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ABSTRACT

The classification of epileptic seizure events in EEG signals

is an important problem in biomedical engineering. In this

paper we propose a Bayesian classification method for multi-

variate EEG signals. The method is based on a multilevel 2D

wavelet decomposition that captures the distribution of en-

ergy across the different brain rhythms and regions, coupled

with a generalised Gaussian statistical representation and a

multivariate Bayesian classification scheme. The proposed

approach is demonstrated on a challenging paediatric dataset

containing both epileptic events and normal brain function

signals, where it outperforms a state-of-the-art method both

in terms of classification sensitivity and specificity.

Index Terms— Bayesian classifiers, Epilepsy, Multilevel

2D wavelet , Generalized Gaussian distribution, EEG.

1. INTRODUCTION

Seizures and epilepsy are clinical phenomena resulting from

the hyperexcitability of neurons [1]. The electroencephalo-

gram (EEG) is the predominant modality to study abnormal

cerebral activity and diagnose epilepsy and inform its treat-

ment. In particular, it is the main modality to classify epilepsy

conditions, analyze epilepsy syndromes, and perform seizure

onset detection and propagation analysis.

The methods to analyse epileptic seizure signals can be

classified into univariate or multivariate approaches. Univari-

ate approaches analyze the state of a single brain region, while

multivariate analyse many regions simultaneously as well as

their interactions [2]. EEG signal classifiers play a particu-

larly important role in EEG signal processing. Classification

is based on features extracted from single channels, multiple

channels or a combination of these [3].

Different feature sets have been investigated in the liter-

ature [4–7]. The predominant approach is to use ad-hoc fea-

tures that describe the time-frequency properties of the EEG

signals, as this is related to the brain activity at the different
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brain rhythms of frequency bands. Recent works have for-

malised this approach by using a wavelet representation to

decompose the univariate EEG signal into the different brain

rhythms, followed by statistical modelling of the wavelet co-

efficients [8, 18]. The works [8, 18] consider different statis-

tical models and conclude that the generalised Gaussian pro-

vides the better model fit to data. In this paper we extend the

approach by using a 2D wavelet representation coupled with a

Bayesian classification scheme [5–7, 9] to operate with mul-

tivariate EEG signals so as to analyse several brain regions

simultaneously.

The remainder of the paper is organised as follows. Sec-

tion 2 describes the proposed methodology that combines a

2D wavelet representation, a generalised Gaussian statistical

model, and a Bayesian classification scheme for multivari-

ate EEG data. In Section 3 the proposed methodology is ap-

plied to real EEG signals from patients suffering from epilep-

tic seizures. Conclusions and perspectives for future work are

finally reported in Section 4.

2. METHODOLOGY

Let X ∈ R
N×M denote the matrix gathering M EEG signals

xm ∈ R
N×1 measured simultaneously on different channels

and atN discrete time instants. We use the representation [10]

X = K J + ν (1)

where J is a matrix representing the sources, K is the so

called lead field or gain matrix, and ν is an additive noise.

The proposed methodology is composed of three stages.

The first stage splits the original signal X in to set of non-

overlapping 2 seconds segments using a rectangular sliding

window so that

X(i) = Ω
(i)X (2)

Ω
(i) =

[

0
L×iL, IL×L,0L×N−iL−L

]

(3)

where 0
N×M ∈ R

N×M is the null matrix, IN×N ∈ R
N×N

is the identity matrix and L is the number of measurement

obtained in 2 seconds. The second stage consists of represent-

ing each segment X(i) using a time-frequency Daubechies

2D wavelet decomposition [11] with 6 scales. The purpose

of this decomposition is to evaluate the energy distribution
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Fig. 1. Algorithm used in the methodology proposed.

throughout the neurological frequency spectrum or brain

rhythm (namely the delta, theta, alpha, beta and gamma

bands [12, 13]). Finally, in the third stage, the statistical dis-

tribution of the wavelet coefficients is represented by using

a zero-mean generalized Gaussian distribution. Precisely,

each scale of the wavelet decomposition is summarised by

estimating the statistical parameters α and β of the general-

ized Gaussian distribution [14] to obtain the proposed feature

set θ(i) collecting the parameters associated with all wavelet

scales for a 2-second segment.

Finally, the feature vector associated with each time seg-

ment is classified by using a Bayesian classifier as Seizure/Non-

Seizure. Here we use a multivariate Gaussian classifier [15]

which provides a robust second order approximation to more

general Bayesian classification methods and which has the

important advantage or requiring little training data. This

3-stage methodology is summarised in Figure 1.

We now introduce the 2D wavelet decomposition, the gen-

eralised Gaussian statistical model, and the Bayesian classi-

fier used in this paper.

2.1. Multilevel 2D Wavelet Decomposition

Wavelets are localized waves, where instead of oscillating for-

ever, they drop to zero; they come from the iteration of filters

with scaling [16]. They are obtained from a single prototype

“mother” wavelet ψ(t) by rescaling and shifting, i.e.,

ψa,b(t) =
1√
a
ψ
( t− b

a

)

(4)

where a is the scaling parameter and b is the shifting parame-

ter. The 1D wavelet transform is given by

Wf (a, b) =

∫

∞

−∞

x(t)ψa,b(t)dt (5)

The discrete wavelet transform (DWT) transforms a discrete

time signal to a discrete wavelet representation. It converts

Table 1. Frequencies of the different scales of the DWT.

Decomposed Signal Frequency range (Hz) Band

D3 - H3 - V3 32-64 Gamma

D4 - H4 - V4 16-32 Beta

D5 - H5 - V5 8-16 Alpha

D6 - H6 - V6 4-8 Theta

A6 0-4 Delta

an input series x = [x0, . . . , xL−1]
T

of length L, into one

high-pass (h) wavelet coefficient series and one low-pass (l)

wavelet coefficient series, each one of length L
2 , given by

hj =
K−1
∑

k=0

x2j−k sk, lj =
K−1
∑

k=0

x2j−k tk ∀ 0 ≤ j <
L

2
(6)

where s = [s0, . . . , sK−1]
T

and t = [t0, . . . , tK−1]
T

are

called the wavelet filters.

Recalling that X(i) represents a multichannel signal

where each column contains a different channel and each

row represents the temporal evolution of the EEG signal,

the multilevel 2D wavelet transform decomposes the matrix

X(i) using (6) into four component matrices, namely LL
(i)
j ,

LH
(i)
j , HL

(i)
j and HH

(i)
j , where the first letter corresponds

to applying either a low-pass (L) or high-pass (H) frequency

operation to the temporal component (rows) of X(i) and the

second letter refers to the filter applied to the channel com-

ponent (columns) of X(i), each one according the scale j.

The lowest frequency sub-band LL
(i)
j is the approximation

coefficients of the original signal X(i). The remaining three

frequency sub-bands are the detail parts of the signal and

give the vertical high (LH
(i)
j ), horizontal high (HL

(i)
j ) and

diagonal high (HH
(i)
j ) coefficients. This process is repeated

recursively replacing the input signal X(i) with the last ap-

proximation series LL
(i)
j until the desired number of scales

j = [1, 2, . . . , J ]
T

is obtained. We refer the reader to [16, 17]

for a comprehensive treatment of the mathematical properties

of wavelets and filter banks.

Table 1 presents frequencies corresponding to different

levels of decomposition for the Daubechies wavelets of order

4 with a sampling frequency of 256 Hz, where H, V and D

refer to horizontal, vertical and diagonal details respectively

and the number is the scale [12, 13]. The rest of approxima-

tions and details are discarded because they are outside of the

brain rhythms.

2.2. Generalized Gaussian distribution

The univariate generalized Gaussian distribution (GGD) is

a flexible statistical model for one-dimensional signals that

has found numerous applications in science and engineering.

Their application to epilepsy signal has been studied in [8,18].

Since the wavelet detail coefficients arise from high-pass fil-

tering a zero-mean EEG signal matrix, it can be safely as-

sumed that they also have mean value of zero [15]. Con-



sequently, the distribution of the wavelet coefficients C
(i)
j

(where C can be one of LH , HL or HH) can be repre-

sented by using a zero-mean GGD statistical model [19] with

probability density function (PDF) given by

fGGD(x;α, β) =
β

2αΓ(β−1)
exp

(

−
∣

∣

∣

x

α

∣

∣

∣

β
)

(7)

where α ∈ R
+ is a scale parameter and β ∈ R

+ is a shape

parameter that controls the shape of the density tail and Γ (·)
is the Gamma function. Note that the GGD parametric dis-

tribution family includes many popular distributions that are

commonly used in biomedical signal processing. For exam-

ple, setting β = 1 leads to a Laplacian or double-exponential

distribution, β = 2 leads to Gaussian or normal distribution,

and β → ∞ leads to a uniform distribution (we refer the

reader to [20] for a comprehensive treatment of the mathe-

matical properties of the GGD).

From (7), the statistical properties of a wavelet coefficient

matrix C
(i)
j can be summarized with the maximum likelihood

parameter vector θ
C

(i)
j

such that

θ
C

(i)
j

=
[

α
(i)
j , β

(i)
j

]T

(8)

= argmax
[α,β]T

fGGD(C
(i)
j ;α, β). (9)

For a detailed explanation on the estimation of the GGD pa-

rameters we refer the reader to [14, 19]. Finally, a feature

vector summarizing the statistical properties of the wavelet

details for each brain rhythm (delta, theta, alpha, beta and

gamma [12, 13]) can be obtained as

θ(i) =
[

θ
(i)
3 ,θ

(i)
4 ,θ

(i)
5 ,θ

(i)
6 ,θT

LL
(i)
6

]T

(10)

θ
(i)
j =

[

θT

LH
(i)
j

,θT

HL
(i)
j

,θT

HH
(i)
j

]

(11)

where θ(i) is a 13 dimensional vector.

2.3. Multivariate Normal Bayesian Classifier

Consider a classification into J possible classes ω1, . . . , ωJ .

For a feature vector θ(i) belonging to the class ωj , we assume

that θ(i) has a multivariate normal distribution with mean

value µj and covariance matrix Σj , i.e.,

ρ
(

θ(i)
∣

∣

∣
ωj

)

=
exp

[

− 1
2 (θ

(i) − µj)
T
Σ

−1
j (θ(i) − µj)

]

(2π)K/2|Σj |1/2
(12)

where ρ(·) is the probability of a particular event, and K is

the size of the vector θ(i).

The Bayes decision rule states that the estimated class ω̂(i)

corresponding to θ(i) is

ω̂(i) = argmax
j

ρ
(

θ(i)
∣

∣

∣
ωj

)

ρ(ωj) (13)

or equivalently using the logarithmic likelihood we obtain the

equivalent rule

gj

(

θ(i)
)

= log ρ
(

θ(i)
∣

∣

∣
ωj

)

+ log ρ(ωj) (14)

ω̂(i) = argmax
j

gj

(

θ(i)
)

(15)

where gj(·) is the so called discriminant function.

From (12) and (14) the discriminant functions becomes

gj

(

θ(i)
)

= −1

2

(

θ(i) − µj

)T

Σ
−1
j

(

θ(i) − µj

)

− N

2
log(2π)− 1

2
log |Σj |+ log ρ(ωj) (16)

We refer the reader to [21, 22] for a comprehensive treatment

of the mathematical properties of Bayesian classifier for mul-

tivariate normal distributions.

3. RESULTS

In this section we evaluate the proposed methodology using

the Children Hospital Boston database. This dataset con-

sists of 36 bipolar 256Hz EEG recordings from paediatric

subjects suffering from intractable seizures [4, 23]. In this

work we have used 18 recordings from 11 different subjects.

Each recording contains a seizure event, whose onset time has

been labeled by an expert neurologist. Here we used the ex-

pert annotations to extract a short epoch from each recording

such that it is focused on the seizure and that it contains both

seizure and non-seizure signals (the epochs have a duration

of the order of 5 minutes). The goal is to use these data to

train and subsequently test the capacity of our classification

scheme to identify seizure and non-seizure signals. More-

over, for comparison we use the state-of-the-art classification

method of Shoeb et al. [4], which is also based on energy

features of a space-frequency representation of the EEG sig-

nal array (here we use an implementation with a 2D wavelet

transform to make the comparison fair).

Table 2 reports the performance of each classification

method assessed by using a leave-one-out- cross validation

approach to calculate the method classification confusion

matrix [24] (the results for the proposed method are denoted

by Q and those of the method [23] by S). These performance

matrices are composed of the following measures that char-

acterise the different aspects of the classifiers: the sensitivity

or true positives rate (TPR); the false positive rate (FPR);

the sensitivity or true negative rate (TNR); and the overall

classification accuracy (ACC), calculated as the total number

of correct classifications out of 36 events (18 Seizure and

18 Non-Seizure). Notice that the classification results are

performed and reported separately for each brain rhythm or

frequency band because this information is relevant to neu-

rologists and allows discriminating clinical events of different

nature. To simplify the visual interpretation we highlight in

red the method that achieves the highest sensitivity, speci-

ficity, and overall accuracy for each frequency band. We

observe from Table 2 that the proposed method clearly out-

performs the competing approach [4] in terms of overall



Table 2. Comparison between the proposed epilepsy classifi-

cation method (Q) and the state-of-the-art method [4] (S) us-

ing 36 events (18 seizure and 18 non-seizure), for each brain

rhythm or frequency band, and using the following perfor-

mance metrics: sensitivity or true positives rate (TPR); the

false positive rate (FPR); the specificity or true negative rate

(TNR); and overall classification accuracy (ACC).

TPR FPR TNR ACC

Bands Q S Q S Q S Q S

Delta 0.83 0.80 0.17 0.27 0.83 0.72 30 27

Theta 0.75 0.76 0.19 0.27 0.80 0.81 28 28

Alpha 0.83 0.75 0.20 0.50 0.79 0.75 29 27

Beta 0.88 0.76 0.14 0.48 0.86 0.76 31 27

Gamma 0.84 0.84 0.15 0.17 0.85 0.82 30 29

accuracy (ACC), and achieves a superior sensitivity (TPR)

and specificity (TNR) for most frequency bands.

Finally, to develop an intuition for the good performance

of the proposed classification scheme, Fig. 2 shows scat-

ter plots of the generalised Gaussian parameters α and β

for seizure events (red circles) and non-seizure events (blue

squares and black diamonds) observed through the Gamma

frequency band. We observe that the proposed representa-

tion, based on a generalised Gaussian model for the wavelet

coefficients, leads to a very clear discrimination of seizure

and non-seizure events. In particular, notice that by using

this representation it is possible to discriminate events with

separating line or hyper-plane, which is essentially what is

achieved by using the multivariate Gaussian classifier.

4. CONCLUSION

This work presented a new multivariate Bayesian classifica-

tion method to detect epileptic seizure events in EEG signals.

The method is based on a multilevel 2D wavelet decompo-

sition that captures the distribution of energy across the dif-

ferent brain rhythms and brain regions, coupled with a gener-

alised Gaussian statistical model that summarises this infor-

mation, and a multivariate Bayesian classification scheme that

discriminates seizure events from normal brain function. The

proposed methodology was demonstrated on a real dataset

containing 36 multivariate EEG recordings related to both

seizure and non-seizure events, and by performing compar-

isons with the state-of-the-art classification method [4]. Fu-

ture work will focus on an extensive evaluation of the pro-

posed approach and on deriving instances of the method that

are tailored for specific medical applications, such as time and

location of epilepsy onset detection.
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Fig. 2. Scatter plots for the generalised Gaussian parame-

ters α and β for seizure events (red circles) and non-seizure

events (blue squares and black diamonds) observed through

the Gamma frequency band, showing the good linear discrim-

ination power of the proposed approach.
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