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Abstract

We evolve a Genetic Regulatory Network (GRN) in a three
dimensional morphogen gradient environment to determine
the topology of the neurons in a Spiking Neural Network
(SNN). A genetic algorithm is used to optimize the GRN,
selecting individuals based on the performance of the SNN
grown by the GRN. Performance is measured on two tasks:
visual discrimination and robotic foraging. Early results show
potential for this method as both an indirect encoding and on-
line regulator of neural networks.

Introduction

Artificial neurogenesis has been a fascination of the artifi-

cial life community long before the advent of modern neural

networks. Gruau (1994) evolved grammars which encoded

ANNs capable of controlling six-legged robots. Fleischer

and Barr (1994) used controlled morphogen emissions to

guide the growth of complex neural network morphologies.

More recently, Kowaliw et al. (2014) covered a number of

approaches, such as Wróbel et al. (2012), which showed that

GRNs can encode SNNs that exhibit desirable and realistic

spiking patterns.

In this abstract, we provide an overview of an artificial

neurogenesis model designed to both growth and continu-

ously modify an online SNN. The design and evaluation of

this model is undergoing; we present a broad overview in 2

and preliminary results in 3.

Neural model

Neurons are modeled as single points p in a three dimen-

sional cube with an orientation o. They emit morphogens

and can move in the space following mophogen gradients,

aligning both their orientation and movement with the cho-

sen gradient and bound in all dimensions. Morphogens are

distributed radially from each neuron’s emission, em and are

normalized globally, the concentration of morphogen m at

neuron i computed as

cm,i =
1

max(ci)

∑

j

em,j

‖ pj − pi ‖
(1)

At each time step, morphogen concentrations are recalcu-

lated based on the emissions from each neuron, which in

turn are determined by the neural controller. At each inter-

val of time steps taction, neurons take one of the following

actions: movement, division, quiescence, and, for hidden

neurons only, apoptosis. The neuron’s β parameter, used to

determine its firing influence, is also updated at each taction.

Neuron controller: GRN

The neuron controller in this model is a genetic regulatory

network. In nature, a GRN is a network of proteins that

controls the behavior of cell. An explanation of GRNs, and

specifically the model used in this work, can be found in

Cussat-Blanc and Banzhaf (2015).

The inputs to the GRN are an important consideration in

the design of the model. The following inputs have been

chosen not only to enable the growth of interdependent neu-

rons, but also to give each individual neuron information

about its contribution to the performance of the network.

The inputs are the neuron position p, the morphogen con-

centrations at p, neurotransmitter concentration, firing de-

cay, problem reward, and the neural influence coefficient β.

The reward is specific to the problem domain, as ex-

plained in 3. Firing decay is an exponential timer reset every

time a spike is fired in the neuron, to give the controller input

as to how recently the neuron fired. There are three position

inputs, one for each dimension, and five morphogen inputs,

one for each morphogen emitted by other hidden neurons,

and two for the distinct input and output morphogens.

The controller’s outputs then determine the state and ac-

tions of each neuron. The outputs consist of actions: move-

ment along a morphogen gradient, division, apoptosis, and

quiescence. Also output are the morphogen emissions em,

θe, δβ , and θδβ . Morphogens are emitted from the neuron

and β is updating according to

em =
em − θe

em + θe
and βt+1 = βt +

δβ − θδβ

δβ + θδβ
(2)

An action is chosen as the maximum output from the action

outputs. If one of the 5 movement actions are chosen, the



Figure 1: The path and food consumption of the robot. Con-

sumed food is filled; ignored food is empty. The first path

displays a use of sensors, the other displays an ignorance of

them.

neuron orients based on the chosen morphogen gradient and

moves along it.

Firing model

The neurons are then translated into a leaky integrate and

fire spiking neural network, with position in the cube deter-

mining neural connectivity. The weight from a neuron i to

another neuron j is

wi,j =
1

exp (βi
oi·(pj−pi)
‖oi‖

)− 1
(3)

where the distance between the neurons is the projection of

their distance vector onto the orientation of i, oi. Input neu-

rons are oriented along the z axis, facing the output neurons

directly. Neurons fire if the neurotransmitter concentration

reaches the threshold vt, at which point the neurotransmit-

ter concentration is set to resting potential, vr; otherwise

they leak a percentage α of their neurotransmitter at each

timestep.

Evaluation

GRNs were evolved in a genetic algorithm based on Cussat-

Blanc et al. (2015), using a robotic foraging task for fitness.

In this task, a two wheeled robot is placed in a torus environ-

ment populated by food particles. The robot has 8 sensors

on its front half. The robot turns and moves by firing neu-

rons on the left and right side of the output plane, acceler-

ating the left and right wheel, respectively. Eating prolongs

the robot’s life, which is decreased at each time step. The

problem ends when the robot runs out of life, and fitness is

awarded based on the amount of food consumed. The re-

ward input provided to the GRN is the current life of the

robot. A growing ANN forages over five instances of a map

generated at the beginning of each evolutionary generation

and the worst fitness is chosen, which motivates improve-

ment and stability of the ANN.

Using an evolved GRN and the resultant ANN, the robot

displays a tendency to move towards food detected by select

sensors; the topology may underutilize some inputs, evident

as food not being approached from certain angles. Another

undesirable evolutionary trait is the efficient blind search

methods that attempt to cover the entire map, ignoring food

placement. As seen above, a persistent movement strategy

though the map can result in food consumption competitive

with the strategy of following sensory input.

The model acheieved near perfect fitness on the forag-

ing problem using both sensor following and map coverage

strategies. The stability of the network is still under consid-

eration; while the model grows and modifies the network ac-

cording to the reinforcement problem, as desired, the mod-

ifications can also destabalize the network. We are focused

on addressing this issue in the continuing development of

the model.
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