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Büchi Automata Optimisations Formalised in Isabelle/HOL

In applications of automata theory, one is interested in reductions in the size of automata that preserve the recognised language. For Büchi automata, two optimisations have been proposed: bisimulation reduction, which computes equivalence classes of states and collapses them, and α-balls reduction, which collapses strongly connected components (SCCs) of an automaton that only contain one single letter as edge label. In this paper, we present a formalisation of these algorithms in Isabelle/HOL, providing a formally verified implementation.

Introduction

Model-checking is an important method for proving systems correct, and is applied in industrial practice [START_REF] Clarke | Model Checking, 5th print[END_REF]. In previous work [START_REF] Esparza | A fully verified executable LTL model checker[END_REF], we present a reference implementation for an LTL (linear temporal logic) model checker for finite-state systems à la SPIN [START_REF] Holzmann | The SPIN Model Checker -primer and reference manual[END_REF]. The model checker follows the well-known automatatheoretic approach. Given a finite-state program P and an LTL formula φ, two Büchi automata are constructed: the system automaton that recognises the executions of P , and the property or formula automaton expressing all potential executions that violate φ, respectively. Then the product of the two automata is computed and tested on-the-fly for emptiness. This implementation is realised and verified using Isabelle/HOL [START_REF] Nipkow | Isabelle/HOL[END_REF].

One important part of automata-based model checking is the translation of an LTL formula into a Büchi automaton. The standard algorithm for this problem has been proposed by Gerth et al. [START_REF] Gerth | Simple on-the-fly automatic verification of linear temporal logic[END_REF]. Previously to [START_REF] Esparza | A fully verified executable LTL model checker[END_REF], we have implemented and verified this algorithm in Isabelle/HOL [START_REF] Schimpf | Construction of Büchi automata for LTL model checking verified in Isabelle/HOL[END_REF]. In this paper, we consider two of the optimisations proposed by Etessami and Holzmann [START_REF] Etessami | Optimizing Büchi automata[END_REF] to reduce the size of the formula automaton.

In model checking, the system automaton is usually much larger than the property automaton, but since the size of the property automaton is a multiplicative factor of the overall complexity, it is worthwhile to put substantial effort into its optimisation [START_REF] Etessami | Optimizing Büchi automata[END_REF].

The first optimisation is bisimulation reduction, which computes equivalence classes of states and collapses them. The algorithm of [START_REF] Etessami | Optimizing Büchi automata[END_REF] uses a so-called colouring.

⋆ Supported by DFG grant CAVA, Computer Aided Verification of Automata.

1: proc BasicBisimReduction(A) ≡ 2:

/* Init: ∀q ∈ Q. C -1 (q) := 1, and ∀q ∈ F. C 0 (q) := 1, ∀q ∈ Q \ F. C 0 (q) := 2.*/ 3: i := 0; 4:

while |C i (Q)| = |C i-1 (Q)| do 5:

i := i + 1 6:

foreach q ∈ Q do 7:

C i (q) := C i-1 (q), ∪ (q,a,q ′ )∈δ {(C i-1 (q ′ ), a)} 8: od 9:

Rename colour set C n (Q), with {1, . . . , |C i (Q)|}, using lexicogr. ordering. 10: od 11:

C := C i ; return A ′ := Q ′ := C(Q), δ ′ , q ′ I := C(q I ), F ′ := C(F ) ; 12:

/* δ ′ defined so that (C(q 1 ), a, C(q 2 )) ∈ δ ′ iff (q 1 , a, q 2 ) ∈ δ for q 1 , q 2 ∈ Q*/ Fig. 1. Basic Bisimulation Reduction Algorithm [START_REF] Etessami | Optimizing Büchi automata[END_REF] Our formalisation has revealed that there is a mistake in the initialisation of the algorithm, which we have corrected in our implementation.

The second optimisation is α-balls reduction, which collapses strongly connected components (SCCs) that only contain one single letter as edge label.

The rest of the paper is organised as follows: Section 2 gives some preliminaries. Section 3 recalls the two optimisations of [START_REF] Etessami | Optimizing Büchi automata[END_REF] in turn. Section 4 presents our Isabelle formalisations of those algorithms, and Sec. 5 concludes.

Preliminaries

We recall the basic notions of automata as used by [START_REF] Etessami | Optimizing Büchi automata[END_REF]; for more details see [START_REF] Thomas | Automata on infinite objects[END_REF].

Usually, Büchi (or finite) automata have transitions labelled with characters from an alphabet Σ. In [START_REF] Etessami | Optimizing Büchi automata[END_REF], a generalisation of such labellings is considered, but for our purposes, this is not necessary and so we assume simple characters. We assume that a Büchi automaton A is given by Q, δ, q I , F . Here Q is a set of states, δ ⊆ (Q × Σ × Q) is the transition relation, q I ∈ Q is the initial state, and F ⊆ Q is the set of final states. The language L(A) is defined as the set of those ω-words which have an accepting run in A, where a run on word w = a 1 a 2 . . . is a sequence q 0 q 1 q 2 . . . such that q 0 = q I and (q i , a i+1 , q i+1 ) ∈ δ for all i ≥ 0, and it is accepting if q i ∈ F for infinitely many i.

Isabelle/HOL [START_REF] Nipkow | Isabelle/HOL[END_REF] is an interactive theorem prover based on Higher-Order Logic (HOL). You can think of HOL as a combination of a functional programming language with logic. Isabelle/HOL aims at being readable by humans and thus follows the usual mathematical notation, but still the syntax needs some explanations which we provide when we come to the examples. In our presentation of Isabelle code we have stayed faithful to the sources.

The Original Algorithms

The Bisimulation Reduction Algorithm

Fig. 1 shows the basic bisimulation reduction algorithm in pseudo-code. The letter C with a superscript refers to the iterations of the computation of a colouring. Fig. 2. An automaton and its incorrect reduction according to [START_REF] Etessami | Optimizing Büchi automata[END_REF] The idea is that in the beginning (i = 0) accepting states have colour 1 and nonaccepting states have colour 2, and in each step, the colour of a state is obtained by its old colour and a combination of the successor state colours and the corresponding edge labels. This means that if two states have the same colour but they differ in the colours of their successors (taking into account the edge labels), then those two states must be distinguished; we say that the colouring is refined. In the end, states with the same colour can be joined.

The algorithm initialises not only C 0 but also C -1 (we might call this "preinitialisation") which is a trick making the formulation of the algorithm more concise, by allowing for a loop condition that makes a comparison between the current and the previous colouring, even for i = 0.

However, our formalisation of the reduction algorithm, to be shown later, has revealed that there is a mistake in this pre-initialisation. This is illustrated in Figure 2. Here we have Q = {q0, q1}, F = Q, C 0 (q0) = 1, C 0 (q1) = 1, C -1 (q0) = 1, C -1 (q1) = 1. Just before the while we have |C 0 (Q)| = |C -1 (Q)| = 1; even stronger, we have C 0 (Q) = C -1 (Q) = {1}. What matters is that the loop condition is false and hence the loop is not entered at all. Therefore the result C = C 0 is computed, yielding the automaton shown on the right in Figure 2.

Our explanation is as follows: The pre-initialisation ∀q ∈ Q. C -1 (q) := 1 is conceptually wrong. It expresses that "pre-initially" (i = -1), there is only one colour. If by coincidence the input automaton has only accepting or only nonaccepting states, then "initially" (index i = 0), there is also just one colour. The loop condition will then wrongly say "we have done enough refinement steps".

The problem really manifests itself for the case that F = Q, i.e., all states are accepting: each refinement step takes into account the edge labels and not just whether a state is accepting or not. The initialisation however only considers whether a state is accepting or not, and so not doing any refinement wrongly results in identifying all states (q0 and q1 in the example).

The conceptual mistake happens to cause no harm in the case F = ∅, since the initialisation of the algorithm establishes the property F = ∅ and trivially maintains it since no refinement is done. The accepted language is then empty.

Our solution is to replace the condition

|C i (Q)| = |C i-1 (Q)| with i ≤ 0 ∨ |C i (Q)| = |C i-1 (Q)| (in the actual formalisation: i > 0 -→ |C i (Q)| = |C i-1 (Q)|)
so that the loop body will definitely be entered for i = 0 at least once. This is shown in Fig. 3 and will be discussed in Sec. 4.1.

α-Balls Reduction

This optimisation may appear simple and rather specialised, but in fact, it is quite effective in our context of model checking, more precisely, on Büchi automata that are the result of a translation from generalised Büchi automata which in turn are the output of the formula translation [START_REF] Gerth | Simple on-the-fly automatic verification of linear temporal logic[END_REF]. Note also that the reduction does not work for finite automata; it only works for Büchi automata.

The idea of the reduction is that, if in a Büchi automaton we are ever stuck in a component, and the only transition labels in this component are α, and there is some accepting state in the component, then we can treat the entire component as a single accepting state with a self-transition labelled by α.

Definition 1. For α ∈ Σ, a fixed-letter α-ball 1 inside a Büchi automaton A is a set Q ′ ⊆ Q of states such that: 1. α ∈ Σ is the unique letter which labels the transitions inside Q ′ ; 2. the nodes of Q ′ form an SCC of A; 3. there is no transition leaving Q ′ , i.e., no (q ′ , b, q) ∈ δ where q ′ ∈ Q ′ and q / ∈ Q ′ . 4. Q ′ ∩ F = ∅. Proposition 1. Given a Büchi automaton A = Q, δ, q I , f , suppose Q ′ ⊆ Q is a fixed-letter α-ball of A. Let A ′ = (Q \ Q ′ ) ∪ {q new }, δ ′ , q ′ I , (F \ Q ′ ) ∪ {q new } where δ = {(q 1 , b, q 2 ) | q 1 , q 2 ∈ Q \ Q ′ } ∪ {(q 1 , b, q new ) | (q 1 , b, q 2 ) ∈ δ, q 1 ∈ Q, q 2 ∈ Q ′ } ∪ {(q new , α, q new )},
and

q ′ I = q new if q I ∈ Q ′ , else q ′ I = q I . Then L(A) = L(A ′ ).

Isabelle Formalisation

The work presented in this paper is a fragment of a bigger library being developed on automata in the context of model checking, in particular the construction of the property automaton (see Sec. 1). Modularity, generality and reuse are important concerns in this project, which is why the Isabelle code chunks presented here exhibit some aspects that we do not discuss in all detail. Generally, automata are represented as record types that are parametrised by the type of the states and the type of the alphabet, among others. E.g., in line 2 in Fig. 3, ′ q is the type of the states. The fields of these records, mostly denoted by calligraphic letters, refer to the states, the final states, etc. E.g., in line 5 in Fig. 3, Q gives the state set, and in line 7, F refers to being accepting.

[3] defines more generally: a fixed-formula α-ball, i.e., α is a formula. 

(LBA.LBA_bpr__whilei A Q) 12: ( λ(C, C', i). i>0 -→ card (C' ' Q) = card (C ' Q)) 13: ( λ(C, C', i). do { 14: let i = Suc i; 15: let C = C'; 16: let f = ( λq. (C q, L A q, C ' successors A A q)); 17: let R = f ' Q; 18: fi ← set_enum R; 19: let C' = fi o f; 20: RETURN (C, C', i) 21: }) (C, C', i); 22: RETURN C' 23: }" Fig. 3. BPR colouring
In the formalisation we present here, we use automata that follow [START_REF] Gerth | Simple on-the-fly automatic verification of linear temporal logic[END_REF] but differ from the standard definition in one important aspect: we assume that not the edges, but rather the states of automata are labelled. We call those automata labelled Büchi automata (LBA), as opposed to BA. Moreover, in our representation we have a set of initial states rather than a unique initial state. Instead of a set of accepting states we use a predicate to express whether a state is an accepting state or not. This kind of automata representation is suitable in our context, since we formalise the algorithm in the context of the Büchi automaton construction from an LTL formula according to [START_REF] Gerth | Simple on-the-fly automatic verification of linear temporal logic[END_REF], where the output automaton corresponds to a state labelled rather than a transition labelled automaton.

Big parts of our library concern BAs, however, and technically, LBAs are defined as an extension of the BA record type where labels for the states are added and the labels for the edges are "disabled".

The Bisimulation Reduction Algorithm

The Isabelle formalisation of the algorithm from Fig. 1 is shown in Figure 3. The formalisation uses the Isabelle refinement framework [START_REF] Lammich | Applying data refinement for monadic programs to Hopcroft's algorithm[END_REF] for writing what resembles imperative code. We explain some of the syntactic constructs.

Lines 5 to 8 accomplish the initialisation. The let should be understood as imperative assignment. We assign: Q is the state set of the input automaton A; C 1: definition 2:

"set_enum S ≡ do { 3:

(_, m) ← FOREACHi 4:

(set_enum__foreachi S) 5: S 6:

( λx (k, m). RETURN (Suc k, m(x →k))) 7:

(1, empty); 8:

RETURN ( λx. case m x of None ⇒ 0 | Some k ⇒ k) }" Fig. 4. Numbering of sets is the (i -1)th colouring and is initialised to the function that colours each state as 1; C ′ is the ith colouring and is initialised to the function that colours each accepting state as 1 and all others as 2. We need C and C ′ in order to determine whether the current iteration has actually refined the current colouring. Line 9 performs a kind of nondeterministic assignment: the term following it is essentially a set of values, and an element of this set is assigned to ( , C ′ , ) nondeterministically. The refinement framework allows us to specify algorithms with such nondeterminism, prove theorems about them, and replace the nondeterminism by a deterministic implementation later and independently.

Back to the code: line 10 contains the while-construct in this language. Its first argument (line 11) consists of a loop invariant that must be provided by the programmer and that is used in correctness proofs. The second argument (line 12) is the loop condition corrected as explained in Sec. 3.1. The third argument (lines 13 to 21) is the loop body which takes the form of a λ-term with an abstraction over (C, C ′ , i), applied to the argument (C, C ′ , i) (line 21) which corresponds to the initial values explained two paragraphs above.

During each iteration, a new colouring is computed in the form of a function f that assigns a certain triple to each state; R is then defined as the image of f on Q, i.e., R is the set of all the colours of the new colouring. In order to convert those complicated triples into simple numbers, an auxiliary function shown in Fig. 4 is used; fi , obtained by a nondeterministic assignment as in line 9, is then the numbering of R. The new colouring is then the composition of fi and f . It assigns a number to each state.

The function set enum computes the set of all unique numberings for a set S, so that set enum S is the set of bijections between S and {1, . . . , #S}. The definition of the function starts with a foreach-construct (lines 3-7). In line 3 one possible result of the loop is chosen non-deterministically and is assigned to ( , m). In the following line a loop-invariant is provided in order to be able to prove correctness properties of the definition. The second parameter in line 5 represents the iterated set. For each element of S the body of the loop (line 6) is applied sequentially in an arbitrary order, where x is an element of S and (k, m) an intermediate result of the loop, that is propagated through the iterations starting with (1, empty). Such results correspond to a pair consisting of the next number to assign and an already constructed mapping of numbers to elements of S. An empty mapping is denoted by empty and for an existing mapping m a new mapping is constructed with m(x → k), that behaves like m with the exception that it maps x to k. In the last line the above constructed mapping is turned into a function: elements not in S are mapped to 0. The following lemma states the correctness of the construction:

lemma set_enum_correct:
assumes "finite S"

shows "set_enum S ≤ SPEC ( λf. bij_betw f S {1..card S})"

The term bij betw f S {1..card S} says "f is a bijection between S and {1, . . . , #S}", and the entire lemma says that the results of set enum S in terms of functions f fulfil the specification "f is a bijection between S and {1, . . . , #S}". Thus we have a bijection between f (Q) and C ′ (Q) in the actual procedure, i.e., line 9 in the pseudo-code in Fig. 1 is correctly implemented.

Termination After each execution of the body of the loop, the number of colours according to C ′ increases compared to C, or the iteration stops after that execution of that loop body. At the same time, the number of possible colours in C ′ is bounded by the number of states in the input automaton. Hence the number of colours cannot increase indefinitely and therefore the iteration stops eventually.

Correctness The proof of correctness of the procedure is based on the characterisation of the ith colouring. For i > 0, we have the following loop invariant:

definition ( in LBA) "LBA_bpr_C_inv Q ≡ λ(C, C', i). ∀ q ∈Q. ∀ q' ∈Q. C' q = C' q' ←→ (C q = C q' ∧ L A q = L A q' ∧ C ' successors q = C ' successors q')"
This invariant corresponds exactly to the modification of C ′ after each iteration and is thus simple to prove based on the bijectivity of f and C ′ . For the general case, i.e., including i = 0, the following holds: whenever C ′ (q) = C ′ (q ′ ) for two states q, q ′ ∈ Q, then either both q, q ′ are in F or they are both not in F . When the iteration of the loop stops, i.e., the number of colours in C ′ does not change anymore compared to C, we obtain a bijection between C and C ′ . Considering that the invariant relates C to C ′ , we obtain that C and C ′ yield the same equivalence classes, i.e., for any states q, q ′ ∈ Q, we have C ′ (q) = C ′ (q ′ ) if and only if C(q) = C(q ′ ). In Fig. 5, we have defined the characteristics that are needed in the subsequent proofs and that LBA bpr C indeed fulfils. We have chosen to introduce a definition for this characterisation because it occurs in several places in our development.

All in all, we obtain the characterisation of the resulting colouring shown by the lemma in Figure 6. Indeed, we need to assume that the set of states is Finiteness is given here by an implicit assumption denoted by "(in LBA)". This characterisation turns out to be a sufficient condition for proving the correctness of the resulting coloured automaton. To obtain the automaton, we apply a renaming function LBA rename which takes an LBA and a colouring function C and returns the LBA where each state has been renamed using the colouring function. The renaming function has properties shown in Figure 7.

definition ( in LBA) "LBA_bpr_C_char ≡ λC. ∀ q ∈Q A. ∀ q' ∈Q A. C q = C q' -→ ( F A q ←→ F A q') ∧ L A q = L A q' ∧ C ' successors q = C ' successors q'"
For example the second line of the lemma states that the initial states of the renamed automaton are exactly the renamings of the initial states of the original automaton. The other lines state similarly that the transition function, the final states, and the labels are preserved by the renaming.

The term inv into Q f q gives "the"2 inverse element of q under f in Q. In the case that this inverse is unique, i.e., f is injective on Q, it is straightforward to show that the renaming preserves language equivalence. However, the very purpose of the colouring is to reduce the number of states, hence not to be injective! But even in this general case, language equivalence holds, as is expressed by the following lemma:

lemma ( in LBA) LBA_bpr_C_rename_accept_iff: assumes "LBA_bpr_C_char C" shows " ∀ w. LBA_accept (LBA_rename A C) w ←→ LBA_accept A w"
The proof of the lemma works constructively. The "←-" direction consists of taking a run (sequence of states) r for word w of the input automaton and colouring r componentwise using C, i.e., r is mapped to a run C • r in the coloured automaton.

The "-→" direction requires an auxiliary function: = (SOME q'. C q' = C (inv_into

lemma LBA_rename_simps: " δ (LBA_rename A C) q a = C ' δ A (inv_into ( Q A) C q) a" " I (LBA_rename A C) = C ' I A" " F (LBA_rename A C) q ←→ F A (inv_into ( Q A) C q)" " L (LBA_rename A C) q = L A (inv_into ( Q A) C q)"
( Q A) C (r (Suc k))) ∧ q' ∈δ L A (bpr_run A C r q0 k))"
This function is needed for the following reason: if we start from a run r for w in the coloured automaton and use inv into Q f q to compute a corresponding state in the input automaton for each state q in r, then these states do not necessarily "fit together", i.e., they may not form a run in the input automaton.

Example 1. Figure 8 shows an LBA accepting the word aaa . . . on the left, and the simplified automaton obtained by colouring on the right. Obviously, the state sequence in the coloured automaton is always simply a sequence of 1's. The inverse of "1" is either q 1 or q 2 , so simply translating 11 . . . back into the original LBA would give either q 1 q 1 . . . or q 2 q 2 . . .. In neither case this would correspond to a run of the original LBA.

As the example shows, constructing a run in the original LBA, given a run in the coloured LBA, is not so simple and has to be done step by step starting from the initial state. This is what the function bpr run is good for. It starts by taking an inverse of the initial state of the run r of the coloured automaton, and then always picks an appropriate inverse for each next state in r. The existence of such an inverse is guaranteed by the assumption that the colouring C fulfils the characterisation according to Figure 5.

The entire procedure for constructing the coloured automaton is then given in Figure 9. By the considerations given above, this construction is correct:

lemma ( in LBA) LBA_bpr_correct: "LBA_bpr A ≤ SPEC ( λA C . LBA A C ∧ ( ∀ w. LBA_accept A C w ←→ LBA_accept A w))"
definition LBA_bpr :: "('q, 'l, _) LBA_scheme ⇒ (nat, 'l) LBA nres" where "LBA_bpr A ≡ do { C ← LBA_bpr_C A; RETURN (LBA_rename A C) }" Fig. 9. Procedure for constructing the coloured automaton

In addition to language equivalence we also show that the coloured automaton is well-formed, i.e. LBA A C holds.

α-Balls Reduction

Most of the Isabelle development on this topic uses in fact BA, not LBA, and the formalisation of α-balls reduction for LBA is based on the one for BA. However, we focus here on LBA because the use of LBA required certain adaptations that partly make the contribution of our work.

An α-ball for LBA has, of course, an Isabelle definition. However, this is not very readable and so we prefer to present the following characterisation:

lemma αball L _full_def: " αball L A α Q ≡ G A ↾ Q ∈ sccs A ∧ Q = {} ∧ ( ∀ q ∈Q. successors A q ⊆ Q) ∧ ( ∀ q ∈Q. L A q = α)"
The lemma says that Q is an α-ball iff the following four conditions hold: (1) the graph of A, restricted to Q, is an SCC of A; (2) Q = ∅; (3) there is no edge leading out of Q; (4) all states in Q are labelled with α. Fig. 10 gives an auxiliary definition for balls reduction. There is a loop for working through the SCCs. Trivial balls or balls without accepting states are removed. One-element balls are left untouched. Finally, non-trivial balls are collapsed to a single state. Based on the computation of SCCs according to Tarjan's algorithm [START_REF] Tarjan | Depth-first search and linear graph algorithms[END_REF] we obtain a function that computes the SCCs and then reduces, as shown in Figure 11. The ball reduction on LBAs thus returns a well-formed equivalent automaton and a set SCCs R representing its SCCs.

The correctness follows from the correctness of LBA reduce ball aux and tarjan:

lemma ( in LBA) LBA_reduce_balls_correct: "LBA_reduce_balls A ≤ SPEC( λ( A R , SCCs R ). LBA A R ∧ ( ∀ w. LBA_accept A R w ←→ LBA_accept A w) ∧ Q A R = SCCs R ∧ pairwise_disjoint SCCs R ∧ ( ∀ Q ∈SCCs R . G A R ↾ Q ∈sccs A R ∧ Q = {}) )"
definition LBA_reduce_balls_aux ::

"[('q, 'l, 'more) LBA_scheme, 'q set set] ⇒ (('q, 'l, 'more) LBA_scheme × 'q set set) nres" where "('q, 'l, 'more) LBA_scheme ⇒ (('q, 'l, 'more) LBA_scheme × 'q set set) nres" where "LBA_reduce_balls A ≡ do { SCCs ← tarjan A ( I A); 

"LBA_reduce_balls_aux A SCCs ≡ FOREACHi (LBA_reduce_balls_aux_foreach_inv A SCCs) SCCs ( λQ ( A R , SCCs R ). if ¬ ball L A R Q then RETURN ( A R , {Q} ∪ SCCs R ) else if scc_trivial A R ( G A R ↾ Q) then RETURN (remove_states A R Q, SCCs R ) else if ∀ q ∈Q. ¬ F A R q then RETURN (remove_states A R Q, SCCs R ) else if ( ∃ q. Q = {q}) then RETURN ( A R , {Q} ∪ SCCs R ) else case ball L _get_ α A R Q of None ⇒ RETURN ( A R , {Q} ∪ SCCs R ) | Some α ⇒ do { ( A R , Q R ) ← LBA_remove_ αball A R Q; ASSERT (Q R ⊆Q ∧ Q R = {}); RETURN ( A R , {Q R } ∪ SCCs R ) } ) ( A, {})"
( A R , SCCs R ) ← LBA_reduce_balls_aux A SCCs; RETURN ( A R , SCCs R ) }"

Conclusion

We have presented an Isabelle/HOL formalisation of two Büchi automata optimisations proposed by [START_REF] Etessami | Optimizing Büchi automata[END_REF]. The context of this work is explained in detail in [START_REF] Esparza | A fully verified executable LTL model checker[END_REF]: implementing full-fledged model checkers verified in Isabelle/HOL. Within this endeavour, it is worthwhile to invest effort in the optimisation of the property automaton. While the optimisations are particularly relevant for model checking, they are abstract enough to be applicable to Büchi automata in general.

The difficulty lay in making the right design decisions for the formalisation. We generally tried to model the Isabelle proofs on the paper-and-pencil proofs of the literature, but especially for the colouring, it turned out to be better to develop a new constructive proof from scratch. In that particular case, as mentioned above, the original code contained a mistake, which we discovered during our vain efforts to prove the code correct.

Concerning the first optimisation, there is also a more sophisticated algorithm [START_REF] Etessami | Optimizing Büchi automata[END_REF]. However this algorithm relies on the edge labels in an automaton and thus it is not immediately possible to implement this algorithm in our scenario.

Our formalisation consists of around 1500 lines of code (approximately 3000 lines of code if the formalisation of Tarjan's SCC algorithm is counted).
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This is the famous ǫ operator of HOL: It represents an arbitrary but fixed term fulfilling a given property.