performance Unpredictability in Heteroge-
neous Clouds. 13th IEEE International Conference on Services Computing (SCC 2016), Jun 2016,
San Francisco, CA, United States. pp. 593-600. �hal-01782589�

https://hal.science/hal-01782589
https://hal.archives-ouvertes.fr

Open Archive TOULOUSE Archive Ouverte (OATAO)
OATAO is an open access repository that collects the work of Toulouse researchers and
makes it freely available over the web where possible.

This is an author-deposited version published in : http://oatao.univ-toulouse.fr/
Eprints ID : 18956

To link to this article URL : http://dx.doi.org/10.1109/SCC.2016.83

To cite this version : Djomgwe Teabe, Boris and Tchana, Alain-
Bouzaïde and Hagimont, Daniel Mitigating Performance
Unpredictability in Heterogeneous Clouds. (2016) In: 13th IEEE
International Conference on Services Computing (SCC 2016), 27
June 2016 - 2 July 2016 (San Francisco, CA, United States).

Any correspondence concerning this service should be sent to the repository

administrator: staff-oatao@listes-diff.inp-toulouse.fr

Mitigating performance unpredictability in

heterogeneous clouds

Boris Teabe, Alain Tchana, Daniel Hagimont

University of Toulouse, Toulouse, France. E-mail: first.last@enseeiht.fr

Abstract—The speed of a device may vary since (i) IaaS
hardware infrastructures are increasingly heterogeneous
and (ii) devices often have a dynamically adjusted speed
in order to adapt their energy consumption according
to the load. This paper addresses SLA enforcement in a
IaaS which includes devices whose speed vary. We show
that resource management should rely on an absolute
value SLA specification (i.e., a performance metric which
is independent from the device speed) and a dynamic
translation of this SLA into actual allocations according
to the device speed. Surprisingly, while disk or network
resource allocations already integrate such a scheme, CPU
does not. We propose a CPU resource management system
which implements absolute CPU allocation and dynami-
cally translates it into actual CPU allocations according to
CPU speed. We demonstrate and evaluate the benefits of
this resource management system.

Index Terms—Heterogeneous architecture; DVFS; Cloud

I. INTRODUCTION

The majority of cloud platforms implement the Infras-

tructure as a Service (IaaS) model. In this model, the

provider deals with customers through virtual machines

(VM). The provider exposes a catalog of VM types

among which the customer can shop. Each VM type is

characterized by its size (the capacity of each resource

type). This size corresponds to the Service Level Agree-

ment (SLA) which should be met by the provider. On

his side, the provider is interested in saving energy. To

this end, two main techniques are commonly used by

providers: VM consolidation [30] (through live migra-

tion) and device speed scaling [19]. VM consolidation

allows gathering VMs on a reduced set of machines

so that unused machines are switched-off. Device speed

scaling (for underloaded devices) is also a means to save

energy as reducing a device speed generally reduces its

power consumption. From a more abstract point of view,

VM consolidation among heterogeneous machines and

speed scaling on one machine can be both considered

as changing the nature and the performance of the

underlying hardware.

Given a resource type (processor, main memory, etc.),

a booked capacity may be expressed with relative values

(relative to the hardware, i.e., a fraction of a device

 0

 10

 20

 30

 40

 50

 60

E
x

ec
u

ti
o

n
 t

im
e

(s
ec

)

DELL at 1.6GHz
HP at 1.6GHz

Fig. 1: The GHz is a relative metric.

capacity, e.g., 30% of a device) or absolute values

(i.e., a performance metric which is independent from

any hardware, e.g., a throughput). Booking a resource

capacity using relative values can be problematic since

a device capacity may change as a consequence of the

two above techniques. The negotiated SLA should

not vary according to energy management decisions.

For instance, a computing capacity which is expressed

in terms of GHz is relative to the architecture of the

target core (e.g. Out-of-Order architecture). Fig. 1 shows

the execution time of π-app [22] (a CPU intensive

benchmark) on two machine types (DELL and HP, the

experimental context is presented in Section II-A) when

their cores are configured to the same frequency level

(1.6GHz). We can see a performance difference of about

21%. One would have expected the same performance

because of the same frequency.

Surprisingly, while VM disk or network capacities are

booked using absolute values (bandwidth), the VM com-

puting capacity (processor) is most of the time expressed

with relative values [3], [4], [5]. In fact, today’s VM

schedulers such Xen credit and VMware are based on

relative values. This leads to three problems:

• SLA breakage. It occurs when the actual computing

capacity assigned to a VM by the scheduler is

smaller than what the customer has booked.

• Performance unpredictability. It occurs when a VM

 35

 40

 45

 50

 55

 60

E
x
ec

u
ti

o
n
 t

im
e

(m
in

)

Rackspace AMD Opteron 4332
Rackspace AMD Opteron 4170

Azure AMD Opteron 4171
Azure Intel Xeon E5-2660

Microsoft azureRackspace

Fig. 2: Performance unpredictability on Rackspace and

Microsoft Azure clouds for a Hadoop job.

is migrated (according to the VM consolidation

strategy) across several machine types or when

the Dynamic Voltage Frequency Scaling (DVFS)

continually changes core frequency. Fig. 2 shows

that the same VM type from Rackspace and Azure

clouds delivers different performance level accord-

ing to the underlying processor. This leads to the

performance unpredictability problem [6], identified

by Microsoft [8] as part of the five top significant

challenges in the cloud. [7] has recently highlighted

this issue in Amazon EC2 and Google Compute

Engine too.

• Resource/money waste. It occurs when the actual

computing capacity assigned to a VM by the sched-

uler is greater than what the customer has booked.

Section II illustrates these problems in detail. This article

aims at addressing the issue of computing capacity

allocation in a heterogeneous IaaS in which both VM

migration and device speed scaling are used for energy

saving. Since current schedulers fail to implement a truly

absolute value based solution, we propose an absolute

allocation unit. Then we show how such absolute alloca-

tions can be dynamically translated into relative values,

which are well understood by today’s schedulers [3].

Such translations take place when a VM is migrated

or when a core frequency is changed. We implement

a prototype in the Xen credit scheduler and we evaluate

its benefits. Overall, the paper makes the following

contributions:

• We demonstrate the issues related to heterogeneous

IaaS (see Section II).

• We propose a solution to these issues (see Sec-

tion III). This solution includes both a resource

selling model and a generic implementation of this

model. We present a prototype which is based on a

popular virtualization system.

(P0) DELL Intel Core 2 Duo CPU E7300 @ 2.66GHz Ubuntu 12.04

(P1) HP Intel Core i7-3770 CPU @ 3.40GHz Ubuntu 12.04

TABLE I: Experimental PMs

• We perform intensive experiments using several

reference benchmarks (see Section IV). The results

of these experiments prove the effectiveness of our

solution.

The end of this article presents both the related work

(see Section V) and the future work (see Section VI).

II. PROBLEM ASSESSMENT

This section illustrates the issues we address in this

paper.

A. Experimental context

The experimental cluster is composed of two machine

types whose characteristics are presented in Table I.

The virtualization system is Xen version 4.2.0, whose

default scheduler is Credit [3] (see Section III-C). In

order to facilitate the illustration, each PM is configured

with a single core. The VM catalog exposes two VM

types noted VM20 and VM70. A VM20 instance is

allowed to use up to 20% of the computing capacity

of its hosting machine. Concerning a VM70 instance,

it is allowed to use up to 70%. Each VM instance

is configured with a single virtual CPU (vCPU). It

runs a CPU intensive application which consumes its

entire capacity. The DVFS is provided by the on-demand

governor [23] which adjusts a core frequency according

to the load. We assume that reducing a core’s speed slows

down its computing capacity by 50%.

B. Assessment scenario

Let us consider a customer who requests four VMs

noted VM201, VM701, VM202, and VM701. The

IaaS manager starts VM201 and VM701 on P0 while

VM202 and VM702 are started on P1. Fig. 3 presents

the workload which is run by each VM. VM701 and

VM202 end their job respectively at time ”a” and ”b”.

The VM consolidation strategy implemented in the IaaS

works as follows. If a machine’s CPU consumption is

lower than 5%, all VMs on this machine are migrated to

a machine which can host them. Therefore, both VM201

and VM 701 are migrated from P0 to P1 at time ”c”.

C. Assessment results

Fig. 4 presents the monitored load of each VM. It is

interpreted as follows. First, the governor has decreased

P0 ’s speed at time ”a” because P0’s global utilization

falls under the DVFS threshold. This operation results

in performance degradation on VM201: its second

Fig. 3: Illustration scenario

peak load phase is larger than the first one (which is

the expected duration). The SLA is broken. Second,

VM201 and VM202 which are from the same type,

have different performance because they run on different

machine types. For instance, VM202 ends its jobs earlier

(before time ”b”) than expected. The same goes for

VM701 and VM702. P1 is more powerful than P0

(see Fig. 1). The same phenomenon is observed after

time ”c” when VM201 is migrated to P1 (VM201 last

peak is shorter than the first one). This situation leads

to both performance unpredictability (the same VM type

results in different performance) and resource waste (the

provider could have satisfy VM202 and VM702 needs

with less resources).

III. CONTRIBUTIONS

This paper addresses the issues raised by CPU alloca-

tion when dealing with different core types in the IaaS.

We first formalize both the functioning of a IaaS machine

and the selling model we consider throughout this article.

Subsequently, we present a resource allocation system

which is based on absolute values. An implementation

of this system in Xen is presented at the end of this

section.

A. Formalization

1) The IaaS model: The IaaS is composed of m

different machine types denoted by Pi (1 ≤ i ≤ m)

and Pi is a type Pi machine. According to the DVFS

activity, a machine’s core can run at different frequen-

cies. Therefore, the notation Pi(f) means that Pi’s core

 0

 20

 40

 60

 80

 100

 0 50 100 150 200 250
 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

C
P

U
 l

o
ad

 %

F
re

q
u

en
cy

 (
M

H
z)

a b c

 0

 20

 40

 60

 80

 100

 0 50 100 150 200 250
 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

C
P

U
 l

o
ad

 %

F
re

q
u

en
cy

 (
M

H
z)

Time (sec)

a b c

VM201 VM701 Frequency VM202 VM702

Fig. 4: The effects of CPU allocation based on relative

values.

frequency is actually set to f . The maximum frequency

value is noted max. From a more abstract point of

view, we can say that Pi(f), Pi(f ′) and Pj are different

machine types. Therefore, given a VM, both its migration

(across different machine types) and frequency scaling

are operations which modify its hosting machine type.

2) The resource selling model: VM computing ca-

pacities are discrete values which form a catalog of

VM types (e.g. small, medium, large, etc.). This is the

common practice in the cloud. Therefore, let us consider

a customer who books a VM whose computing capacity

is Cb. We claim that the provider should not use a

machine dependent metric (e.g. GHz) when dealing with

the customer. This is because the machine type which

will run the VM is not known at negotiation time.

Furthermore, it may change during the VM lifetime. We

propose a negotiation metric which is independent from

any machine type. It is called ”Virtual Unit (VU)”. In

order to make things understandable by the customer,

the computing capacity of a VU is indicated in terms

of the execution time of a well known CPU intensive

benchmark (e.g. SPLASH-2 LU [25]). Therefore, Cb is

a number of VUs (Cb = n× V U). Knowing that cores

are shared among VMs, the main questions we need to

answer is the following: How to translate a VU onto real

CPU times and how to guarantee the constancy of this

translation?

B. VU translation onto real CPU times

The translation system is based on a unique reference

machine type, noted Pref . In fact, we act as the first ma-

chine which hosts any VM is a type Pref machine. The

latter is arbitrarily chosen by the provider and services

as the foundation of all VU translation. Therefore, we

define a VU computing capacity as a fraction (noted c) of

a Pref computing capacity. From now on, such a fraction

is called a credit. Therefore, any booked Cb corresponds

to a Pref credit noted C (C = c×n). The main challenge

now is to take into account the heterogeneous aspect of

the IaaS. This is done by adapting C according to:

• the actual machine type which runs the VM;

• and its actual frequency.

Consequently, we propose a two-step credit adaptation

system. The latter relies on the calibration of the IaaS.

1) Calibration: The calibration consists in determin-

ing the execution time of the CPU intensive benchmark

mentioned above. This is performed for each VM type

(thus credit) and for each machine type, taken at its

maximum frequency. We note TC′

i(max) the execution time

of the benchmark atop a Pi(max) with the credit C ′.

2) First-step credit adaptation: If C is the VM credit

on Pref(max), and Pi is the machine chosen by the IaaS

manager to host the VM (at creation or migration time),

we first compute C ′, the credit to assign to the VM on

Pi(max). To do so, we rely on the calibration results. C ′

is chosen so that the following equation is respected:

TC′

i(max) = TC
ref(max) (1)

3) Second-step credit adaptation: Each time a ma-

chine speed is modified (set to Pi(cur)), we need to

recompute all VM credits. Let us note C” the new

credit. C” is computed so that the following equation

is respected:

TC”
i(cur) = TC′

i(max) = TC
ref(max) (2)

This equation summarizes the way we implement an ab-

solute metric. It relies on two main assumptions (which

have been demonstrated in our previous work [4], [5])

Frequency and performance proportionality: This

property means that if we modify a core frequency,

the impact on a VM performance is proportional to the

change. It is defined by:

TC′

i(max)

TC′

i(cur)

=
f cur
i

fmax
i

(3)

We define the frequency ratio on Pi as ratioi(cur) =
fcur

i

fmax

i

.

Credit and performance proportionality: This prop-

erty means that if we modify a VM credit, the impact

on its performance is proportional to the change. It is

defined by:

TC′

i(f)

TC”
i(f)

=
C”

C ′
(4)

Let us get back to the purpose of the second-step credit

adaptation system: the computation of C”, the new VM

credit which takes into account the actual core frequency

(Pi(cur)).

From the equation 4, C” =
TC

′

i(cur)×C′

TC”
i(cur)

.

From the equation 3, TC′

i(cur) =
TC

′

i(max)

ratioi(cur)
, and TC”

i(cur) =

TC”
i(max)

ratioi(cur)

which means that

C” =
TC′

i(max) × C ′

TC”
i(max)

(5)

we want TC”
i(cur) = TC′

i(max) (see the equation (2)).

Therefore, C” is given by the following equation

C” =
C ′

ratioi(cur)
(6)

C. Implementation in Xen

We have implemented a prototype of our solution

in Xen hypervisor (version 4.2.0), more precisely its

scheduler. Xen supports several schedulers [3] among

which Credit is the default and the most used one.

Therefore, our prototype is based on this scheduler.

Credit is a proportional fair share conserving scheduler.

Without describing it in detail (one could refer to [3]),

let us give a general overview. In this scheduler, each

VM v is assigned a credit c at creation time. This

credit represents the maximum CPU time the VM is

allowed to use. The scheduler defines remainCredit, a

scheduling variable initialized with c. Each time a v’s

vCPU is scheduled on a core, the scheduler performs

two main operations. (1) Firstly, it translates into a credit

value the time spent by the vCPU on the core, this time

is called burntCredit. (2) Subsequently, it computes a

new value for remainCredit by subtracting burntCredit.

If remainCredit reaches a lower threshold (periodically

computed by the scheduler), the VM is no longer allowed

to use a core. The scheduler periodically increases the

value of remainCredit for each non schedulable VM in

order to give them a possiblity to become schedulable.

We mainly describe the implementation of the second-

step of our approach because, the first-step is realised

easily by the IaaS provider (or the IaaS managing

system) when he starts or migrates VMs. Regarding

the second-step of our solution, the extension we made

is straightforward. It consists in adjusting burntCredit

according to the actual core frequency (see equation 6).

This means inserting a new operation (let us say

adjustBurntCredit) between step (1) and step (2).

The following algorithm presents in a pseudo code the

implementation of adjustBurntCredit.

1Unsigned i n t a d j u s t B u r n t C r e d i t (unsigned i n t ց

b u r n t C r e d i t , i n t cpuID) {
2 i n t f r e q = ge tCpuFreq (cpuID) ;
3 double r a t i o = f r e q / Freq [fmax] ;
4 b u r n t C r e d i t = b u r n t C r e d i t ∗ r a t i o ;
5 re turn b u r n t C r e d i t ;
6}

It takes as input two parameters: the value of burntCredit

as computed by the original Credit scheduler, and the

actual core identifier. As one can intuitively imagine,

this implementation incurs a negligible overhead. It

also scales very well. Indeed, the complexity of our

solution is O(#VMs). Knowing that the number of VMs

a machine can simultaneously host is not usually high,

the CPU time required by our solution is negligible.

IV. EVALUATIONS

This section presents the evaluation of our solution.

Micro-benchmarks are used to validate internal mecha-

nisms while complex benchmarks show the effectiveness

of our solution on realistic applications. The experimen-

tal context is the same as presented in Section II-A

with P0 be Pref . SPLASH-2 LU [25] has provided the

calibration benchmark.

A. Evaluation with micro-benchmarks

We have replayed the scenario presented in Section II

in which the Credit scheduler is replaced by our sched-

uler. Fig. 5 presents the results of these experiments.

The leftmost curves show the expected results (the

baseline). They correspond to the execution on Pref

type machines in which the DVFS is disabled. The

rightmost curves show the results of the experiment

realized in a heterogeneous environment, as described

in Section II. In comparison to what we have presented

in Section II, the following observations can be made.

First, the experiment runs within the expected time.

VM202 and VM702 are assigned the appropriate credits

on P1 (resp. 11 and 40, because P1 is more powerful

than Pref). This allows the provider to avoid resource

waste. Secondly, VM201 is assigned more credits (from

20 to about 35) when the governor decreases Pref ’s

speed (because VM701’s job ends at time ”a”). Thirdly,

when VM201 and VM701 are migrated to P1 (at time

”c”), their credits are recomputed. This explains the

fact that the duration of VM201’s last peak is equal to

the expected one. Finally, the sporadic peaks observed

on the P1 frequency curve are explained by the fact

that P1’s CPU load is close to the DVFS threshold.

In summary, we can see that our solution addresses the

issues highlighted in Section II.

B. Evaluation with complex benchmarks

We evaluated our solution using complex benchmarks

(not only CPU intensive applications). All machines are

multi-core. Each experiment is played in two contexts:

only on Pref type machines in which the DVFS is

disabled (the baseline) and on heterogeneous machines in

which both the DVFS and a VM consolidation system is

activated. We compare our solution with the native Xen

system.

1) SPEC CPU2006: SPEC CPU2006 [28] is a widely

used benchmark for measuring a hardware computing ca-

pacity. It consists of source code benchmarks which are

developed from real user applications. These applications

depend on the processor, the memory and the compiler

of the tested system. Fig. 6 top presents the evaluation

results of each SPEC CPU2006 application running in a

VM70 type VM. We can see that the native Xen system

still provides poor results (up to 42% of difference)

while our solution tends to the baseline. In comparison

with the results presented in the previous section, one

may ask the origin of the gap (up to 15%) between

our solution results and the baseline results. We claim

that our solution is still correct. The gaps are explained

by the fact that all SPEC CPU2006 applications are not

only CPU intensive (as in the previous section). Some

of them perform a lot of memory operations [24], and

Pref and P1 have heterogeneous memory architectures.

This explains the fact that gaps are from different height.

From Fig. 6 bottom, we can see that the height of the

gap is proportional to the application cache miss rate.

Recall that our solution focuses on the issues related to

core heterogeneity.

C. Optimizations for memory heterogeneity

As seen above, even if the processor is the most

critical component, the heterogeneity of some memory

components could also impact a VM performance. Con-

cerning the Front Side Bus, its speed is already taken

into account by the core speed. Therefore, it is not

necessary to consider it here. Concerning the memory

bus, it connects the northbridge and the RAM, serves for

transporting data between the core and the main memory.

Two machines which have different memory bus speed

will lead a memory intensive application to different

performance. Relying on the stream [26] benchmark,

we have evaluated the memory bus speed of our testbed

machines: 4823.1MB/sec for Pref and 6566MB/sec for

P1. The rest of this section presents an amelioration of

our solution in order to taking into account memory bus

heterogeneity.

Our basic idea consists in adjusting C” (see Sec-

tion III-B3) according to the memory bus speed dif-

 0

 20

 40

 60

 80

 100

 0 50 100 150 200
 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

C
P

U
 l

o
ad

 %

F
re

q
u

en
cy

 (
M

H
z)

a b c

 0

 20

 40

 60

 80

 100

 0 50 100 150 200
 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

C
P

U
 l

o
ad

 %

F
re

q
u

en
cy

 (
M

H
z)

Time (sec)

a b c

VM201 VM701 Frequency VM202 VM702

 0

 20

 40

 60

 80

 100

 0 50 100 150 200
 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

C
P

U
 l

o
ad

 %

F
re

q
u

en
cy

 (
M

H
z)

a b c

 0

 20

 40

 60

 80

 100

 0 50 100 150 200
 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

C
P

U
 l

o
ad

 %

F
re

q
u

en
cy

 (
M

H
z)

Time (sec)

a b c

VM201 VM701 Frequency VM202 VM702

Fig. 5: Our solution (the two rightmost curves) provides the expected results (the two leftmost curves).

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

h264ref

omnetpp

mcf
astar

Xalancbmk

bzip2
gcc

libquantum

perfbench

gobmk

sjeng
hmmer

E
x

ec
u

ti
o

n
 t

im
e

(s
ec

)

Baseline
Our Solution

Native Xen

 0

 5

 10

 15

 20

 25

 30

 35

h264ref

omnetpp

mcf
astar

Xalancbmk

bzip2
gcc

libquantum

perfbench

gobmk

sjeng
hmmer

C
M

R

Fig. 6: (top) Evaluation with SPEC CPU2006. (bottom)

Cache Miss Rate measurements

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

h264ref

omnetpp

mcf
astar

Xalancbmk

bzip2
gcc

libquantum

perfbench

gobmk

sjeng
hmmer

E
x

ec
u

ti
o

n
 t

im
e

(s
ec

)

Baseline
Solution-ame

Our Solution
Native Xen

Fig. 7: Evaluation of the improved solution

ference between the reference machine and the actual

machine which runs the VM. Therefore, the new credit

(noted C”ame) is computed as follows

C”ame = C” ∗
MBref

MBi

(7)

where MBi and MBref are respectively a Pi and a

Pref memory bus speed. This formula is only used when

a VM runs a memory intensive application. In fact, as

we have seen, CPU intensive VMs do not suffer from

memory heterogeneity. Therefore, we have improved our

implementation to periodically detect online each VM

type (CPU or memory bound). This is archived by using

performance monitoring unit (PMU) statistics such as

cache miss rate and cache hits [13]. If the VM type is

CPU bound, the equation 6 is used. The equation 7 is

used otherwise. Fig. 7 presents the evaluation results of

the improved solution (noted solution-ame).

V. RELATED WORK

Relative and absolute value based scheduling. Many

scheduling algorithms use relative values [29] to allocate

resources [1], [2], [3]. [9] studied IOPS reservation in a

IaaS. It supports proportional-share fairness subject to

a minimum and a maximum limit on IO allocations.

It combines absolute and relative values in order to

address workload fluctuation. Absolute values allow it to

guarantee the minimum and the maximum limits. [10]

did a similar work but it exclusively relies on relative

values. Unlike [10], [9] may not suffer from the issues

related to dynamic speed scaling and core heterogeneity.

Heterogeneity aware resource allocation. Several

research have investigated the heterogeneity issue in

shared hosting centers [11], [12]. Heterogeneity can

be divided into two categories: hardware and workload

heterogeneity. [14] evaluated the impact of assuming a

homogeneous data center while it is heterogeneous. It

proposes a metric to express an application sensibility

facing heterogeneity.

Concerning public clouds, some avoid the issue of hard-

ware heterogeneity by dedicating the same hardware type

to each VM type. For instance, Amazon EC2 announces

to their customers that a m3.medium VM instance will

always run atop an Intel Xeon CPU E5-2650 2.00GHz

processor. This strategy is constraining for VM con-

solidation. Indeed, a VM could not be deployed on a

machine even if this machine has enough resources to

host the VM. Concerning other public clouds such as

Rackspace, the allocation unit is a vCPU and no more

information is given about its real computing capacity.

The actual computing capacity of a VM on this cloud

depends on the underlying core type.

[15] studied heterogeneity in EC2. Instead of providing

a solution to guarantee performance, [15] proposed a

gaming based placement which places VMs according to

their EC2 analyses. [16], [17] investigated the same ap-

proach. [18] presented Paragon, a QoS-aware scheduling

for heterogeneous workload in a datacenter. Its objective

is to minimize performance degradation while we present

a way to enforce an SLA.

Speed scaling aware resource scheduling. We have

highlighted in a prior work [4], [5] the issues related

to DVFS in the cloud. This work demonstrated the

effectiveness of both frequency and credit proportionality

mentioned in Section III-B3. Driven on the DVFS suc-

cess for processors, [19] presented a DVFS solution for

the memory. [20] presents an approach which combines

service selection (replicated across many clusters of the

same provider) and dynamic speed scaling in web ser-

vice systems in order to achieve high energy efficiency

while meeting performance requirements. [21] presented

CoScale, a system which coordinates CPU and memory

power management in order to improve energy savings

compared to existing approaches which treat these de-

vices separately. None of these work have tackled the

issue of SLA enforcement in a cloud which includes both

heterogeneous machines and variable speed devices.

VI. CONCLUSION

In this paper, we studied resource allocation in a

IaaS environment. We showed that existing resource

allocation systems which rely on relative values may

lead to SLA violations in the context of a IaaS with het-

erogeneous machines or variable speed devices. While

disk or network resource allocations are expressed with

absolute values, CPU allocations are expressed with rel-

ative values (a percentage of a processor). We proposed

an absolute allocation system for CPU and showed how

it can be dynamically mapped onto physical resources.

We implemented this solution in the Xen virtualization

system and evaluated it in a private IaaS. These evalua-

tions validated the effectiveness of our solution (no SLA

violation).

ACKNOWLEDGEMENTS

This work benefited from the support of the French

”Fonds national pour la Société Numérique” (FSN)

through the OpenCloudware project

REFERENCES

[1] Wei Jin, Jeffrey S. Chase, and Jasleen Kaur, “Interposed propor-
tional sharing for a storage service utility”, ACM SIGMETRICS
Performance Evaluation Review 2004.

[2] Ali Ghodsi, Matei Zaharia, Benjamin Hindman, Andy Konwinski,
Scott Shenker, and Ion Stoica, “Dominant Resource Fairness: Fair
Allocation of Multiple Resource Types”, NSDI 2011.

[3] Ludmila Cherkasova, Diwaker Gupta, and Amin Vahdat, “Com-
parison of the Three CPU Schedulers in Xen,” SIGMETRICS
Performance Evaluation Review, 35(2) 2007.

[4] Teabe Boris, Tchana Alain, Daniel Hagimont,’Enforcing CPU
allocation in a heterogeneous IaaS, Future Generation Computer
Systems 2015

[5] Daniel Hagimont, Christine Mayap Kamga, Laurent Broto, Alain
Tchana, Noel De Palma, ’DVFS Aware CPU Credit Enforcement
in a Virtualized System’, Middleware 2013.

[6] Younggyun Koh, Rob C. Knauerhase, Paul Brett, Mic Bowman,
Zhihua Wen, and Calton Pu, ’An Analysis of Performance Inter-
ference Effects in Virtual Environments’, ISPASS 2007.

[7] Christina Delmitrou and Christos Kozyrakis, ’HCloud: Resource-
Efficient Provisioning in shared Cloud System’, APLOS 2016.

[8] Microsofts Top 10 Business Practices for Environmentally Sustain-
able Data Centers, ’http://www.microsoft.com/environment/news-
and-resources/datacenter-best-practices.aspx’.

[9] Ajay Gulati, Arif Merchant, and Peter Varman, “mClock: Handling
Throughput Variability for Hypervisor IO Scheduling”, OSDI
2010.

[10] Ajay Gulati, Irfan Ahmad, and Carl A. Waldspurger, “Parda:
Proportional allocation of resources in distributed storage access”,
Usenix FAST 2009.

[11] Marco Canini, Vojin Jovanovic, Daniele Venzano, Dejan No-
vakovic, and Dejan Kosti, “Online testing of federated and het-
erogeneous distributed systems”, SIGCOMM 2012.

[12] Alexandra Fedorova, David Vengerov, and Daniel Doucette,
“Operating System on Heterogeneous Core Systems”, ASPLOS
2013.

[13] Boris Teabe, Alain Tchana, and Daniel Hagimont, “Application-
specific quantum for multi-core platform scheduler”, EuroSys
2016.

[14] Jason Mars and Lingjia Tang, “Whare-map: heterogeneity in
”homogeneous” warehouse-scale computers”, in ISCA 2013.

[15] Benjamin Farley, Venkatanathan Varadarajan, Kevin D. Bowers,
Ari Juels, Thomas Ristenpart, and Michael M. Swift, “More for
Your Money: Exploiting Performance Heterogeneity in Public
Clouds”, SoCC 2012.

[16] Zhonghong Ou, Hao Zhuang, Jukka K. Nurminen, Antti Yla-
Jaaski, and Pan Hu, “Exploiting Hardware Heterogeneity within
the same Instance Type of Amazon EC2,” HotCloud 2012.

[17] Zhonghong Ou, Hao Zhuang, Andrey Lukyanenko, Jukka K.
Nurminen, Pan Hu, Vladimir Mazalov, and Antti Yla-Jaaski, “Is
the same Instance Type Created Equal? Exploiting Heterogeneity
of Public Clouds,” TCC 2013.

[18] Christina Delimitrou and Christos Kozyrakis, “Paragon: QoS-
Aware Scheduling for Heterogeneous Datacenters”, ASPLOS
2013.

[19] Qingyuan Deng, David Meisner, Luiz Ramos, Thomas F.
Wenisch, and Ricardo Bianchini , “MemScale: Active low-power
modes for main memory,” ASPLOS 2011.

[20] Jiwei Huang and Chuang Lin, “Agent-Based Green Web Service
Selection and Dynamic Speed Scaling,” ICWS 2013.

[21] Qingyuan Deng, David Meisner, Abhishek Bhattacharjee,
Thomas F. Wenisch, Ricardo Bianchini, “CoScale: Coordinating
CPU and Memory System DVFS in Server Systems,” MICRO
2012.

[22] “y-cruncher A Multi-Threaded Pi-Program”,
http://www.numberworld.org/y-cruncher/#Benchmarks, visited on
September 2014.

[23] Venkatesh Pallipadi and Alexey Starikovskiy, “The ondemand
governor: past, present and future,” Linux Symposium 2006.

[24] Sarah Bird, Aashish Phansalkar, Lizy K. John, Alex Mericas
and Rajeev Indukuru, “Performance Characterization of SPEC
CPU2006 Benchmarks on Intel Core 2 Duo Processor”, SPEC
Benchmark Workshop, pp. 121-137, 2007.

[25] Steven Cameron Woo, Moriyoshi Ohara, Evan Torrie,
Jaswinder Pal Singh, and Anoop Gupta, “The splash-2 programs:
Characterization and methodological considerations,” SIGARCH
1995.

[26] STREAM: Sustainable Memory Bandwidth in High Performance
Computers. https://www.cs.virginia.edu/stream/.

[27] Tang, Lingjia, Jason Mars, and Mary Lou Soffa. “Contentious-
ness vs. Sensitivity: Improving Contention Aware Runtime Sys-
tems on Multicore Architectures,” EXADAPT 2011.

[28] SPEC CPU2006, http://www.spec.org/cpu2006/, visited on De-
cember 2015.

[29] Antonio Nicolo, Efficiency and truthfulness with Leontief pref-

erences. A note on two-agent, two-good economies, Review of
Economic Design 2004.

[30] Aziz Murtazaev and Sangyoon Oh. “Sercon: Server Consoli-
dation Algorithm using Live Migration of Virtual Machines for
Green Computing,” in IETE TR, vol. 28, issue 3, 2011.

