
HAL Id: hal-01782584
https://hal.science/hal-01782584

Submitted on 2 May 2018

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Billing system CPU time on individual VM
Boris Teabe, Alain Tchana, Daniel Hagimont

To cite this version:
Boris Teabe, Alain Tchana, Daniel Hagimont. Billing system CPU time on individual VM. 16th
IEEE/ACM International Symposium on Cluster, Cloud, and Grid Computing (CCGrid 2016), May
2016, Cartagena, Colombia. pp. 493-496. �hal-01782584�

https://hal.science/hal-01782584
https://hal.archives-ouvertes.fr


  
   

Open Archive TOULOUSE Archive Ouverte (OATAO)  
OATAO is an open access repository that collects the work of Toulouse researchers and 
makes it freely available over the web where possible.  

This is an author-deposited version published in : http://oatao.univ-toulouse.fr/ 
Eprints ID : 18953 

The contribution was presented at CCGrid 2016 :  
http://conferencias.virtual.uniandes.edu.co/ccgrid2016/index.html 

To link to this article URL : 
http://dx.doi.org/10.1109/CCGrid.2016.76 

 

To cite this version : Teabe, Boris and Tchana, Alain and Hagimont, 
Daniel Billing system CPU time on individual VM. (2017) In: 16th 
IEEE/ACM International Symposium on Cluster, Cloud, and Grid 
Computing (CCGrid 2016), 16 May 2016 - 19 May 2016 
(Cartagena, Colombia). 

Any correspondence concerning this service should be sent to the repository 

administrator: staff-oatao@listes-diff.inp-toulouse.fr 



Billing system CPU time on individual VM

Boris Teabe, Alain Tchana, Daniel Hagimont

Institut de Recherche en Informatique de Toulouse (IRIT)

Toulouse, France

e-mail: first.last@enseeiht.fr

Abstract—In virtualized cloud hosting centers, a virtual ma-
chine (VM) is generally allocated a fixed computing capacity. The
virtualization system schedules the VMs and guarantees that each
VM capacity is provided and respected. However, a significant
amount of CPU time is consumed by the underlying virtualization
system, which generally includes device drivers (mainly network
and disk drivers). In today’s virtualization systems, this CPU time
consumed is difficult to monitor and it is not charged to VMs.
Such a situation can have important consequences for both clients
and provider: performance isolation and predictability for the
former and resource management (and especially consolidation)
for the latter. In this paper, we propose a virtualization system
mechanism which allows estimating the CPU time used by the
virtualization system on behalf of VMs. Subsequently, this CPU
time is charged to VMs, thus removing the two previous side
effects. This mechanism has been implemented in Xen. Its benefits
have been evaluated using reference benchmarks.

Index Terms—Cloud computing; Virtual machines; isolation;
predictability; billing

I. INTRODUCTION

A majority of cloud platforms implement the Infrastruc-

ture as a Service (IaaS) model where customers buy virtual

machines (VM) with a set of reserved resources. This set of

resources corresponds to a Service Level Agreement (SLA)

which should be fully provided to customers [1], [2]. On their

side, providers are interested in saving resources [21], [22]

while guaranteeing customers SLA requirements. In this paper,

we focus on CPU allocation to VMs. In the IaaS model, a

VM is generally allocated a fixed CPU computing capacity.

The underlying hosting system (hypervisor) schedules VMs

and ensures that the allocated CPU capacity is provided and

respected. The respect of the allocated capacity has two main

motivations: (1) For the customer, performance isolation and

predictability [8], [9], i.e. a VM performance should not be in-

fluenced by other VMs running on the same physical machine.

(2) For the provider, resource management and cost reduction,

i.e. a VM should not be allowed to consume resources that

are not charged to the customer. However, we observe that in

today’s virtualization systems, the respect of the allocated CPU

capacities is approximative [13], [14]. A significant amount

of CPU is consumed by some components of the underlying

hosting system (hereafter called system components). These

components include device drivers (mainly network and disk

drivers). Surprisingly, The CPU time consumed by the system

components is not charged to VMs. This situation has an

important impact on both VM performance isolation and

resource management in the IaaS. In this paper, we propose a

system extension which determines the CPU time consumed

by the system components on behalf of individual VM in order

to charge this time to each VM. This extension relies on three

main mechanisms.

1) a counting of device drivers I/O requests. Each VM has

a counter representing its number of I/O request.

2) a calibration of each type of I/O request. This calibration

computes for each I/O request type, the average CPU

time needed by the system components to handle the

request.

3) an integration of I/O CPU times in the VM scheduler.

The scheduler of the virtualization system integrates the

CPU time consumed by I/O requests in the computation

of the CPU time used by VMs.

Thus, the CPU time used by the system component is charged

to VMs, i.e. a VM is not given a blank cheque regarding its

CPU consumption through system components. Consequently,

we significantly reduces performance disturbance arising from

the competition from collocated VMs. We implemented a

prototype in the Xen virtualization system. We evaluated this

prototype with various workloads. The evaluations show that

performance isolation and resource management can be sig-

nificantly impacted with the native Xen system. Furthermore,

our extension ensures performance isolation for the customer,

and prevents resource leeks for the provider, while having

a negligible overhead. In summary, the contributions of this

paper are:

• precise measurement of CPU time used by system com-

ponents (e.g. driver domain) on behalf of VMs;

• smart charging of this CPU time to VMs vCPU;

• implementation of a multi-core prototype within Xen

system;

• intensive experimentation with real workloads.

The rest of the article is structured as follows: section II

presents the motivations of this work. Section III presents our

contributions. An evaluation is reported in Section IV. The

latter is followed by a review of related work in Section V,

we present our conclusions in Section VI.

II. MOTIVATIONS

The contributions presented in this paper have been imple-

mented in the Xen [24] system, which is the most popular

open source virtualization system, used by Amazon EC2. In

the Xen para-virtualized system, the real driver of each I/O

device resides within a particular system component called

”driver domain” (DD). The DD conducts I/O operations on



behalf of VMs which run a fake driver called frontend. The

frontend communicates with the real driver via a backend

module located in the DD. The backend allows multiplexing

the real devices. This I/O virtualization architecture, generally

called the ”split-driver model”, is used by the majority of

virtualization systems. In this model, the hardware driver is

not modified and can be run in a separate VM. From the

above description, we can deduce that I/O requests are handled

by the DD which consumes a significant CPU time. Current

virtualization system schedulers do not integrate this CPU time

when computing VM’s processing time. This situation can be

problematic for both cloud clients, and cloud provider namely:

• If the CPU capacity of the DD is limited, performance

isolation can be compromised because a VM performance

is influenced by other VMs which shared the DD re-

sources.

• Otherwise, if the CPU capacity of the DD is unlimited,

the resource management system (especially consolida-

tion) can be affected.

III. CONTRIBUTIONS

In this paper, we propose a solution which overcomes

the problem identified in the previous section. Although the

solution is relatively easy to label, its implementation should

face the following challenges:

• Accuracy. How to accurately count the CPU time used

by the DD for each VM knowing that the DD is shared

among several tenants?

• Overhead. The processing time needed to run the solution

must be negligible.

• Intrusion. The solution should require as few modifica-

tions as possible within the guest OS.

A. General approach

We propose an implementation which takes into account

all the challenges listed above. This implementation mainly

relies on calibration. It is summarized as follows. First of all,

the provider measures the CPU time needed by the DD to

handle each I/O request type (See section III-B). This is done

once. These measurements are made available to the scheduler.

The DD is modified in order to count the number of I/O

request handled per type for each VM. This modification is

located in the backend, which is the ideal place to track all I/O

requests. The DD periodically sends the collected information

to the scheduler. Based on the received information and the

calibration results, the scheduler computes the CPU time used

by the DD on behalf of each VM. This computed CPU time

is then charged to the VMs. This is done by balancing the

computed CPU time among all VM’s vCPUs in order to avoid

the penalization of a single vCPU. The next section gives more

details about the calibration.

B. Calibration

Calibration consists in estimating the CPU time needed by

the DD to process each I/O request type. To this end, we

place sensors both at the entry and the exit of each component

involved. We implemented a set of micro-benchmark1 appli-

cations to provide an accurate calibration. For each I/O device

type, we consider all factors that could impact the CPU time

needed by the DD for their processing. The most important

factors are:

• the configurations in the DD. For each I/O device, Xen

provides several ways to configure how the device driver

interacts with the backend.

• the type of the I/O request. The path followed by I/O

requests within the DD depends on their type.

• the size of the request. I/O requests are from different

sizes.

Network calibration: We implement in C a sender/receiver

application based on UDP to calibrate the cost of handling

a network operation in the DD. The sender always sends

the same frame to the receiver. Both the sender and the

receiver are within the same LAN. Xen provides three pos-

sible network configurations in the DD :bridging, routing and

NATing. Bridging is the most used configuration. The path,

between the device driver and the backend, taken by frames

through the Linux network stack differs for each configuration.

Routing and NATing use a very similar path while it is

much different for bridging. Bridging is used in the rest of

the article, unless otherwise specified. Fig. 1(a) presents the

calibration measurements for our experimental environment.

We can observe that the cost of handling a network packet

by the DD varies with the size and the direction (receiving or

sending).

Disk calibration: We use the Linux dd command to calibrate

disk operations. As for the network, Xen provides different

ways to configure how a VM disk is managed in the DD.

These are: tap, qdisk, and phy. The latter is the most used. The

configuration mode influences the processing time used by the

DD. We use phy in the rest of the article. Disk operations are

read and write. Unlike the network, they are always initiated

by the VM. Fig. 1(b) shows the calibration results for our

experimental environment.

IV. EVALUATIONS

We have implemented our solution in both the DD’s kernel

(version 3.13.11.7) and the Xen hypervisor (version 4.2.0)

precisely in the Xen credit Scheduler. This section presents

the evaluation results of this implementation. The experiments

were realized with realistic applications. We evaluate the

following aspects: (1) the overhead of the solution, (2) its

efficiency regarding performance predictability.

A. Experimental environment

The experiments were performed in our private cluster. Its

consists of HP machines with Intel Core i7-3770 CPUs and

8 Gbytes of memory. PMs are linked to each other with

a gigabyte switch. The dom0 is used as the DD. Its CPU

computing capacity is configure to 30% of the processor. VMs

1Note that, once both the hypervisor and the DD are patched, a calibration
round does not take a lot of time (about 5 minutes).
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Fig. 1: Network calibration (a) and Disk calibration (b)

are configured with a single vCPU (pinned to a dedicated

processor, different from the one used by the DD).

B. Overhead and Accuracy

Our solution introduces a very negligible overhead (near

zero) because we use existing mechanisms to implement the

solution. This allows us to avoid any additional cost. We

experimented our solution with two micro-benchmarks: (1)

a web application based on wordpress [26] for the network

evaluation, and (2) Linux dd command for the disk evaluation.

The computing capacity of the VM is set to 30% of the

processor when running the network benchmark and 15%

for the disk benchmark. The experiments were realized in

two contexts: with our solution and with the native Xen

system. We show the ability of our approach to ensure that

the aggregated CPU consumed by a client VM remains within

its booked CPU capacity, which is not the case with the

native Xen system. This allows us to guarantee performance

predictability. The leftmost curve in Fig. 2 presents the results

of these experiments. We can see that using our solution,

the aggregated CPU load of the client VM is about the

value of its booked CPU capacity (30 or 15). The margin

of error is very negligible. The two rightmost curves in Fig. 2

focus on the case of the network evaluation. They present

performance predictability results. The second curve highlights

the issue of performance unpredictability in the Xen system

when two VMs share the DD. The throughput of the VM

goes from 1200req/sec when it is alone to 800req/sec when

it is colocated. The third curve shows the results of the

same experiment when our solution is used. We can see that

the VM keeps the same performance, about 800req/sec. The

latter represents the throughput the VM should provide for

this booked credit. Indeed, our implementation avoids the

saturation of the DD since its allocated credit was enough for

handling VMs traffics when their aggregated CPU load stay

within their booked credit.

V. RELATED WORKS

I/O virtualization has received a fair amount of attention

recently. [3], [4], [5], [6], [7] have focused on boosting I/O

intensive VMs. Despite all this, several studies [8], [9] have

pointed performance unpredictability in the cloud because

of VMs competition on shared resources. Studies in this

domain can be classified into two categories. The first category

includes research [18] at a micro-architectural level (e.g. cache

contention effects). The main approach they advocate consists

in placing VMs intelligently so that compete workloads are

avoided atop of the same machine. Researches [14], [25],

[11] of the second category have addressed the problem at

the software level. They propose to use fair-share bandwidth

allocation where a minimum bandwidth is guaranteed to each

tenant [12]. All these works do not accurately guarantee

performance predictability, even less charged DD CPU time

to clients VMs as we do in this paper. In a virtualized system,

shared resources are not only hardware. As we have shown,

some software components such as the DD are shared and

should be considered. Thus focusing on micro-architectural

aspects as done by studies in the first category is not suffi-

cient. By studying shared software components, our work is

complementary to those in the first category. Concerning the

second category, the approach could be efficient if a given

bandwidth always leads to the same system time in the DD

but this is not true.

To the best of our knowledge, [20] is the only work close

to what we propose. They propose to use Xenmon [23]2 for

limiting bandwidth per VM (ShareGuard) and also to realize

a scheduler which takes into account CPU time used by the

DD on behalf of VMs (SEDF-DC). In comparison to our

solution, [20] presents the following weaknesses. (1) [20]

only studies network devices, whereas we have shown that

disk operations can generate a significant load in the DD.

(2) SEDF-DC scheduler is limited to mono-processor ma-

chines, while today’s machines are mostly multi-processors.

(3) ShareGuard is very intrusive since it drops VM’s network

packets which CPU load within the DD is above the configured

capacity. In addition, dropping packets does not remove DD’s

activity since it needs to analyze packets before dropping them.

Our solution is very smart in that it just imposes a CPU

time consumption to the VM. (4) SEDF-DC and ShareGuard

use XenMon which needs to be constantly activated, thus

consuming a non negligible system time. Finally, (5) [20] does

not consider all the factors which impacts the CPU time used

by the DD (e.g. packet size).

2a monitoring tool for determining the CPU load generated by a VM within
the DD
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Fig. 2: Accuracy of our solution using micro-benchmark

VI. CONCLUSION

In todays virtualization systems, the CPU time consumed

by device drivers in the underlying hosting system is not

charged on VM CPU capacities. This situation can have

significant impact on VM performance isolation and on re-

source management (consolidation) in a IaaS. Therefore, we

proposed a system extension which allows to estimate CPU

time consumed by the virtualization system components on

behalf of individual VMs and to charge it to VMs. This

extension was implemented in the Xen system and evaluated

in our private cluster. The results show that this CPU time

consumed by virtualization system components is significant,

and that according to the provider strategy, it can lead to

unpredictable performance for the client. Our solution allows

to precisely charge system time on VMs capacities, following

the pay as you go philosophy.
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