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Joint evolution of morphologies and controllers for realistic modular robots
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Abstract: Following Karl Sims seminal works, many approaches from the literature aims at generating artificial creatures
using body-brain co-evolution. However, in simulation, creatures are not very realistic, they cannot be tested in physical
robots. In this paper, we propose a system that can generate realistic walking artificial creatures. We co-evolve the morphology
and the controller of virtual modular robots using GA. The morphology is generated by Graphtals while the global behavior of
a creature is done by the cooperation of robot's modules moves. Each module has its own local controller, here based on an
ANN. We integrate our system in Gazebo, a popular realistic robotic simulator. Experimental results show the capacity of our
approach to generate realistic morphologies and behaviors with simulator parameters set up with realistic values. We expect the
virtual robots generated with our system and trained in a realistic robotic simulator to better bridge the gap to reality.
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1 INTRODUCTION

Evolutionary robotics [16] is a wide research area that
proposes to use evolutionary computation to generate
robots’ morphology blueprints and their associated
behavior. Following Karl Sims seminal works [1, 2], many
approaches from the literature aims at generating artificial
creatures either in simulation [10, 13, 14, 15] or embedded
in real world robots [8, 9]. In that way, body-brain co-
evolution has been wused to automatically generate
autonomous adaptive robots [3].

However, in dynamic unpredictable or unknown
environments, the more complex the task becomes, the
more challenging the conception of the robot is. This is due
to 1) the increasing of search space size when the robot
morphologies and controllers are open to evolution and 2)
the numerous possible interactions these robots can have
with always more complex environments. When working in
evolutionary robotics with adaptable morphologies,
modular robotics [6] have shown to be effective [4].
Modular robots consist of a set of modules, either
homogeneous or heterogeneous. If the tasks they must
perform requires adaptation capacities, these robots can be
self-reconfigurable [5]. Once evolved within a simulated
environment, the robot body and its proper controller can
be tested in real physical world. However, the behavior of
simulated robots, as well as the simulated environment,
needs to be as realistic as possible to minimize the reality
gap which can make the obtained robot's behavior unstable.

The aim of our work is to evolve heterogeneous
modular robots in the most realistic possible way. We
propose a system that can evolve robots' morphologies

along with their controllers. We integrate our system in
Gazebo [11], a popular realistic robotic simulator often
used to simulate large robots (humanoids, wheeled-robots,
etc.). One of the key components of the simulation platform
is the use of simulated sensors that produces a data stream
which closely matches data from real-world physical
sensors. The simulator provides for the environment and the
simulated objects numerous physical attributes that we can
set up with realistic values. Before evaluating robots in
simulation, we designed a module interpenetration check
routine to fix unsuitable creatures. To prevent the modules
from going through each other in run time simulation, we
modeled joints as modules.

The rest of the paper is structured as follows: In Section
2, we will present our virtual robots and explain how the
morphology and the controller were generated together.
Section 3 will briefly present the evolutionary process. In
section 4, we will introduce the simulator and discuss the
importance of the physical attributes and how they can
affect the realism of the simulation. Section 5 describes our
experiments with virtual modular robots and shows some
examples of the evolved robots. Finally, section 6
concludes with a summary of this work and some possible
future works.

2 VIRTUAL ROBOT

Robots' generation is inspired by Karl Sims simulated
evolved creatures [1]. The robot's body is generated
alongside with its controller. In this section we will present
a description of our robots' morphologies and the process of
creating the phenotypic virtual creatures from their genetic



representation. Then, we will describe the embedded
distributed control system.

Fig. 1. A typical example of a genotype. The outer graph
describes the morphology (assembly and features) while the
inner graph on each node is the neural network controller.
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Fig. 2. The phenotype generated from the genotype shown
in figure 1. Grey phenotypic node (module) is the root. It
contains the global controller.

2.1 Robot morphology

Robots' morphologies are composed of a set of cuboid
modules linked by joints of equal size. The fact that joints
are modeled as modules without being invisible, will help
to avoid the interpenetration between neighboring modules
in runtime simulation. A module can have at maximum six
joints which could be on the same face.

To generate diversified morphologies, we use Graphtals
[1] as genetic representation. These are oriented graphs that
consist of a set of nodes and connections. Each node of the
graph contains the module phenotypic parameters (shape,
size, available sensors, etc.) and a local controller that we
will explain in the next section. Connections will determine
the assembly plan of modules. Each one specifies the axis
of rotation of the phenotypic joint and where it should be

placed on the module face. Recursion and reflection in
graphs allow duplication of nodes and, therefore, the
possible emergence of modularity and symmetry in the
generated morphologies. Recursive and reflective
connections as well as the number of repetition for each
application is specified by the genotype.

Firstly, we start generating the morphology from the
root node in the graph. When created, new modules are
assigned with a unique identifier and a parent. The root
node has no parent. Recursion or reflection are applied on
the fly. To increase search space, we propose two methods
to apply recursion, we either repeat the module and all its
children for all replications, or repeat the module itself and
then add the children at the extremities. Concerning
reflection, we replicate modules connected to the reflective
connection. New replicated modules will be added in a
predetermined face which could be in the same face. In this
case, with only one root node, quadrupeds and hand-like
morphologies are possible. Since we added a decreasing
scaling factor, size of modules created from the same node
may change. Of course these parameters are given by the
genotype. Once done, we determine the position and the
physical attributes of each module.

2.1.1 Morphology recovery

In some cases, unsuitable phenotypic robots may be
generated. Modules can be interpenetrated. Therefore,
before evaluating robots in the simulator, we designed a
module interpenetration check routine to fix the unsuitable
robots. This will let us recover morphologies that may be
good. Following is a pseudo code of the check algorithm
applied to the phenotype:

Algorithm 1 interpenetration checking

procedure Check (Module m)
m. visited « true;
for children of module m do
for 3 temptations do
if interpenetration between m and all visited
modules then
In an order try one of these actions:
1. Push the module in one of the possible
directions.
2. Change the connection face.
3. Change the orientation by doing a rotation
in a certain axis.
else
break
end if
end for
Check (child of m)
end for
end procedure




Since this procedure is a sequence of actions where
there is no randomness, the same genotype will produce
always the same phenotype. The algorithm, as it can be
applied to new phenotypic robots that were randomly
generated, it can also be applied to robots generated from
genetic operations. When the robot can not be recovered, a
new genotype is created.

While doing experimentations, 3,39% of unsuitable
morphologies were generated. The recovery rate was
71,56%.

2.2 Control System

The control system allows us to control the robot joints
at every time step by applying torques. Each module has its
own local controller, here based on a Multi-Layer
Perceptron (MLP) [7]. It controls the joint that links the
module to its parent. Hence, root node has no local
controller. Duplicated modules that have been created from
the same graph node will have the same controller. Modules
can communicate with each other and can receive orders
from a root module using embedded communication.
Therefore, the global behavior of a robot emerges from the
collaboration between all those local behaviors. An
example of the distributed control system is illustrated in
figure 2.

At the genotype level, all generated controllers have the
same number of neurons in the input layer. These neurons
have as input the data gotten from sensors and the data
gotten from neighborhood communication. However, at the
expression of the phenotypic module, the number may vary
depending on the integrated sensors. Neurons of output
layer stay the same. The number of hidden layers and the
number of neurons on each layer is different. On the input
layer, one of the neurons is responsible for receiving
messages. It receives one message at a time.

Communication neurons are used to exchange messages
between neighbors, for instance, a processed information
gotten from an eventual sensor. They are also used to send
messages to the brain of the robot. The later is a controller
(MLP) positioned in the root module. It has the possibility
to control all the joints at any time step (not every time
step). This depends on the controller's inputs. Input neurons
receive information from other modules and general
information about the robot, for example the mass and the
number of modules. That way, the brain can intervene as
soon as there is an unexpected change in the environment
(sudden appearance of an obstacle, etc.) or in the
morphology of the robot. It's like a reflex. Actually, this

functionality may not have an effect on the robot's behavior
since the environment is not complex.
2.2.1 Sensors

Each module employs a set of sensors that informs it of
the external world as well as its internal state (the state of
the module and the state of the joint). Currently, 6 sensors
are used:

® joint angle

® joint torque

e module angular and linear velocity

e module orientation (yaw, pitch, roll)

¢ module force

e contact sensor (in future we will use other sensors)
2.2.1 Effectors

The robots' effectors applies torques into joints. The
torque applied to each joint is a sinusoidal function. The
first neuron of the output layer is the amplitude and the
second is the phase.
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Fig. 3. Local and global controllers with defined inputs and
outputs

3 JOINT EVOLUTION

Evolution of virtual robots allows the emergence of the
fittest ones that can, in our case, develop locomotive
strategies in order to travel a long distance. We use Genetic
Algorithms to evolve robots' morphologies along with their
controllers. The aim is to optimize the morphology and the
neural network parameters in order to obtain the
appropriate combination.

Evolution is a cyclic process. At every cycle, from the
current generation, new individuals are created (offspring)
using genetic operations. These individuals will compose
the population of the next generation, and so on. First an
initial population of genotypes are created randomly with
the following parameters: a graph can contain from 1 to 4
nodes and can have at maximum 3 reflectives and recursive
nodes. Recursion can be applied up to 10 times while

communication



reflection can be applied up to 4 times. Genotypes are
expressed to produce the corresponding phenotypes.
Individuals (phenotypic robots) are then evaluated in a
three-dimensional environment.

3.1 Genetic operations

Genetic operations are done at the genotype level of the
virtual robot. All genotype parameters can be affected by
these operations. Mutation can affect the robot morphology,
its controller, or both at the same time. According to a given
probability we can either add or remove a graph node and
either add or remove a connection (that can be recursive or
reflective). We can change the number of applications of a
recursive and reflective connections. The node from where
generation of the phenotype starts (root node) can be
modified. Scaling factor, Reflection, and recursion method
can also be changed. For each node, we can change module
and joint phenotypic parameters (module size, joint position
and rotation axis). Two new robots are created from mating
two robots' genotypes (graphtals) selected from the
population. We used two methods for mating, crossover and
grafting [1]. Robots were selected with the tournament
selection method with 7 tournaments.

3.2. Evaluation function

We choose to compute the traveled distance by the robot
to evaluate its performance and its ability to perform tasks.
Robots were evaluated in the environment for 30s of a
simulation time. The initial point is taken after the
stabilization of the robot (after 3s).

4 ENVIRONMENT

Robots and their controllers were evaluated one by one
in Gazebo simulator. In the next section we will introduce
the platform and then we will go into the physical attributes
and the realism of the simulation.

4.1. Gazebo

We integrated our system in Gazebo, a popular realistic
robotic simulator often used to simulate large robots
(humanoids, wheeled-robots, etc.). One of the key
component of the simulation platform is the use of
simulated sensors that produces a data stream which closely
matches data from real-world physical sensors. It provides
for the environment and the simulated objects numerous
physical attributes that we can set up with relevant realistic
values.

The physical description of the environment and all
simulated objects in the scene is described in an XML file
with the SDF format (Simulation Description Format).

Modifying the simulation during run time requires the use
of Plugins. They are programs written in C++ that can for
instance control a robot's joint.

4.2. Physical attributes

To bring more realism to the simulation (visualization
and behavior) it is necessary to set up physical attributes
with realistic values close to reality.

® Module dimensions: they are ranging from 5 cm to
10 cm. In literature, modules are in that range [12,
17, 18].

® Module mass: the mass is calculated from the
volume of the module and its density. Modules have
the density of water.

® Module moment of inertia: the moment of inertia
determines the difficulty of making an object rotate.
It is the most influential parameter on the behavior
realism.

e Friction: when applied on module surface, opposing
frictional force can avoid robot sliding, and when
applied in joints will avoid the unrealistic vibration
moves. We set module surface friction to 0,5 and we
set joint friction to 0,2.

e Joint damping: depending on joint velocity, damping
allows the energy dissipation. This can avoid
bouncing movements. After several experimentations
we choose 0,02.

e Joint torque: it is the required force that can make a
joint rotate and raise all the modules attached to him
without breaking up the joint. However we set a
torque limitation to 1,75 Nm.

e Joint velocity: the maximum velocity allowed to a
joint is 5 rad/s.

Setting this parameter with the maximum possible
reality, they are helping to avoid unrealistic robot behavior.
We present three cases of unrealistic simulations that we
met:

Case A: There is not enough torque applied to joints, the
robot remains motionless.

Case B: There is too much torque, the robot bounces
randomly and travel a distance that can be too large.

Case C: There is enough torque, but one of the physical
attributes lacks of precision, the robot moves by a
continuous sliding without rotating the joints. This is
caused when a module pushes another module for a long
time.

In case B and C, when the fitness computation is based
on the travelled distance, the evolution favors the aberrant
behavior of robots at the expense of the realistic ones. The
more there is restriction and limitation at physical
parameters, the more we limit the emergence of particular
cases that can skew evolution.



5 EXPERIMENTAL RESULTS

In order to test and evaluate the efficiency of our system
we conducted a set of experiments. Each experiment starts
with a random generation of 50 robots. Experiments ran for
100 generations. Crossover and mutation rate were
respectively 35% and 75%.

We studied the influence of the robot's size (number of
modules) on the capacity of locomotions. In the first
experiment we had three cases of robots with a maximum
number of modules of 5, 10, and 15. The experiment is
repeated twenty times for each size.
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Fig. 4. The influence of the morphology size on the traveled
distance. With the defined evolution parameters (maximum
torque allowed is 1,75 Nm, up to 10 application of
recursion) larger robots perform better. The box plots show
the median, interquartile range, min and max values.

Graph in figure 4 shows that, with our system, robots
with bigger number of modules traveled more distance.
Smaller robots with 5 maximum modules traveled in
average 0,55 meter while larger ones with 10 and 15
maximum modules could travel respectively 1,7 meter and
2,18 meters in 30 seconds. We had noticed that the number
of modules of the fittest robot on each run is equal to the
maximum allowed modules. Large evolved robots in the
two last cases were snake-like, some of theme developed
jumping behaviors. So with their long length (can go to 1
m), big jumps allowed them to cross long distances.
Therefore smaller robots can not survive even if they
perform well. Snake-like robots were favored because we
allowed recursion up to 10 times and torque up to 1,75 Nm.
This torque value was high enough to make those large
robots move. But theoretically larger robots are not
necessary the more suitable for long distance locomotion.
Smaller robots with light weight can go fast and therefore
travel more distance. But this is not the case with this
experiment: smaller robots traveled less distance comparing
them larger ones even though the required toque was

sufficient. They were either heavy or their morphologies
were simple in a way that they can not allow effective
moves.

Quartiles
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Fig. 5. The influence of the morphology size on the
traveled distance. Evolution parameters are (maximum
torque allowed is 0,17 Nm, up to 2 application of
recursion). The box plots show the median, interquartile
range, min and max values.

In this next experiment we wanted to give a chance to
smaller robots to evolve in a way that larger robots can too
(by not letting snake like emerge). We reduced the
maximum recursion application to 2. This way larger
robots' morphologies will be more varied (not necessary
snake-like). The effort limit in joints was 0,17 Nm. The
maximum number of allowed modules in a robot was 15.
We repeated the experiment 80 times where in each run the
number of modules of the fittest robot may be from 1 to 15.
In the table below, we show the number of evolved robots
for each robot size.

Table 1. Size of evolved robots

Robot's size 4 5 6 7 8 9
Evolved robots 1 4 7 5 13 8
Robot's size 10 11 12 13 14 15

Evolved robots 2 8 15 2 5 10

Graph in figure 5 shows that robots with 9 modules are
in general better at long distance traveling. Robots with
more then 10 modules were in average less efficient. This
may be caused by the torque limitation. Motors were not
powerful enough to make the joints move. However, if the
morphology of these larger robots allow effective moves
and their module's weights are light they can travel very
long distances.

Experimental results show that indeed robots' size has
an affect on the traveled distance. The more there are
modules the more varied interesting morphologies can be



generated, and therefore a possibility to have effective
behavior that allow long distance locomotion. In fact, we
believe that larger robots are more appropriate for long
distance traveling, we only need to provide the necessary
torque for each joint.

Fig. 6. Evolved robots examples. Each one developed a
strategy to do locomotion.

6 CONCLUSION

In this paper we have introduced our system that can
generate realistic heterogeneous modular robots in a 3D
realistic environment. Integrating our system in Gazebo and
having access to set up numerous physical parameters lead
to obtain realistic simulations. We expect the virtual robots
generated with our system and trained in a realistic robotic
simulator to better bridge the gap to reality. Our system
generated interesting robots that learned to find locomotion
strategies in order to travel longest distances. In the future
we will improve our model in order to generate robots that
can do complex tasks in complex environments where there
are obstacles and uncertainties. For that, we will try to add
other module shapes, we will implement a more efficient
controller, and we will add other sensing capabilities.
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